首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of cytokinin in differentiation of secondary xylem fibers   总被引:5,自引:2,他引:3       下载免费PDF全文
Aloni R 《Plant physiology》1982,70(6):1631-1633
The differentiation of secondary xylem fibers was studied in cultured hypocotyl segments of Helianthus annuus L. It is shown that cytokinin is both a limiting and controlling factor in the early stages of fiber differentiation. In the absence of kinetin or zeatin, there was no fiber differentiation. However, cytokinin could induce fiber differentiation only in the presence of indoleacetic and gibberellic acids. First fibers were observed in the tissue after 12 days in culture, and their number increased linearly during the following 2 weeks. At low cytokinin levels, there was a positive correlation between cytokinin concentration in the medium and the number of fibers formed in the explants. A similar correlation was also found at low gibberellic acid concentrations. At high concentration, zeatin was more effective than kinetin. It seems that later stages of fiber differentiation can occur in the absence of cytokinin. It is proposed that the mechanism which controls and determines the early stages of fiber differentiation is based on an interaction of three major hormonal signals: indoleacetic acid plus gibberellic acid from the leaves with zeatin from the root apices.  相似文献   

2.
3.
Sorokin , Helen P., S. N. Mathur , and Kenneth V. Thimann . (Harvard U., Cambridge, Mass.) The effects of auxins and kinetin on xylem differentiation in the pea epicotyl. Amer. Jour. Bot. 49(5): 444–454. Illus. 1962.—Treatment of isolated segments from the second internode of etiolated ‘Alaska’ pea epicotyls with indoleacetic acid or 2,4-D results in: (1) activation of fascicular cambium, and initiation of some interfascicular cambium, resulting in abundant production of secondary xylem, and in formation of hyperplastic tissue; (2) partial or even total occlusion of proto- and metaxylem. The secondary xylem formed consists of short vessel members with scalariformly reticulate or pitted walls, which often lack vertical connection with each other, being interrupted by unlignified cells. When IAA is used, the hyperplastic growth mainly takes the form of root primordia, whereas 2,4-D initiates the formation of callus, but not of root primordia. The growth of this callus causes a characteristic split at the base of the internode. Treatment with kinetin, alone or in combination with the auxin, changes the above structure markedly. It leads to the initiation, over the entire circumference of the core of the internode, of a still more active cambium, which forms several layers of secondary xylem; this consists mainly of long vessel members with pitted walls. Hyperplastic growth is completely absent, and the xylem does not become occluded. Thus the effect of kinetin is to make the xylem more normal and to alter the epicotyl structure from herbaceous to more-or-less woody.  相似文献   

4.
Evidence was obtained to support the hypothesis that ethylene is involved in xylem differentiation in primary pith explants of Lactuca sativa L. cv Romaine cultured in vitro. Xylem elements differentiated when explants were supplied indole-3-acetic acid (IAA) in combination with either the ethylene biosynthetic precursor 1-aminocyclopropane-1-carboxylic acid (ACC), the ethylene-releasing agent 2-chloroethylphosphonic acid (CEPA), or kinetin. In contrast, no xylem elements differentiated in the presence of IAA, kinetin, ACC, or CEPA alone, or when kinetin was supplied together with ACC or CEPA. These results show that ethylene will substitute qualitatively for cytokinin during auxin-induced xylogenesis, and suggest that both ethylene and auxin are required for xylem differentiation in Lactuca.  相似文献   

5.
Attempts were made to obtain bacteria-free plants of Psychotria punctata from tissue cultures. Stem explants and callus derived from them were induced to form roots but failed to form buds on Linsmaier and Skoog medium and 96 chemical modifications of it, including most of those known to induce bud formation in other species. Roots formed with ample IAA (2 mg/liter or more) and a low kinetin concentration (0.25 or 0.50 mg/liter). Adenine inhibited root formation in these media, but tyrosine did not. Tyrosine did lower the percentage of calluses commencing growth. When enzyme-hydrolyzed lactalbumin (1.3 g/liter), kinetin (0.5 mg/liter) and IAA (5 mg/liter) were added to Linsmaier and Skoog medium modified by decreasing inorganic nitrogen and increasing inorganic phosphate, callus grew at the fastest rate observed (increasing threefold in fresh weight in three weeks) and formed numerous roots. This was adopted as the stock callus medium. Casein hydrolysates also stimulated growth but less so than lactalbumin hydrolysate. When lactalbumin hydrolysate or a casein hydrolysate lacking tryptophan was supplied, growth occurred without added auxin if sufficient cytokinin was added. Cytokinin was required at unusually high concentration and was tolerated at still higher concentration. Formation, elongation, and branching of roots persisted on a saturated solution of BA which inhibited callus growth about 70 % and delayed callus senescence. Light caused earlier callus senescence after growth had ceased but did not affect callus growth or root formation. Light-induced senescence was prevented by a high cytokinin concentration.  相似文献   

