首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ralstonia solanacearum is the causal agent of bacterial wilt on a wide variety of plants, and enters a viable but nonculturable (VBNC) state under stress conditions in soil and water. Here, we adopted an artificial soil microcosm (ASM) to investigate the VBNC state of R. solanacearum induced by low temperature. The culturability of R. solanacearum strains SL341 and GMI1000 rapidly decreased at 4°C in modified ASM (mASM), while it was stably maintained at 25°C in mASM. We hypothesized that bacterial cells at 4°C in mASM are viable but nonculturable. Total protein profiles of SL341 cells at 4°C in mASM did not differ from those of SL341 culturable cells at 25°C in mASM. Moreover, the VBNC cells maintained in the mASM retained respiration activity. Catalase treatment effectively restored the culturability of nonculturable cells in mASM, while temperature increase or other treatments used for resuscitation of other bacteria were not effective. The resuscitated R. solanacearum from VBNC state displayed normal level of bacterial virulence on tomato plants compared with its original culturable bacteria. Expression of omp, oxyR, rpoS, dps, and the 16S rRNA gene quantified by RT-qPCR did not differ significantly between the culturable and VBNC states of R. solanacearum. Our results suggested that the VBNC bacterial cells in mASM induced by low temperature exist in a physiologically unique state.  相似文献   

2.
Escherichia coli O157:H7 (strains ATCC 43895 and FO46) became nonculturable in sterile, distilled, deionized water or after exposure to chlorine. Recovery of nonculturable E. coli O157:H7 was examined by in vitro and in vivo methods. The decline in culturability of starved E. coli O157:H7 was measured by plate count on rich medium. Recovery in vitro of nonculturable cells was conducted with media amended with catalase or sodium pyruvate; however, there was no apparent increase over culturable cell counts on amended versus nonamended media. Although nonculturable E. coli O157:H7 did not recover under in vitro conditions, a mouse model was used to determine if in vivo conditions would provide sufficient conditions for recovery of nonculturable E. coli O157:H7. In separate studies, mice were orally challenged with starvation-induced nonculturable cells (FO46) or chlorine-induced nonculturable cells (43895 and FO46). Passage through the mouse gastrointestinal tract had no effect on recovery of nonculturable (starvation or chlorine induced) E. coli O157:H7 (43895 or FO46), based on analysis of fecal samples. Mouse kidneys were assayed for the presence of Shiga toxin using the Vero cell assay. Differences in cytotoxicity towards Vero cells from kidney samples of mice receiving nonculturable cells and control mice were not significant, suggesting a loss of virulence.  相似文献   

3.
Vibrio parahaemolyticus is known to exist in a viable but nonculturable state when incubated at low temperature under starvation. It has long been debated whether the culturable cells which appear after temperature upshift are the result of true resuscitation or regrowth of a few residual culturable cells. Starved V. parahaemolyticus cells at 4 degrees C reached the nonculturable stage in about 12 days. The true resuscitation of nonculturable cells of V. parahaemolyticus occurred after spreading them onto an agar medium supplemented with H(2)O(2)-degrading compounds such as catalase or sodium pyruvate. The proposed method may be applicable to detecting the enteropathogen from environmental samples.  相似文献   

4.
Salmonella enterica serovar Typhimurium DT104 11601was tested for its ability to maintain viability in minimal, chemically defined solutions. Periodic monitoring of growth and survival in microcosms of different ion concentrations, maintained at various temperatures, showed a gradual decline in culturable organisms (~235 days) at 5°C. Organisms maintained at a higher temperature (21°C) showed continuous, equivalent CFU per milliliter (~106) up to 400 days after inoculation. Fluorescence microscopy with Baclight revealed that nonculturable cells were actually viable, while observations with scanning electron microscopy showed that the cells had retained their structural integrity. Temperature upshift (56°C ± 0.5, 15 s) of the nonculturable organisms (5°C) in Trypticase soy broth followed by immediate inoculation onto Trypticase soy agar (TSA) gave evidence of resuscitation. Interestingly, S. enterica serovar Typhimurium DT104 from the microcosms at either 5°C (1 to 200 days) or 21°C (1 to 250 days) did not show enhanced growth after intermittent inoculation onto catalase-supplemented TSA. Furthermore, cells from 21°C microcosms exposed to oxidative and osmotic stress showed greater resistance to stresses over increasing times of exposure than did recently grown cells. It is possible that the exceptional survivability and resilience of this particular strain may in part reflect the growing importance of this multidrug-resistant organism, in general, as a cause of intestinal disease in humans. The fact that S. enterica serovar Typhimurium DT104 11601 is capable of modifying its physiological characteristics, including entry into and recovery from the viable but nonculturable state, suggests the overall possibility that S. enterica serovar Typhimurium DT104 may be able to respond uniquely to various adverse environmental conditions.  相似文献   

