首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Immunity to the opportunistic pathogen, Toxoplasma gondii, is highly dependent upon the effector activity of IFN-gamma-producing T lymphocytes. While IFN-gamma is required to survive infection, an understanding of its function remains incomplete. During infection, T. gondii simultaneously induces downregulatory antiinflammatory cytokines, thereby avoiding major host pathology mediated by proinflammatory cytokines such as IFN-gamma. The ability to induce the correct balance between these two opposing host responses likely accounts for the success of this organism as a parasite.  相似文献   

2.
3.
Lately, we can observe significant progress in understanding mechanism of DNA repair owing to fast methods of DNA sequence analysis from different organisms the revealing of structure and function of DNA repair proteins in prokaryota and eukaryota. The protozoan parasites survival depends on DNA repair systems. Better understanding of DNA repair systems can help in new antipathogen drug development. This review is aimed at updating our current knowledge of the various repair pathways by providing an overview of DNA repair genes regarding Toxoplasma gondii infections and the corresponding proteins, participating either directly in DNA repair, or in checkpoint control and signaling of DNA damage.  相似文献   

4.
Toxoplasma gondii: mechanism of resistance to complement-mediated killing   总被引:5,自引:0,他引:5  
Tachyzoites of the obligate intracellular protozoan Toxoplasma gondii are resistant to lysis in non-immune human serum. We have examined the mechanism of this serum resistance in RH and P strain organisms, which differ markedly in virulence, but are equally resistant to serum killing. Rapid, but limited, activation of the alternative complement pathway occurred in non-immune human serum, with deposition of equivalent amounts of C3 on the two strains. C component C3 bound covalently to parasite acceptor molecules via an ester linkage. The predominant form of C3 was iC3b which cannot participate in formation of a lytic C5b-9 complex. Multiple membrane constituents of the tachyzoite of T. gondii may serve as acceptors for the limited amount of C3 deposited during incubation in non-immune serum. When tachyzoites were presensitized with the lytic anti-p30 mAb 7B8, new amide-linked C3-acceptor complexes formed. Nearly equivalent C3 binding but a threefold enhancement of 125I-C9 binding occurred when mAb 7B8 pre-sensitized tachyzoites were compared to native organisms. These results indicate that tachyzoites of T. gondii are serum resistant because of failure to activate C efficiently. Presensitization with a lytic mAb alters the site of complement deposition and augments C5b-9 formation.  相似文献   

5.
The interaction of protozoan parasites with innate host defences is critical in determining the character of the subsequent infection. The initial steps in the encounter of Toxoplasma gondii with the vertebrate immune system provide a striking example of this important aspect of the host-parasite relationship. In immuno-competent individuals this intracellular protozoan produces an asymptomatic chronic infection as part of its strategy for transmission. Nevertheless, T. gondii is inherently a highly virulent pathogen. The rapid induction by the parasite of a potent cell-mediated immune response that both limits its growth and drives conversion to a dormant cyst stage explains this apparent paradox. Studies with gene-deficient mice have demonstrated the interleukin-12 (IL-12)-dependent production of interferon gamma (IFN-gamma) to be of paramount importance in controlling early parasite growth. However, this seems to be independent of nitric oxide production as mice deficient in inducible nitric oxide synthase (iNOS) and tumour necrosis factor receptor were able to control early growth of T. gondii, although, they later succumbed to infection. Nitric oxide does, however, seem to be important in controlling persistent infection; treating chronic infection with iNOS metabolic inhibitors results in disease reactivation. Preliminary evidence implicates neutrophils in effector pathways against this parasite distinct from that described for macrophages. Once initiated, IL-12-dependent IFN-gamma production in synergy with other proinflammatory cytokines can positively feed back on itself to induce ''cytokine shock''. Regulatory cytokines, particularly IL-10, are essential to down-regulate inflammation and limit host pathology.  相似文献   

