首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Schistosoma mansoni fatty acid binding protein (Sm14) was crystallized with bound oleic acid (OLA) and arachidonic acid (ACD), and their structures were solved at 1.85 and 2.4 A resolution, respectively. Sm14 is a vaccine target for schistosomiasis, the second most prevalent parasitic disease in humans. The parasite is unable to synthesize fatty acids depending on the host for these nutrients. Moreover, arachidonic acid (ACD) is required to synthesize prostaglandins employed by schistosomes to evade the host's immune defenses. In the complex, the hydrocarbon tail of bound OLA assumes two conformations, whereas ACD adopts a unique hairpin-looped structure. ACD establishes more specific interactions with the protein, among which the most important is a pi-cation bond between Arg78 and the double bond at C8. Comparison with homologous fatty acid binding proteins suggests that the binding site of Sm14 is optimized to fit ACD. To test the functional implications of our structural data, the affinity of Sm14 for 1,8-anilinonaphthalenesulfonic acid (ANS) has been measured; moreover the binding constants of six different fatty acids were determined from their ability to displace ANS. OLA and ACD exhibited the highest affinities. To determine the rates of fatty acid binding and dissociation we carried out stopped flow kinetic experiments monitoring displacement by (and of) ANS. The binding rate constant of ligands is controlled by a slow pH dependent conformational change, which we propose to have physiological relevance.  相似文献   

2.
β-lactoglobulin (BLG) is an abundant milk protein relevant for industry and biotechnology, due significantly to its ability to bind a wide range of polar and apolar ligands. While hydrophobic ligand sites are known, sites for hydrophilic ligands such as the prevalent milk sugar, lactose, remain undetermined. Through the use of molecular docking we first, analyzed the known fatty acid binding sites in order to dissect their atomistic determinants and second, predicted the interaction sites for lactose with monomeric and dimeric BLG. We validated our approach against BLG structures co-crystallized with ligands and report a computational setup with a reduced number of flexible residues that is able to reproduce experimental results with high precision. Blind dockings with and without flexible side chains on BLG showed that: i) 13 experimentally-determined ligands fit the calyx requiring minimal movement of up to 7 residues out of the 23 that constitute this binding site. ii) Lactose does not bind the calyx despite conformational flexibility, but binds the dimer interface and an alternate Site C. iii) Results point to a probable lactolation site in the BLG dimer interface, at K141, consistent with previous biochemical findings. In contrast, no accessible lysines are found near Site C. iv) lactose forms hydrogen bonds with residues from both monomers stabilizing the dimer through a claw-like structure. Overall, these results improve our understanding of BLG''s binding sites, importantly narrowing down the calyx residues that control ligand binding. Moreover, our results emphasize the importance of the dimer interface as an insufficiently explored, biologically relevant binding site of particular importance for hydrophilic ligands. Furthermore our analyses suggest that BLG is a robust scaffold for multiple ligand-binding, suitable for protein design, and advance our molecular understanding of its ligand sites to a point that allows manipulation to control binding.  相似文献   

3.
Native beta-lactoglobulin (Blg) binds 1 mole of palmitic acid per mole of protein with a dissociation constant of 0.6 microM for the primary fatty acid binding site. Chemical modification of Cys 121, which lies at the external putative hydrophobic binding site of Blg, does not affect retinol or 4,4'-bis 1-(phenylamino)-8-naphthalenesulfonate (bis-ANS) binding to the protein, indicating that the incorporated appendages do not perturb the internal hydrophobic site within the beta-barrel of Blg (i.e., the retinoid site is unaffected). On the other hand, methylation of Cys 121, reduces the affinity of Blg for palmitic acid by 10-fold as monitored by intrinsic fluorescence. Modification of the Cys 121 with methylmethanethiosulfonate or a thiol-specific spin label appears to either further weaken or totally eliminate fatty acid binding, respectively, due to steric hindrance. Furthermore, this binding pattern has been independently verified using a spin labeled fatty acid analog and monitoring ESR as well as by bis-ANS fluorescence when bound to the protein. These results suggest that fatty acids bind at the "external site" of beta-lactoglobulin, between the sole alpha-helix and the beta-barrel. In addition, structural stability studies of native and chemically modified Blg appear to confirm this observation as well.  相似文献   