6.
《Plant science》1986,46(3):213-216
The initial pH of the nutrient medium influenced the type of cytodifferentiation occurring in cultured isolated fruit vesicles of Citrus limon (L) Burmann var. Assam lemon. Neither callus formation nor cytodifferentiation was found at pH values below 3.0. Three types of cytodifferentiation were found after 30 days culture in the presence of a liquid Murashige and Skoog (MS) basal medium supplemented with MS vitamins, indoleacetic acid (IAA) (10 mg/l), kinetin (0.2 mg/l), and sucrose (3% w/v): sclereids, xylem fibers and tracheary elements. The greatest numbers of sclereids and tracheary elements were found in callus grown on a medium with an initial pH 5.0–6.0, whereas pH 7.0 was optimal for the formation of xylem fibers.  相似文献   

7.
The effect of N-1 -naphthylphthalamic acid (NPA), indole-3-aceticacid (IAA) and kinetin on callus growth and bud formation wasstudied mainly by a tobacco callus culture method. Callus producedfrom Nicotiana tabacum var. Wisconsin 38 was used as the testplant material. Callus growth on nutrient agar containing 2mg/liter of IAA was promoted by NPA added at a concentrationof 0.5 mg/liter with 0.4 mg/liter of kinetin or by NPA addedat 5 mg/liter in the absence of kinetin. At a high concentrationof 50 mg/liter, however, NPA inhibited growth on the mediumcontaining 2 mg/liter IAA and no kinetin. Kinetin reduced thisNPA inhibition. In the presence of 0.4 mg/liter kinetin and2 mg/liter IAA, when the concentration of NPA was 50 mg/liter,buds were initiated after calluses were grown on the test mediumfor 7 weeks in dim light, but no buds formed when NPA was omittedfrom the above medium. The control of callus growth and bud initiation is based onthe active ratio of auxin (IAA) to cytokinin (kinetin) in themedium and NPA added to the medium can promote or inhibit callusgrowth and induce bud formation. Therefore, it is proposed thatNPA can itself reduce auxin activity or enhance cytokinin activityand hence change the active ratio of the two regulators. NPAmay enhance the activity of cytokinin (here supplied as kinetin)but cannot substitute for it. 1Present address: Department of Biology, Wisconsin State University,Oshkosh, Wisconsin 54901, U. S. A. (Received March 10, 1969; )  相似文献   

8.
Shoot cultures of cucumber were used to analyse the roles of root-derived substances in adventitious root formation on hypocotyl tissues. Xylem sap collected from the roots of squash had a strong inhibitory effect on the formation of hypocotyl adventitious roots. Double-solvent extraction followed by fractionation with both normal and reverse phase column chromatographies and analysis by liquid chromatography/tandem mass spectrometry identified trans-zeatin riboside (ZR) as the primary suppressor of adventitious root formation. ZR was the predominant cytokinin present in the xylem sap, occurring at a concentration of 2x10(-8 )M. Application of ZR at concentrations from 3.16x10(-9) M effected inhibition of adventitious root formation. These results suggest that ZR transported from roots via xylem sap may act as an endogenous suppressor of hypocotyl adventitious root formation in planta.  相似文献   