6.
Toll-like receptor (TLR) activation relies on biochemical recognition of microbial molecules and localization of the TLR within specific cellular compartments. Cell surface TLRs largely recognize bacterial membrane components, and intracellular TLRs are exclusively involved in sensing nucleic acids. Here we show that TLR11, an innate sensor for the Toxoplasma protein profilin, is an intracellular receptor that resides in the endoplasmic reticulum. The 12 membrane-spanning endoplasmic reticulum-resident protein UNC93B1 interacts directly with TLR11 and regulates the activation of dendritic cells in response to Toxoplasma gondii profilin and parasitic infection in vivo. A deficiency in functional UNC93B1 protein abolished TLR11-dependent IL-12 secretion by dendritic cells, attenuated Th1 responses against T. gondii, and dramatically enhanced susceptibility to the parasite. Our results reveal that the association with UNC93B1 and the intracellular localization of TLRs are not unique features of nucleic acid-sensing TLRs but is also essential for TLR11-dependent recognition of T. gondii profilin and for host protection against this parasite.  相似文献   

7.
Prenylated proteins are involved in the regulation of DNA replication and cell cycling and have important roles in the regulation of cell proliferation. Protein farnesyltransferase and protein geranylgeranyltransferase are the two enzymes responsible for catalysing isoprene lipid modifications. Recently these enzymes have been targets for the development of cancer chemotherapeutics. Using metabolic labelling we identified isoprenylated proteins which suggests the presence of protein farnesyltransferase in Toxoplasma gondii. T. gondii protein farnesyltransferase is heat-labile and requires Mg(2+) and Zn(2+) ions for full activity. Peptidomimetic analogues as well as short synthetic peptides were tested in vitro as possible competitors for farnesyltransferase substrates. We found that the synthetic peptide (KTSCVIA) specifically inhibited T. gondiiprotein farnesyltransferase but not mammalian (HeLa cells) farnesyltransferase. Therefore this study suggests the possible development of specific inhibitors of T. gondiiprotein farnesyltransferase as an approach to parasitic protozoa therapy.  相似文献   

8.
Long-term resistance to Toxoplasma gondii is dependent on the development of parasite-specific T cells that produce IFN-gamma. CD28 is a costimulatory molecule important for optimal activation of T cells, but CD28(-/-) mice are resistant to T. gondii, demonstrating that CD28-independent mechanisms regulate T cell responses during toxoplasmosis. The identification of the B7-related protein 1/inducible costimulator protein (ICOS) pathway and its ability to regulate the production of IFN-gamma suggested that this pathway may be involved in the CD28-independent activation of T cells required for resistance to T. gondii. In support of this hypothesis, infection of wild-type or CD28(-/-) mice with T. gondii resulted in the increased expression of ICOS by activated CD4(+) and CD8(+) T cells. In addition, both costimulatory pathways contributed to the in vitro production of IFN-gamma by parasite-specific T cells and when both pathways were blocked, there was an additive effect that resulted in almost complete inhibition of IFN-gamma production. Although in vivo blockade of the ICOS costimulatory pathway did not result in the early mortality of wild-type mice infected with T. gondii, it did lead to increased susceptibility of CD28(-/-) mice to T. gondi associated with reduced serum levels of IFN-gamma, increased parasite burden, and increased mortality compared with the control group. Together, these results identify a critical role for ICOS in the protective Th1-type response required for resistance to T. gondii and suggest that ICOS and CD28 are parallel costimulatory pathways, either of which is sufficient to mediate resistance to this intracellular pathogen.  相似文献   