5.
Like many other gram-negative bacteria, the human pathogen Vibrio vulnificus is induced into a viable but nonculturable (VBNC) state by incubation at low temperatures. The ability of any bacterium to resuscitate from this dormant state would appear to be essential if the VBNC state is truly a survival strategy. The question as to whether the culturable cells which appear following removal of the inducing stress are a result of true resuscitation or of regrowth of a few residual culturable cells has long been debated. V. vulnificus was examined for its ability to resuscitate from this state following a temperature upshift. Several lines of investigation, including dilution studies, determination of the time necessary for appearance of a culturable population, and the effects of nutrient on recovery, all indicated that, at least for V. vulnificus, true resuscitation does occur. Our studies further suggest that nutrient is in some way inhibitory to the resuscitation of cells in the VBNC state and that studies which add nutrient in an attempt to detect resuscitation are able to detect only residual culturable cells which might be present and which were not inhibited by the added nutrient.  相似文献   

6.
Many bacterial species are known to become viable but nonculturable (VBNC) under conditions that are unsuitable for growth. In this study, the requirements for resuscitation of VBNC‐state Vibrio cholerae cells were found to change over time. Although VBNC cells could initially be converted to culturable by treatment with catalase or HT‐29 cell extract, they subsequently entered a state that was not convertible to culturable by these factors. However, fluorescence microscopy revealed the presence of live cells in this state, from which VBNC cells were resuscitated by co‐cultivation with HT‐29 human colon adenocarcinoma cells. Ultimately, all cells entered a state from which they could not be resuscitated, even by co‐cultivation with HT‐29. These characteristic changes in VBNC‐state cells were a common feature of strains in both V. cholerae O1 and O139 serogroups. Thus, the VBNC state of V. cholerae is not a single property but continues to change over time.  相似文献   

7.
AIMS: To investigate the fate of Aeromonas hydrophila pathogenicity when cells switch, in nutrient-poor filtered sterilized seawater, between the culturable and nonculturable state. METHODS AND RESULTS: Aeromonas hydrophila ATCC 7966, rendered non culturable within 50-55 days of exposure to marine stress conditions, was tested for its ability to maintain haemolysin and to adhere to McCoy cells. Results showed that pathogenicity was lost concomitantly with culturability, whereas cell viability remained undamaged, as determined by the Kogure cell elongation test. However, this loss is only temporary because, following temperature shift from 5 to 23 degrees C, multiple biological activities of recovered Aer. hydrophila cells, which include their ability to lyse human erythrocytes and to attach and destroy McCoy cells were regained. During the temperature-induced resuscitation, constant total cell counts were observed. Moreover, no significant improvement in recovery yield was obtained on brain-heart infusion (BHI) agar plates amended with catalase. We suggest that in addition to the growth of the few undetected culturable cells, there is repair and growth of some mildly injured viable but nonculturable cells. CONCLUSIONS: The possibility that nonculturable cells of normally culturable Aer. hydrophila in natural marine environment may constitute a source of infectious diseases posing a public health problem was demonstrated. SIGNIFICANCE AND IMPACT OF THE STUDY: These experiments may mimic what happens when Aer. hydrophila cells are released in natural seawater with careful attention to the conditions in which surrounding waters gradually become warmer in late summer/early autumn.  相似文献   

8.
9.
Like many other gram-negative bacteria, starved cells of Aeromonas hydrophila can be induced into a viable but nonculturable (VBNC) state by incubation at low temperature, as shown here by using various bacterial enumeration methods. Starved A. hydrophila strain HR7 cells at 4 degrees C reached the nonculturable stage in about 45 days. The cells were resuscitated by either a solid medium resuscitation method, using solid agar amended with H2O2-degrading agents, catalase or sodium pyruvate, or a liquid medium resuscitation method, by incubating nonculturable cells in liquid media containing these compounds before spreading onto plates. The liquid medium resuscitation method using catalase resulted in nearly complete recovery of nonculturable cells.  相似文献   