4.
The interaction of saturated fatty acids of different length (C8:0 to C18:0) with β‐lactoglobulin (βLG) was investigated by molecular dynamics simulation and docking approaches. The results show that the presence of such ligands in the hydrophobic central cavity of βLG, known as the protein calyx, determines an enhancement of atomic fluctuations compared with the unliganded form, especially for loops at the entrance of the binding site. Concerted motions are evidenced for protein regions that could favor the binding of ligands. The mechanism of anchoring of fatty acids of different length is similar for the carboxylate head‐group, through electrostatic interactions with the side chains of Lys60/Lys69. The key protein residues to secure the hydrocarbon chain are Phe105/Met107, which adapt their conformation upon ligand binding. In particular, Phe105 provides an additional hydrophobic clamp only for the tail of the two fatty acids with the longest chains, palmitic, and stearic acid, which are known to bind βLG with a high affinity. The search of additional external binding sites for fatty acids, distinct from the calyx, was also carried out for palmitic acid. Two external sites with a lower affinity were identified as secondary sites, one consisting in a hydrophobic cavity allowing two distinct binding modes for the fatty acid, and the other corresponding to a surface crevice close to the protein α‐helix. The overall results provide a comprehensive picture of the dynamical behavior of βLG in complex with fatty acids, and elucidate the structural basis of the binding of these physiological ligands. Proteins 2014; 82:2609–2619. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Steady-state and dynamic fluorescence titrations show that: (a) the complex between beta-lactoglobulin (BLG) and 1-anilinonaphthalene-8-sulfonate (ANS) displays a heterogeneous equilibrium with large changes in the binding strength vs. pH and ion concentration; and (b) the fluorescence response of bound ANS reveals two separate lifetimes that suggest two different sites (or binding modes). While steady-state fluorescence titrations yield effective values of the binding constant and of the bound ANS quantum efficiency, it is shown that, by combining steady-state fluorescence and lifetime decay of ANS, it is possible to give quantitative estimates of the association constants for each site. When heading from the acid (pH approximately 2) to the native state (pH approximately 6) the main result is a very large reduction of the effective binding constant. This and the results of titrations vs. ionic strength suggest that electrostatic interactions are a major contribution to ANS binding to BLG.  相似文献   

6.
Bovine beta-lactoglobulin (BLG) in vivo has been found complexed with fatty acids, especially palmitic and oleic acid. To elucidate the still unknown structure-function relationship in this protein, the interactions between 13C enriched palmitic acid (PA) and BLG were investigated by means of one-, two-, and three-dimensional NMR spectroscopy in the pH range 8.4-2.1. The NMR spectra revealed that at neutral pH the ligand is bound within the central cavity of BLG, with the methyl end deeply buried within the protein. The analysis of 13C spectra of the holo protein revealed the presence of conformational variability of bound PA carboxyl end in the pH range 8.4-5.9, related to the Tanford transition. The release of PA starts at pH lower than 6.0, and it is nearly complete at acidic pH. This finding is relevant in relation to the widely reported hypothesis that this protein can act as a transporter through the acidic gastric tract. Ligand binding and release is shown to be completely reversible over the entire pH range examined, differently from other fatty acid binding proteins whose behavior is analyzed throughout the paper. The mode of interaction of BLG is compatible with the proposed function of facilitating the digestion of milk fat during the neonatal period of calves.  相似文献   

7.
Liver-type fatty acid binding protein (L-FABP) has been proposed to be involved in the transport of fatty acids and peroxisome proliferators from the cytosol into the nucleus for interaction with the peroxisome proliferator-activated receptors (PPARs). On the basis of this premise, we investigated by isothermal titration calorimetry the binding of myristic, stearic, oleic, and docosahexaenoic acids to three orthologous L-FABPs and compared these results to those obtained for several xenobiotics [Wy14,643, bezafibrate, 5,8,11,14-eicosatetraynoic acid (ETYA), and BRL48,482] known for their peroxisome proliferating activity in rodents. Recombinant human, murine, and bovine L-FABPs were analyzed and the thermodynamic data were obtained. Our studies showed that fatty acids bound with a stoichiometry of 2:1, fatty acid to protein, with dissociation constants for the first binding site in the nanomolar range. With dissociation constants above 1 microM the drug peroxisome proliferators showed weaker binding, with the exception of arachidonate analogue ETYA, which bound with a similar affinity as the natural fatty acid. Some of the thermodynamic data obtained for fatty acid binding could be explained by differences in protein structure. Moreover, our results revealed that binding affinities were not determined by ligand solubility in the aqueous phase.  相似文献   