9.
Regulation of organ formation by cytokinin and auxin was investigatedin vitro using Lilium auratum Lindl. (wild species habituatedin Japan) and Lilium speciosum Thunb. cv. "Uchida". The interactionof -naphthylacetic acid (NAA) and kinetin on bulbscale or rootdifferentiation was examined. NAA and kinetin showed mainlyindividual but also some synergistic effects. The effects ofbenzyladenine (BA) and kinetin were compared and the resultindicated that BA has a stronger physiological effect on organformation than kinetin and that their effects on Lilium auratumand Lilium speciosum were BA or kinetin-specific. The actionof kinetin on Lilium was affected by sucrose concentration andthe strength of the Murashige and Skoog medium (MS medium),and thus their high concentrations inhibited the kinetin-inducedbulbscale differentiation. Furthermore, a high sucrose levelnegated the kinetin inhibition of root formation, while highMS medium strength in itself inhibited root formation. Morphologicalobservation of bulbscale differentiation induced under a highkinetin level revealed that the new-formed structures are homologousto normally grown bulbs in soil in spite of their particularfeatures. (Received August 3, 1981; Accepted November 2, 1981)  相似文献   

10.
Research in lateral root (LR) development mainly focuses on the role of auxin. This article reports the effect of cytokinins (kinetin and trans-zeatin) on LR formation in rice (Oryza sativa L.). Our results showed that cytokinin has an inhibitory effect on LR initiation and stimulatory effect on LR elongation. Both KIN and ZEA at a concentration of 1 microM and above completely inhibited lateral root primordium (LRP) formation. The inhibitory effect of cytokinin on LR initiation required a continuous presence of KIN or ZEA in the growth solution. Cytokinin did not show any inhibitory effect on LR emergence from the seminal root once LRPs had been formed. The LRPs that developed in cytokinin-free solution can emerge normally in the solution containing inhibitory concentration (1 microM) of KIN and ZEA. The KIN and ZEA treatment dramatically stimulated LR elongation at all the concentrations tested. Maximum LR elongation was observed at a concentration of 0.01 microM KIN and 0.001 microM ZEA. The epidermal cell length increased significantly in LRs of cytokinin treated seedlings compared to those of untreated control. This result indicates that the stimulation of LR elongation by cytokinin is due to increased cell length. Exogenously applied auxin counteracted the effect of cytokinin on LR initiation and LR elongation, suggesting that cytokinin acts on LR elongation through an auxin dependent pathway.  相似文献   

11.
An investigation was conducted to study the interrelation of free amino acid metabolism and root formation in etiolated pea stem sections as dependent on time and on inhibition of root formation by kinetin and ethionine. The rise in the level of aspartic acid and increase in the rate of conversion of14C-labeled glucose to free amino acids were found to be characteristic features of the formation of foci of meristematic cells in pericyclo region. The formation of roots was reflected, in general, much more in the rate of conversion of labeled glucose to free amino acids than in the levels of corresponding amino acids. The total amount of free amino acids was not significantly changed during incubation of stem sections in a solution of kinetin (5×10?5 m). A rapid fall in their level was recorded in the next 24 hours. The incorporation of14C from glucose into a precursor of lignin, phenylalanine, was completely inhibited by kinetin which stimulated simultanously the growth of adjacent buds. Stimulation of secondary xylem formation, which appeared later, was accompanied by the resumption of14C-incorporation into phenylalanine. Inhibition of root formation by ethionine resulted in the rapid fall of the level of most amino acids and in a significant decrease in the rate of incorporation of14C from glucose into amino acids. A decreasing level of ethionine in tissues during cultivation of ethionine-treated stem sections was accompanied by a gradual rise in the individual amino acids and in the rate of conversion of glucose into free amino acids.  相似文献   

12.
Pith parenchyma explants of Romaine lettuce (Lactuca salivaLinn. var. Roman?) incubated in the dark for 7 days at 25?Con a nutrient medium containing sucrose, IAA. and kinetin exhibitedextensive differentiation of tracheary elements. The additionof CFL to the medium strongly inhibited tracheary element formation.The lack of tracheary strand formation in the CFL-treated explantssuggests the inhibition of auxin transport. Conclusive evidencethat CFL influences the anatomy of differentiating xylem elementswas lacking. The addition of CFL to various combinations ofxylogenic media was not stimulatory to xylem element formationbeyond the differentiation response observed in the absenceof CFL. Unique patterns of tracheary element formation producedby cytokinin media containing IAA, 2,4-D, and NAA, respectively,were abolished by CFL. As indicated by counts of total trachearyelements formed per explant, the addition of cysteine to a CFL-containingmedium reversed the inhibitory effect of CFL. Tracheary strandformation was not re-established in the explants cultured onthe cysteine+CFL medium. Tracheary element formation was completelysuppressed by TIBA. Cysteine had a slight effect on the inhibitionof differentiation by TIBA. These observations suggest thatCFL inhibits some sulfhydryl- containing system involved eitherin the process of xylem differentiation or in some prerequisiterole necessary for the induction of tracheary element formation. (Received December 27, 1972; )  相似文献   