10.
Stationary-phase-grown cells of the estuarine bacterium Vibrio vulnificus became nonculturable in nutrient-limited artificial seawater microcosms after 27 days at 5 degrees C. When the nonculturable cells were subjected to temperature upshift by being placed at room temperature, the original bacterial numbers were detectable by plate counts after 3 days, with a corresponding increase in the direct viable counts from 3% to over 80% of the total cell count. No increase in the total cell count was observed during resuscitation, indicating that the plate count increases were not due to growth of a few culturable cells. Chloramphenicol and ampicillin totally inhibited resuscitation of the nonculturable cells when added to samples that had been at room temperature for up to 24 h. After 72 h of resuscitation, the inhibitors had an easily detectable but reduced effect on the resuscitated cells, indicating that protein and peptidoglycan synthesis were still ongoing. Major changes in the morphology of the cells were discovered. Nonculturable cells of V. vulnificus were small cocci (approximately 1.0 micron in diameter). Upon resuscitation, the cells became large rods with a size of mid-log-phase cells (3.0 microns in length). Four days after the cells had become fully resuscitated, the cell size had decreased to approximately 1.5 micron in length and 0.7 micron in width. The cells were able to go through at least two cycles of nonculturability and subsequent resuscitation without changes in the total cell count. This is the first report of resuscitation, without the addition of nutrient, of nonculturable cells, and it is suggested that temperature may be the determining factor in the resuscitation from this survival, or adaptation, state of certain species in estuarine environments.  相似文献   

11.
Genetically modified auxotrophic mutants of different fish pathogens have been used as live vaccines in laboratory experiments, but the behavior of the strains after release into aquatic ecosystems has not been characterized. We previously constructed and characterized an aroA mutant of Aeromonas hydrophila and studied the protection afforded by this mutant as a live vaccine in rainbow trout. In this work, we describe the survival of this strain in aquatic microcosms prepared from fish water tanks. The aroA mutant disappeared rapidly in nonfiltered, nonautoclaved fish tank water, declining below detection levels after 15 days, suggesting an inhibitory effect of the autochthonous microflora of the water. When the aroA strain was used to inoculate sterilized water, its culturability was lower than that of wild-type strain A. hydrophila AG2; after long periods of incubation, aroA cells were able to enter a viable but nonculturable state. Entry into this nonculturable state was accompanied by changes in the cell morphology from rods to spheres, but the cells appeared to remain potentially viable, as assessed by the preservation of cell membrane integrity. Supplementation of the culture medium with sodium pyruvate favored the culturability and resuscitation of the two A. hydrophila strains at low temperatures (6 and 16°C). These results contribute to a better understanding of the behavior of the aroA strain in natural environments and suggest that the inactivation of the aroA gene may be beneficial for the safety of this live vaccine for aquacultures.  相似文献   

12.
The viabilities of five strains of Vibrio vulnificus were evaluated during the storage of the organisms in sterile seawater at 5 degrees C. The number of CFU was measured by plate count methods on rich media. The total cell numbers were determined by direct microscopic count methods. The titer of CFU declined logarithmically to undetectable levels over a period of 2 to 3 weeks, while the total cell numbers were unchanged. Midway through each study, higher culturable cell counts began to be observed on plates containing catalase or sodium pyruvate; during the latter stages of the study, the plate counts on such media were up to 1,000-fold higher than those on unsupplemented plates. Because autoclaving is known to generate hydrogen peroxide in rich media, and because catalase and sodium pyruvate are known to eliminate hydrogen peroxide, it appears that the conditions of the experiments led to the selection of a hydrogen peroxide-sensitive culturable cell subpopulation. At the time of the final stage of the decline in viability of each culture, hydrogen peroxide-sensitive cells were the only culturable cells present. Warming samples of the cultures to room temperature led to the growth of these residual culturable cells, utilizing nutrients provided by the nonculturable cells. The cells that grew recovered hydrogen peroxide resistance. When mixtures of culturable and nonculturable cells were diluted to the point where only nonculturable cells were present, or when the hydrogen peroxide-sensitive culturable cells had declined to undetectable levels, warming had no effect; no culturable cells were recovered. Warming has been reported to "resuscitate" nonculturable cells. Recognition of the existence of hydrogen peroxide-sensitive culturable cell populations, as well as their ability to grow to high levels in the warmed seawater microcosms, leads instead to the conclusion that while warming permits culturable cells to grow, it has no effect on nonculturable cells.  相似文献   