9.
Toxoplasma gondii: the biochemical basis of resistance to emimycin   总被引:1,自引:0,他引:1  
Emimycin was a potent and selective inhibitor of the growth and nucleic acid synthesis of Toxoplasma gondii in human fibroblasts. An emimycin-resistant mutant of T. gondii lost the pyrimidine salvage enzyme uracil phosphoribosyltransferase, the same enzyme absent in parasites resistant to fluorodeoxyuridine. The mutant resistant to emimycin was completely cross-resistant to fluorodeoxyuridine. Emimycin was as good a substrate as uracil for the uracil phosphoribosyltransferase of T. gondii. [3H]Emimycin supplied in the medium of cultures with actively growing intracellular parasites was converted to emimycin riboside-5'-phosphate in the soluble pool of T. gondii. All other emimycin analogs of uracil-containing nucleotides were also formed but little emimycin riboside diphosphate-N-acetylhexosamine was found. [3H]Emimycin was not converted to analogs of the cytidine nucleotides. When intracellular T. gondii were treated with a concentration of [3H]emimycin that partially inhibited parasite RNA synthesis, much less [3H]emimycin was incorporated into RNA than would be predicted by the amount of intracellular [3H]emimycin riboside triphosphate.  相似文献   

10.
Intracellular parasites of the phylum Apicomplexa contain specialized rhoptry secretory organelles that have a crucial function in host-cell invasion and establishment of the parasitophorous vacuole. Here we show that localization of the Toxoplasma gondii rhoptry protein ROP2 is dependent on a YEQL sequence in the cytoplasmic tail that binds to micro-chain subunits of T. gondii and mammalian adaptors, and conforms to the YXXstraight phi mammalian sorting motif. Chimaeric reporters, containing the transmembrane domains and cytoplasmic tails of the low-density lipoprotein receptor and of Lamp-1, are sorted to the Golgi or the trans-Golgi network (TGN), and partially to apical microneme organelles of the parasite, respectively. Targeting of these reporters is mediated by YXXstraight phi- and NPXY-type signals. This is the first demonstration of tyrosine-dependent sorting in protozoan parasites, indicating that T. gondii proteins may be targeted to, and involved in biogenesis of, morphologically unique organelles through the use of evolutionarily conserved signals and machinery.  相似文献   

11.
Toxoplasma gondii: decreased resistance to intracellular bacteria in mice   总被引:1,自引:0,他引:1  
The effect of sublethal inocula of Toxoplasma gondii on the course of listeriosis and salmonellosis in mice was investigated. Intravenous injection of T. gondii 24 hr after inoculation of Listeria monocytogenes increased mortality from 16% (L. monocytogenes alone) to 68% (L. monocytogenes + T. gondii) (P less than 0.001). Multiplication of L. monocytogenes in spleens also was increased significantly in mice given T. gondii. By 3 days after infection, mice that had received T. gondii and L. monocytogenes had approximately 10 times the number of L. monocytogenes per spleen compared to mice receiving L. monocytogenes alone. Similarly, mortality and the number of bacteria in spleens were increased in mice injected with Salmonella typhimurium and then inoculated with T. gondii. An in vitro assay of macrophage listeriacidal activity was used to investigate the mechanism of this decreased resistance. Peritoneal macrophages from mice injected with T. gondii were less bactericidal than macrophages from uninfected mice. Delayed hypersensitivity responses to L. monocytogenes antigen were markedly suppressed in mice injected with T. gondii. T. gondii infection appears to suppress both macrophage and T-lymphocyte function and may result in decreased resistance to infections caused by intracellular bacteria.  相似文献   

12.
13.
The nucleoside triphosphate hydrolase of Toxoplasma gondii is a potent apyrase that is secreted into the parasitophorous vacuole where it appears to be essentially inactive in an oxidized form. Recent evidence shows that nucleoside triphosphate hydrolase can be activated by dithiothreitol in vivo. On reduction of the enzyme, there is a rapid depletion of host cell ATP. Previous results also demonstrate a dithiothreitol induced egress of parasites from the host cell with a concurrent Ca2+ flux, postulated to be a consequence of the release of ATP-dependent Ca2+ stores within the tubulovesicular network of the parasitophorous vacuole. Reduction of the nucleoside triphosphate hydrolase appears crucial for its activation; however, the exact mechanism of reduction/activation has not been determined. Using a variety of techniques, we show here that glutathione promoters activate a Ca2+ flux and decrease ATP levels in infected human fibroblasts. We further show the in vitro activation of nucleoside triphosphate hydrolase by endogenous reducing agents, one of which we postulate might be secreted into the PV by T. gondii. Our findings suggest that the reduction of the parasite nucleoside triphosphate hydrolase, and ultimately parasite egress, is under the control of the parasites themselves.  相似文献   