8.
Norfloxacin and levofloxacin, two fluoroquinolones of different bulk, rigidity and hydrophobicity taken as model ligands, were docked to one apo and two holo crystallographic structures of bovine beta-lactoglobulin (BLG) using different computational approaches. BLG is a member of the lipocalin superfamily. Lipocalins show a typical b-barrel structure encompassing an internal cavity where small hydrophobic molecules are usually bound. Our studies allowed the identification of two putative binding sites in addition to the calyx. The rigid docking approximation resulted in strong repulsive forces when the ligands were docked into the calyx of the apo form. On the contrary, hindrance was not experienced in flexible docking protocols whether on the apo or on the holo BLG forms, due to allowance for side chain rearrangement. K(i) between 10(-7) and 10(-6) M were estimated for norfloxacin at pH 7.4, smaller than 10(-5) M for levofloxacin. Spectroscopic and electrophoretic techniques experimentally validated the occurrence of an interaction between norfloxacin and BLG. Changes in chemical shift and dynamic parameters were observed between the (19)F NMR spectra of the complex and of the ligand. A K(i) (ca 10(-7) M) comparable with the docking results was estimated through a NMR relaxation titration. Stabilization against unfolding was demonstrated by denaturant gradient gel electrophoresis on the complex versus apo BLG. NMR experimental evidence points to a very loose interaction for ofloxacin, the racemic mixture containing levofloxacin. Furthermore, we were able to calculate in silico K(i)'s comparable to the published experimental values for the complexes of palmitic and retinoic acid with BLG.  相似文献   

9.
The fluorescent probe anilinonaphthalene-8-sulfonate binds to adipocyte lipid binding protein at a site that competes with normal physiological ligands, such as fatty acids. Binding to the protein is accompanied by a relatively large increase in fluorescent intensity. To correlate the major change in optical properties and to determine the mechanism of competitive inhibition with fatty acids, the crystal structure of the protein with the bound fluorophore has been determined. In addition, the thermodynamic contributions to the binding reaction have been studied by titration calorimetry. Because the binding site is in a relatively internal position, kinetic studies have also been carried out to determine k(on). The results indicate that binding is not accompanied by any major conformational change. However, the negatively charged sulfonate moiety is not positioned the same as the carboxylate of fatty acid ligands as determined in previous studies. Nonetheless, the binding reaction is still driven by enthalpic effects. As judged by the crystallographic structure, a significant amount of the surface of the fluorophore is no longer exposed to water in the bound state.  相似文献   

10.
Paclitaxel (Taxol®) binding to the conformation of human serum albumin assumed in the presence of long-chain fatty acids was studied by automated docking. Reduced binding affinities at both the primary and secondary sites were predicted, compared to those characterizing the interaction with the fatty acid-free protein. The baccatin core of paclitaxel was found to play a more important role than its C13 side chain in determining the ligand binding mode as well as in contributing to the overall binding energy at the primary site.  相似文献   

11.
12.
Using intrinsic and probe fluorescence, microcalorimetry and isotopic methods, the interactions of prostaglandins (PG) E2 and F2 alpha and some fatty acids with native and alkylated proteins (human serum albumin (HSA) and rat liver plasma membrane PG receptors), were studied. The fatty acid and PG interactions with human serum albumin (HSA) resulted in effective quenching of fluorescence of the probe, 1.8-anilinonaphthalene sulfonate (ANS), bound to the protein. Fatty acids competed with ANS for the binding sites; the efficiency of this process increased with an increase in the number of double bonds in the fatty acid molecule. PG induced a weaker fluorescence quenching of HSA-bound ANS and stabilized the protein molecule in a lesser degree compared to fatty acids. The sites of PG E2 and F2 alpha binding did not overlap with the sites of fatty acid binding on the HSA molecule. Nonenzymatic alkylation of HSA by acetaldehyde resulted in the abnormalities of binding sites for fatty acids and PG. Modification of the plasma membrane proteins with acetaldehyde sharply diminished the density of PG E2 binding sites without changing the association constants. Alkylation did not interfere with the parameters of PG F2 alpha binding to liver membrane proteins.  相似文献   

13.
The influence of oleate ion, a free fatty acid anion, on the binding characteristics of 1-anilino-8-naphthalene sulfonate (ANS) with the cytoplasmic proteins (Y and Z) from rat liver has been examined using fluorescence spectroscopy. ANS binds strongly with both ligandin (Y) and Z protein at a single binding site with dissociation constants of 0.6 and 1.4 micron respectively. Increasing concentrations of oleate ion decreased the ANS binding with either protein by competing with the ANS binding site. Relative binding constant of oleate ion for the hepatic ligandin or Z protein was about 2 micron as determined from the competitive inhibition of ANS binding. These results suggest that variations in the hepatic cytoplasmic free fatty acid concentration may be important in regulating the capacity of Y and Z proteins to transport other organic anions.  相似文献   