13.
Leafy green produce has been associated with numerous outbreaks of foodborne illness caused by strains of Escherichia coli O157:H7. While the amounts of culturable E. coli O157:H7 rapidly decline after introduction onto lettuce in the field, it remains to be determined whether the reduction in cell numbers is due to losses in cell viability, cell injury and a subsequent inability to be detected by standard laboratory culturing methods, or a lack of adherence and hence rapid removal of the organism from the plants during application. To assess which of these options is most relevant for E. coli O157:H7 on leafy green produce, we developed and applied a propidium monoazide (PMA) real-time PCR assay to quantify viable (with PMA) and total (without PMA) E. coli O157:H7 cells on growth chamber and field-grown lettuce. E. coli O157:H7, suspended in 0.1% peptone, was inoculated onto 4-week-old lettuce plants at a level of approximately 106 CFU/plant. In the growth chamber at low relative humidity (30%), culturable amounts of the nontoxigenic E. coli O157:H7 strain ATCC 700728 and the virulent strain EC4045 declined 100 to 1000-fold in 24 h. Fewer E. coli O157:H7 cells survived when applied onto plants in droplets with a pipette compared with a fine spray inoculation. Total cells for both strains were equivalent to inoculum levels for 7 days after application, and viable cell quantities determined by PMA real-time PCR were approximately 104 greater than found by colony enumeration. Within 2 h after application onto plants in the field, the number of culturable E. coli ATCC 700728 was reduced by up to 1000-fold, whereas PCR-based assessments showed that total cell amounts were equivalent to inoculum levels. These findings show that shortly after inoculation onto plants, the majority of E. coli O157:H7 cells either die or are no longer culturable.  相似文献   

14.
A plasmid-borne, firefly-derived, luciferase gene (luc) was inserted and stably inherited in Sinorhizobium meliloti 41 as a reporter gene. The strain obtained, S. meliloti 41/pRP4-luc, and its parental strain served as a model system for viable but not culturable (VBNC) resuscitation experiments in both in vitro and soil samples. Incubation under oxygen (O2) concentrations varying from 1% to atmospheric levels did not result in resuscitation. A demonstration of recovery was attained through exposure to the appropriate concentrations of antibiotics, bacteriostatic chloramphenicol, and bactericidal ampicillin. The resuscitation ratio was 1 recovered VBNC cell in every 105 5-cyano-2,3-di-4-tolyl-tetrazolium chloride (CTC+) bacteria. Although isolated VBNC rhizobia were unable to nodulate Medicago sativa, which apparently did not enhance VBNC reversion, resuscitated bacteria maintained their symbiotic properties. Soil experiments showed that the lack of O2 leads to onset of VBNC status as in liquid microcosm, but the number of recoverable and culturable cells decreased more drastically in soil.  相似文献   

15.
The ability of Urografin or Percoll density gradient centrifugations to separate nonculturable subpopulations from heterogeneous Escherichia coli populations was analysed. Bacterial counts (total, active and culturable cells) and flow cytometric analyses were carried out in all recovered bands. After Urografin centrifugation, and despite the different origin of E. coli populations, a common pattern was obtained. High-density bands were formed mainly by nonculturable cells. However, the increase in cell density would not be common to all nonculturable cells, since part of this subpopulations banded in low-density zones, mixed with culturable cells. Bands obtained after Percoll centrifugation were heterogeneous and culturable and nonculturable cells were recovered along the gradient. Thus, fractionation in Urografin cannot be only attributed to changes in buoyant densities during the transition from culturable to nonculturable state. Urografin density gradients allow us to obtain enriched fractions in nonculturable subpopulations from a heterogeneous population, but working conditions should be carefully chosen to avoid Urografin toxicity.  相似文献   

16.
The role of the dormant-like viable but nonculturable (VBNC) condition in the etiology of bacterial infection was examined using a plant system. The plant-pathogenic bacterium Ralstonia solanacearum was first shown to enter into the VBNC state both in response to cupric sulfate when in a saline solution and when placed in autoclaved soil. To determine if the VBNC condition is related to pathogenesis, the physiological status of bacteria recovered from different regions of inoculated tomato plants was determined at different stages of infection. The fraction of in planta bacteria that were VBNC increased during infection and became greater than 99% by the late stage of disease. The possibility that soil-dwelling VBNC bacteria may resuscitate and infect plants was also examined. When tomato seeds were germinated in sterile soil that contained VBNC but no detectable culturable forms of R. solanacearum cells, resuscitation was observed to occur in soil adjacent to plant roots; these resuscitated bacteria were able to infect plants. This is the first report of R. solanacearum entering the VBNC state and of resuscitation of any VBNC plant-pathogenic bacteria and provides evidence that the VBNC state may be involved in explaining the persistent nature of some infections.  相似文献   