13.
Cytokinins are predominantly root-born phytohormones which are distributed in the shoot via the xylem stream. In the hormone message concept they are considered as root signals mediating the transport of the photosynthates to the various sinks of a plant. In this paper the cytokinin relations of Urtica dioica L., the stinging nettle, are described, based on the daily flux from the roots to the shoot. Trans-zeatin-type cytokinins predominate in the various tissues of Urtica (Wagner and Beck, 1993), and accordingly trans-zeatin riboside and trans-zeatin are the forms transported by the xylem sap. The daily time-course of cytokinin concentration in root pressure exudates and in xylem sap collected from a petiole after pressurizing the root bed showed high concentrations in the morning, followed by a substantial drop to a level of 15–30% of the initial concentration which was then maintained during the afternoon. This time-course is interpreted as resulting from continuous synthesis and exudation of cytokinins into the xylem fluid of the roots whose cytokinin concentration is then modified by the dynamics of the transpiration stream. Loading of cytokinins into the xylem sap could be enhanced several times by increasing the flux rate of the xylem stream to the maximal transpiration rate when a maximum export rate was reached. The total daily cytokinin gain by the shoot depended on the nitrogen status of the plant. Roots of Urtica plants grown on a sufficient nitrogen supply had a significantly higher cytokinin content and exuded more cytokinins into the shoot than those of plants raised under nitrogen shortage. A positive correlation was found between the steady rates of cytokinin export measured during the afternoon and the shoot to root-ratios of biomass which, in turn, corresponded to the nitrogen status of the plants.  相似文献   

14.
It was shown that the cytokinin content in the xylem sap of a wheat plant treated with exogenous zeatin was about ten times lower than in the nutrient solution in 24 h. Cytokinins were accumulated in roots rather shoots of treated plants. These data demonstrate the existence of a barrier in the cytokinin pathway from the nutrient solution to plant shoots. The deposition of lignin and suberin in stele detected with Sudan @III is enlarged with an increase in the distance from the tip of the root. The augmented content of suberin and lignin coincided with reduced cytokinin immunolabeling in root cells revealed by monoclonal antibodies to cytokinin and secondary gold-labeled antibodies. The accumulation of exogenous cytokinin in root stele cells shows that Casparian bands are not the only barrier on the cytokinin pathway to plant shoots. Intensive cytokinin immunolabeling in parenchyma cells surrounding stele vessels indicates the accumulation of cytokinin by these cells and suggests that there are mechanisms that limit the hormone loading in xylem vessels during transport to the shoot. The role of cytokinin transporters in this process is discussed.  相似文献   

15.
16.
Increased-branching mutants of garden pea (Pisum sativum; ramosus [rms]) and Arabidopsis (Arabidopsis thaliana; more axillary branches) were used to investigate control of cytokinin export from roots in relation to shoot branching. In particular, we tested the hypothesis that regulation of xylem sap cytokinin is dependent on a long-distance feedback signal moving from shoot to root. With the exception of rms2, branching mutants from both species had greatly reduced amounts of the major cytokinins zeatin riboside, zeatin, and isopentenyl adenosine in xylem sap compared with wild-type plants. Reciprocally grafted mutant and wild-type Arabidopsis plants gave similar results to those observed previously in pea, with xylem sap cytokinin down-regulated in all graft combinations possessing branched shoots, regardless of root genotype. This long-distance feedback mechanism thus appears to be conserved between pea and Arabidopsis. Experiments with grafted pea plants bearing two shoots of the same or different genotype revealed that regulation of root cytokinin export is probably mediated by an inhibitory signal. Moreover, the signaling mechanism appears independent of the number of growing axillary shoots because a suppressed axillary meristem mutation that prevents axillary meristem development at most nodes did not abolish long-distance regulation of root cytokinin export in rms4 plants. Based on double mutant and grafting experiments, we conclude that RMS2 is essential for long-distance feedback regulation of cytokinin export from roots. Finally, the startling disconnection between cytokinin content of xylem sap and shoot tissues of various rms mutants indicates that shoots possess powerful homeostatic mechanisms for regulation of cytokinin levels.  相似文献   