14.
Reduction of risk for human and food animal infection with Toxoplasma gondii is hampered by the lack of epidemiological data documenting the predominant routes of infection (oocyst vs. tissue cyst consumption) in horizontally transmitted toxoplasmosis. Existing serological assays can determine previous exposure to the parasite, but not the route of infection. We have used difference gel electrophoresis, in combination with tandem mass spectroscopy and Western blot, to identify a sporozoite-specific protein (T. gondii embryogenesis-related protein [TgERP]), which elicited antibody and differentiated oocyst- versus tissue cyst-induced infection in pigs and mice. The recombinant protein was selected from a cDNA library constructed from T. gondii sporozoites; this protein was used in Western blots and probed with sera from T. gondii -infected humans. Serum antibody to TgERP was detected in humans within 6-8 mo of initial oocyst-acquired infection. Of 163 individuals in the acute stage of infection (anti- T. gondii IgM detected in sera, or < 30 in the IgG avidity test), 103 (63.2%) had detectable antibodies that reacted with TgERP. Of 176 individuals with unknown infection route and in the chronic stage of infection (no anti- T. gondii IgM detected in sera, or > 30 in the IgG avidity test), antibody to TgERP was detected in 31 (17.6%). None of the 132 uninfected individuals tested had detectable antibody to TgERP. These data suggest that TgERP may be useful in detecting exposure to sporozoites in early T. gondii infection and implicates oocysts as the agent of infection.  相似文献   

15.
Exposure to pharmacological concentrations of potent estrogenic compounds, including 17 beta-estradiol, diethylstilbestrol, and alpha-dienestrol, increased the susceptibility of mice to Toxoplasma gondii as measured by brain cyst formation. Compounds with weak estrogenic activity or other hormonal activity, including 5 alpha-dihydrotestosterone, progesterone, and zearalanol, did not alter host resistance to infection. The ability of estrogens to alter susceptibility was inhibited by the estrogen antagonist, tamoxifen. The restoration of ovariectomized mice with normal physiological concentrations of estrogen had no effect on subsequent infection with T. gondii. These results indicate that pharmacological, but not physiological, levels of estrogen selectively alter host resistance to T. gondii, possibly through hormonal events.  相似文献   

16.
Infection of mouse macrophages with Toxoplasma gondii elicits MAPK activation and IL-12 production, but host cell signaling pathways have not been clearly delineated. Here, we compared macrophage signaling in response to high virulence type I (RH) vs low virulence type II (ME49) strain infection. Tachyzoites of both strains induced p38 MAPK-dependent macrophage IL-12 release, although ME49 elicited 2- to 3-fold more cytokine than RH. IL-12 production was largely restricted to infected cells in each case. RH-induced IL-12 release did not require MyD88, whereas ME49-triggered IL-12 production was substantially dependent on this TLR/IL-1R adaptor molecule. MyD88 was also not required for RH-stimulated p38 MAPK activation, which occurred in the absence of detectable upstream p38 MAPK kinase activity. In contrast, ME49-driven p38 MAPK activation displayed an MyD88-dependent component. This parasite strain also induced MyD88-dependent activation of MKK4, an upstream activator of p38 MAPK. The results suggest that RH triggers MAPK activation and IL-12 production using MyD88-independent signaling, whereas ME49 uses these pathways as well as MyD88-dependent signaling cascades. Differences in host signaling pathways triggered by RH vs ME49 may contribute to the high and low virulence characteristics displayed by these parasite strains.  相似文献   