17.
The culturability of three Campylobacter jejuni strains and their infectivity for day-old chicks were assessed following storage of the strains in saline. The potential for colonization of chicks was weakened during the storage period and terminated 3 to 4 weeks before the strains became nonculturable. The results from this study suggest that the role of starved and aged but still culturable campylobacters may be diminutive, but even more, that the role of viable but nonculturable stages in campylobacter epidemiology may be negligible. Even high levels of maternally derived anti-campylobacter outer membrane protein serum antibodies in day-old chicks did not protect the chicks from campylobacter colonization.  相似文献   

18.
S Dukan  Y Lvi    D Touati 《Applied microbiology》1997,63(11):4204-4209
An Escherichia coli population harvested in exponential phase at about 10(8) cells/ml was treated in phosphate buffer with HOCl at concentrations ranging from 0.4 to 1 mg/liter (7.7 to 19 microM). The HOCl stress resulted in the appearance of three cell subpopulations: a majority of dead (nonrespiring) cells, a few culturable cells (10(2) to 10(4)), and about 10(7) viable but nonculturable cells. In the absence of any added exogenous nutrient, a culturable population could be recovered after 1 day of incubation in phosphate buffer, and such a population would reach a cell density close to 10% of the initial density of the stressed population, whatever the initial number of survivors. When a small number of untreated cells were mixed with the stressed population, growth of the untreated cells was observed, demonstrating that damaged cells provided nutrients. Similarly, a filtrate and a disrupted-cell filtrate of the stressed population supported growth of untreated cells with the same efficiency. The number of CFU (untreated or stressed) at plateau phase depended on the initial density of the stressed cells. Taken together, these results suggest that recovery in phosphate buffer of an HOCl-stressed population is in large part due to growth of a few culturable cells at the expense of damaged cells. However, comparison of the growth rates of the stressed culturable population and of untreated bacteria growing in filtrate showed significantly faster growth of the stressed cells, a fact not fully compatible with the hypothesis that recovery is only the simple growth of survivors. We suggest, therefore, that in addition to growth of the few culturable stressed cells, there is repair and growth of some mildly injured viable but nonculturable cells.  相似文献   

19.
Escherichia coli O157:H7 (strains ATCC 43895 and FO46) became nonculturable in sterile, distilled, deionized water or after exposure to chlorine. Recovery of nonculturable E. coli O157:H7 was examined by in vitro and in vivo methods. The decline in culturability of starved E. coli O157:H7 was measured by plate count on rich medium. Recovery in vitro of nonculturable cells was conducted with media amended with catalase or sodium pyruvate; however, there was no apparent increase over culturable cell counts on amended versus nonamended media. Although nonculturable E. coli O157:H7 did not recover under in vitro conditions, a mouse model was used to determine if in vivo conditions would provide sufficient conditions for recovery of nonculturable E. coli O157:H7. In separate studies, mice were orally challenged with starvation-induced nonculturable cells (FO46) or chlorine-induced nonculturable cells (43895 and FO46). Passage through the mouse gastrointestinal tract had no effect on recovery of nonculturable (starvation or chlorine induced) E. coli O157:H7 (43895 or FO46), based on analysis of fecal samples. Mouse kidneys were assayed for the presence of Shiga toxin using the Vero cell assay. Differences in cytotoxicity towards Vero cells from kidney samples of mice receiving nonculturable cells and control mice were not significant, suggesting a loss of virulence.  相似文献   

20.
Salmonella enterica serovar Typhimurium and enterohemorrhagic Escherichia coli were stressed by prolonged incubation in water microcosms until it was no longer possible to observe colony formation when samples were plated on nonselective medium. Overnight incubation of samples in nutrient-rich broth medium supplemented with growth factors, however, allowed resuscitation of stressed and viable but nonculturable cells so that subsequent plating yielded observable colonies for significantly extended periods of time. The growth factors were (i) the trihydroxamate siderophore ferrioxamine E (for Salmonella only), (ii) the commercially available antioxidant Oxyrase, and (iii) the heat-stable autoinducer of growth secreted by enterobacterial species in response to norepinephrine. Analysis of water microcosms with the Bioscreen C apparatus confirmed that these supplements enhanced recovery of cells in stressed populations; enterobacterial autoinducer was the most effective, promoting resuscitation in populations that were so heavily stressed that ferrioxamine E or Oxyrase had no effect. Similar results were observed in Bioscreen analysis of bacterial populations stressed by heating. Patterns of resuscitation of S. enterica serovar Typhimurium rpoS mutants from water microcosms and heat stress were qualitatively similar, suggesting that the general stress response controlled by the σs subunit of RNA polymerase plays no role in autoinducer-dependent resuscitation. Enterobacterial autoinducer also resuscitated stressed populations of Citrobacter freundii and Enterobacter agglomerans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号