14.
1-Sulfonato-8-(1')anilinonaphthalene (1,8-ANS) was employed as a fluorescent probe of the fatty acid binding site of recombinant rat intestinal fatty acid binding protein (1-FABP). The enhancement of fluorescence upon binding allowed direct determination of binding affinity by fluorescence titration experiments, and measurement of the effects on that affinity of temperature, pH, and ionic strength. Solvent isotope effects were also determined. These data were compared to results from isothermal titration calorimetry. We obtained values for the enthalpy and entropy of this interaction at a variety of temperatures, and hence determined the change in heat capacity of the system consequent upon binding. The ANS-1-FABP is enthalpically driven; above approximately 14 degrees C it is entropically opposed, but below this temperature the entropy makes a positive contribution to the binding. The changes we observe in both enthalpy and entropy of binding with temperature can be derived from the change in heat capacity upon binding by integration, which demonstrates the internal consistency of our results. Bound ANS is displaced by fatty acids and can itself displace fatty acids bound to I-FABP. The binding site for ANS appears to be inside the solvent-containing cavity observed in the x-ray crystal structure, the same cavity occupied by fatty acid. From the fluorescence spectrum and from an inversion of the Debye-Hueckel formula for the activity coefficients as a function of added salt, we inferred that this cavity is fairly polar in character, which is in keeping with inferences drawn from the x-ray structure. The binding affinity of ANS is considered to be a consequence of both electrostatic and conditional hydrophobic effects. We speculate that the observed change in heat capacity is produced mainly by the displacement of strongly hydrogen-bonded waters from the protein cavity.  相似文献   

15.
Lactoglobulin is a natural protein present in bovine milk and common component of human diet, known for binding with high affinity wide range of hydrophobic compounds, among them fatty acids 12–20 carbon atoms long. Shorter fatty acids were reported as not binding to β‐lactoglobulin. We used X‐ray crystallography and fluorescence spectroscopy to show that lactoglobulin binds also 8‐ and 10‐carbon caprylic and capric acids, however with lower affinity. The determined apparent association constant for lactoglobulin complex with caprylic acid is 10.8 ± 1.7 × 103 M?1, while for capric acid is 6.0 ± 0.5 × 103 M?1. In crystal structures determined with resolution 1.9 Å the caprylic acid is bound in upper part of central calyx near polar residues located at CD loop, while the capric acid is buried deeper in the calyx bottom and does not interact with polar residues at CD loop. In both structures, water molecule hydrogen‐bonded to carboxyl group of fatty acid is observed. Different location of ligands in the binding site indicates that competition between polar and hydrophobic interactions is an important factor determining position of the ligand in β‐barrel. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Intestinal enterocytes contain two homologous fatty acid-binding proteins, intestinal fatty acid-binding protein (I-FABP)2 and liver fatty acid-binding protein (L-FABP). Since the functional basis for this multiplicity is not known, the fatty acid-binding specificity of recombinant forms of both rat I-FABP and rat L-FABP was examined. A systematic comparative analysis of the 18 carbon chain length fatty acid binding parameters, using both radiolabeled (stearic, oleic, and linoleic) and fluorescent (trans-parinaric and cis-parinaric) fatty acids, was undertaken. Results obtained with a classical Lipidex-1000 binding assay, which requires separation of bound from free fatty acid, were confirmed with a fluorescent fatty acid-binding assay not requiring separation of bound and unbound ligand. Depending on the nature of the fatty acid ligand, I-FABP bound fatty acid had dissociation constants between 0.2 and 3.1 microM and a consistent 1:1 molar ratio. The dissociation constants for L-FABP bound fatty acids ranged between 0.9 and 2.6 microM and the protein bound up to 2 mol fatty acid per mole of protein. Both fatty acid-binding proteins exhibited relatively higher affinity for unsaturated fatty acids as compared to saturated fatty acids of the same chain length. cis-Parinaric acid or trans-parinaric acid (each containing four double bonds) bound to L-FABP and I-FABP were displaced in a competitive manner by non-fluorescent fatty acid. Hill plots of the binding of cis- and trans- parinaric acid to L-FABP showed that the binding affinities of the two sites were very similar and did not exhibit cooperativity. The lack of fluorescence self-quenching upon binding 2 mol of either trans- or cis-parinaric acid/mol L-FABP is consistent with the presence of two binding sites with dissimilar orientation in the L-FABP. Thus, the difference in binding capacity between I-FABP and L-FABP predicts a structurally different binding site or sites.  相似文献   