17.
Peripheral blood leukocytes (PBL) from patients with toxoplasmosis were shown to be highly responsive to in vitro stimulation with Toxoplasma gondii extract as measured by incorporation of [3H]methylated thymidine. Analysis of Toxoplasma-specific proliferative cells in PBL by using monoclonal antibodies specific for human T cell subsets revealed that the Toxoplasma-specific proliferation response of PBL from the patients was mediated by Leu 1, Leu 3a positive cells, that is, helper/inducer T cells. Tests for the Toxoplasma-specific proliferation response may provide a readily available method for the diagnosis of congenital toxoplasmosis, especially during the newborn period.  相似文献   

18.
Toxoplasma gondii is an obligate intracellular protozoan that causes toxoplasmosis.Previous studies have shown that the perturbation of mitochondrial metabolism in T.gondii results in growth deficiency in host cells and lack of virulence in animals.Members of this Letm1 protein family are inner mitochondrial membrane proteins which play a role in potassium and hydrogen ion exchange.Letm1 has not been characterized in T.gondii.In this study,a potential TgLetm1 gene (TgGT1_288400) with Letm1-like protein domain coding sequence was identified in T.gondii.Indirect immunofluorescence assays suggested that TgLetm1 localized to the mitochondria in tachyzoites,as indicated by the colocalization with mitochondrial marker Mitotracker.TgLetm1 was found in the membrane fraction by western blot analysis.To investigate the role of TgLetm1 in T.gondii,we generated a tetracycline-inducible TgLetm1-knock-down mutant.The conditional deletion of TgLetm1 resulted in mitochondrial swelling.Functional studies showed that the conditional deletion of TgLetm1 resulted in growth inhibition,deficiency in invasion and replication,and lack of virulence in mice.  相似文献   

19.
Toxoplasma gondii Ag-primed intraepithelial lymphocytes (IEL) from the mouse intestine have been shown to be protective against an lethal parasite challenge when adoptively transferred into recipient mice. In the present study, we observed that Ag-primed IEL traffic to the intestine of naive mice following i.v. administration. Primed and CD8beta+ IEL were the most efficient cells at homing to the host organ. In congenic mice, IEL migrated from intestine within several hours posttransfer. On Ag reexposure, the primed IEL return to the intestine where they enhance resistance as determined by reduction in the number of brain cysts. Treatment of recipient mice with anti-alpha4 and anti-alphaE Abs partially inhibited IEL intestinal homing. The Ab treatment dramatically impaired resistance to a subsequent oral infection. These finding indicate that lymphocyte homing is an important parameter in establishing long term immunity to recurrent infection with this parasite.  相似文献   

20.
Nonselective cyclooxygenase (COX) inhibition during the development of allergic disease in a murine model causes an increase in type 2 cytokines and lung eosinophilia; however, the mechanisms responsible for this augmented allergen-induced inflammation have not been examined. Ab depletion of CD4 and CD8 cells revealed that the heightened allergic inflammation caused by COX inhibition was CD4, but not CD8, dependent. Allergen sensitization and airway challenge alone led to undetectable levels of IL-5 and IL-13 in the lungs of IL-4, IL-4Ralpha, and STAT6 knockout (KO) mice, but COX inhibition during the development of allergic inflammation resulted in wild-type levels of IL-5 and IL-13 and heightened airway eosinophilia in each of the three KO mice. These results indicate that the effect of COX inhibition was independent of signaling through IL-4, IL-4Ralpha, and STAT6. However, whereas COX inhibition increased IgE levels in allergic wild-type mice, IgE levels were undetectable in IL-4, IL-4Ralpha, and STAT6 KO mice, suggesting that IL-13 alone is not a switch factor for IgE synthesis in this model. These results illustrate the central role played by products derived from the COX pathway in the regulation of allergic immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号