17.
The higher plant tumors are convenient models for studying the genetic control mechanism of plant cell division. There are two types of tumors: induced by the pathogenic factor and genetically determined. The development of both tumor types was related to the changes in cytokinin metabolism and/or signal transduction. In this work, the effect of synthetic cytokinins on the in vitro morphogenesis of cotyledon explants and isolated apices of radish seedlings was studied in several inbred radish lines (Raphanus sativus var. radicula Pers.) that differed in their in vivo tumorigenic properties. It was noted that root formation was stronger affected by kinetin while the treatment with thidiazuron tended to induce active callus formation in cotyledon explants of all inbred lines, except IIa. Growing with benzyladenine produced an intermediate effect as regards all morphogenetic responses. Cytokinin treatment of tumorigenic lines enhanced necrotic development in cotyledon explants. Culturing isolated apices of regenerated plants produced tumors anatomically and morphologically similar to those developing in vivo. Some of the lines nontumorigenic in vivo with enhanced formation of calli on cotyledon explants also developed tumors on apical explants in vitro when treated with cytokinins. These data suggest that different mechanisms for tumor formation operate in various radish lines. The radish lines are classified into three types: (1) necrotic lines with tumor formation putatively related to endogenous cytokinin level, (2) callus-forming lines with cell division enhanced in response to cytokinins, and (3) necrosis-and callus-forming lines with both mechanisms of tumor formation involved.  相似文献   

18.
J. E. Davey  J. van Staden 《Planta》1976,130(1):69-72
Summary The zeatin and zeatin riboside content of tomato (Lycopersicon esculentum Mill.) root exudates were determined at different stages of development. Zeatin riboside was found to be the major translocational form of cytokinin in the xylem during early vegetative growth. During flower bud formation this cytokinin decreased markedly in concentration so that, at anthesis, there was no appreciable difference in the zeatin and zeatin riboside concentration in the root exudate.  相似文献   

19.
The rate of 14C-leucine and 3H-uracil incorporation by tobacco cells (Nicotiana tabaccum var. Samsun N.N.) in suspension culture was simultaneously decreased by the addition of kinetin at concentrations above 2.5 × 10−5m. Ribosomal RNA was the first RNA species affected by kinetin. The purine derivatives, adenine and N6-methyl-aminopurine, which exhibit low cytokinin activity overcame the inhibitory effects of kinetin. However, purine derivatives without cytokinin activity, guanine, N6,6-dimethyl-aminopurine, and 2-aminopurine, did not relieve kinetin inhibition.  相似文献   

20.
Cytokinin proved to be a controlling factor in sieve tube regeneration around wounded collateral bundles in an in vivo system in which the endogenous cytokinin level had been minimized. Both kinetin and zeatin were applied in aqueous solution to the bases of excised, mature internodes of Coleus blumei Benth. that had an active vascular cambium. Each internode also received indoleacetic acid (IAA) in lanolin at its apical end. Under either low (0.1% w/w) or high (1.0% w/w) auxin concentrations, the control internodes (without exogenous cytokinin) exhibited small amounts of sieve tube regeneration. At appropriate concentrations, both kinetin and zeatin induced a significant increase in sieve tube regeneration around the wound. However, the highest concentration of kinetin tested (50 μg/mL) completely inhibited this process. Kinetin was the most effective with high auxin (1.0% IAA), while zeatin was the most effective with low auxin level (0.1% IAA). Kinetin and zeatin showed the strongest promotive effect at 10 μg/mL and 20 μg/mL, respectively. Both cytokinins also induced supplementary phloem regeneration further from the wound surface. In addition to their effects on vascular tissue regeneration, both cytokinins promoted callose production. This was most evident on the sieve plates of the regenerated sieve tube members and on the walls of the parenchyma cells around the wound. The largest deposits of callose were found in both regenerated sieve tube members and parenchyma cells at the highest cytokinin concentration tested (50 μg/mL). The possible role of cytokinin in controlling callose accumulation in the sieve tubes during autumn is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号