17.
Pastukhov AV  Ropson IJ 《Proteins》2003,53(3):607-615
We studied the equilibrium binding of two hydrophobic fluorescent dyes, ANS and bisANS, to four members of a family of intracellular lipid-binding proteins: IFABP, CRABP I, CRABP II, and ILBP. The spectral and binding parameters for the probes bound to the proteins were determined. Typically, there was a single binding site on each protein for the ligands. However, IFABP cooperatively bound a second bisANS molecule in the binding pocket. Comparative analysis of affinities and spectral characteristics for the two probes allowed us to examine the contributions of electrostatic and hydrophobic interactions to the binding process, and to address some aspects of the internal structure of the studied proteins.  相似文献   

18.
The fluorescence time decay parameters of the beta-lactoglobulin-1-anilinonaphthalene-8-sulfonate complex have been investigated under physical and chemical perturbations (2 < pH < 8 and added electrolyte 0 < NaCl < 0.5 M) to obtain new insight on the nature of the protein binding interactions. A double exponential decay of the bound probe lifetime has been confirmed by the presence of a longer component, 11 to 14.5 ns, and a shorter component, 2.5 to 3.5 ns. The two lifetimes are ascribed to different binding modes associated also with different exposure to the solvent; in particular, the longer component is attributed to binding inside the hydrophobic beta barrel, while a "surface" site is suggested for the shorter component. A detailed analysis of the lifetime fractional intensities correlates the binding constants with ionic strength and supports the presence of electrostatic effects at both sites. A Debye-Hückel approach, applied to extrapolate the electrostatic free energy contribution vs. pH at vanishing ionic strength, gives interesting clues on the effective charge felt by the ANS ligands in the proximity of each site. In particular, binding is found to parallel the aspartate and glutamate titrations between pH 3 and pH 4.5; the "surface" site mainly responds to the presence of these local titrating charges while the "internal" site more closely follows the overall protein net charge.  相似文献   

19.
Increased temperature produces a red shift and decreased fluorescence intensity of the emission peak of 1,8-anilinonaphthalene sulfonic acid (ANS) in suspensions of biomembrane vesicles. These changes have been attributed to a conjectured increase in polarity of the microenvironment of ANS. If the conjecture is correct, fluorescence lifetimes must be decreased with warming. We showed than ANS binds to both protein and lipid protein of sarcolemma, that there are two kinds of sarcolemma-lipid ANS-binding sites, and that there are three fluorescence lifetimes of excited sarcolemma-bound ANS. The three fluroescence lifetimes were unchanged on warming, or decreased too little to account for the observations. Fluorescence lifetime data were consistent with the notion that the effect of increasing temperature is to decrease the amount of ANS bound to sarcolemma. From studies of liposomes prepared from lipid extracts of sarcolemma, and of proteins from sarcolemma it was deduced that warming reducted the amount of ANS bound to both of these sarcolemma components, probably mainly by reducing binding capacity. There might also be a shift of affinities such that the ratio, KA sarcolemma lipid/KA sarcolemma protein, is larger at higher temperature. Except at very small concentration ratios of ANS/sarcolemma, more than twice as much ANS was bound to sarcolemma lipids as to proteins.  相似文献   

20.
Protein complexes formed by S100A8 and S100A9 represent the only AA-binding capacity in the human neutrophilic cytosol and are involved in the intracellular arachidonic acid metabolism. The formation of S100A8/A9 protein complexes and the binding of calcium to the complexes are prerequisites for the specific binding of polyunsaturated fatty acids. The present study was undertaken to characterize the fatty acid binding site within the protein complex. Deletions at both termini and point mutations of different basic amino acids especially within the extended C-terminal tail of human S100A9 were introduced. The S100A9 mutant proteins were then analyzed with respect to protein-protein interaction (GST pull down-assay and yeast two-hybrid system) and functional properties (arachidonic acid and calcium binding). The data give strong evidence that the unique C-tail of S100A9 containing the three consecutive histidine residues (His103-His105) represents the region to which the fatty acid carboxy-group is bound to the protein complex. The localization of the AA-binding site within the unique C-tail of S100A9 correlates with the fact that fatty acid binding has not yet been reported for other S100 proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号