首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Direct RNA Template (DRT) hypothesis proposes that an early stage of genetic code evolution involved RNA molecules acting as stereochemical recognition templates for assembly of specific amino acids in sequence-ordered arrays, providing a framework for directed covalent peptide bond formation. It is hypothesized here that modern biological precedents may exist for RNA-based structural templating with functional analogies to hypothetical DRT systems. Beyond covalent molecular assembly, an extension of the DRT concept can include RNA molecules acting as dynamic structural template guides for the specific non-covalent assembly of multi-subunit complexes, equivalent to structural assembly chaperones. However, despite numerous precedents for RNA molecules acting as scaffolds for protein complexes, true RNA-mediated assembly chaperoning appears to be absent in modern biosystems. Another level of function with parallels to a DRT system is possible if RNA structural motifs dynamically guided specific patterns of catalytic modifications within multiple target sites in a pre-formed polymer or macromolecular complex. It is suggested that this type of structural RNA templating could logically play a functional role in certain areas of biology, one of which is the glycome of complex organisms. If any such RNA templating processes are shown to exist, they would share no necessary evolutionary relationships with events during early molecular evolution, but may promote understanding of the practical limits of biological RNA functions now and in the ancient RNA World. Awareness of these formal possibilities may also assist in the current search for functions of extensive non-coding RNAs in complex organisms, or for efforts towards artificial rendering of DRT systems.  相似文献   

2.
SILICON METABOLISM IN DIATOMS: IMPLICATIONS FOR GROWTH    总被引:1,自引:0,他引:1  
Diatoms are the world's largest contributors to biosilicification and are one of the predominant contributors to global carbon fixation. Silicon is a major limiting nutrient for diatom growth and hence is a controlling factor in primary productivity. Because our understanding of the cellular metabolism of silicon is limited, we are not fully knowledgeable about intracellular factors that may affect diatom productivity in the oceans. The goal of this review is to present an overview of silicon metabolism in diatoms and to identify areas for future research. Numerous studies have characterized parameters of silicic acid uptake by diatoms, and molecular characterization of transport has begun with the isolation of genes encoding the transporter proteins. Multiple types of silicic acid transporter gene have been identified in a single diatom species, and multiple types appear to be present in all diatom species. The controlled expression and perhaps localization of the transporters in the cell may be factors in the overall regulation of silicic acid uptake. Transport can also be regulated by the rate of silica incorporation into the cell wall, suggesting that an intracellular sensing and control mechanism couples transport with incorporation. Sizable intracellular pools of soluble silicon have been identified in diatoms, at levels well above saturation for silica solubility, yet the mechanism for maintenance of supersaturated levels has not been determined. The mechanism of intracellular transport of silicon is also unknown, but this must be an important part of the silicification process because of the close coupling between silica incorporation and uptake. Although detailed ultrastructural analyses of silica deposition have been reported, we know little about the molecular details of this process. However, proteins occluded within silica that promote silicification in vitro have recently been characterized, and the application of molecular techniques holds the promise of great advances in this area. Cellular energy for silicification and transport comes from aerobic respiration without any direct involvement of photosynthetic energy. As such, diatom silicon metabolism differs from that of other major limiting nutrients such as nitrogen and phosphorous, which are closely linked to photosynthetic metabolism. Cell wall silicification and silicic acid transport are tightly coupled to the cell cycle, which results in a dependency in the extent of silicification on growth rate. Silica dissolution is an important part of diatom cellular silicon metabolism, because dissolution must be prevented in the living cell, and because much of the raw material for mineralization in natural assemblages is supplied by dissolution of dead cells. Perhaps part of the reason for the ecological success of diatoms is due to their use of a silicified cell wall, which has been calculated to impart a substantial energy savings to organisms that have them. However, the growth of diatoms and other siliceous organisms has depleted the oceans of silicon, such that silicon availability is now a major factor in the control of primary productivity. Much new progress in understanding silicon metabolism in diatoms is expected because of the application of molecular approaches and sophisticated analytical techniques. Such insight is likely to lead to a greater understanding of the role of silicon in controlling diatom growth, and hence primary productivity, and of the mechanisms involved in the formation of the intricate silicified structures of the diatom cell wall.  相似文献   

3.
孙军  魏玉秋 《生态学报》2018,38(14):5234-5243
硅元素是全球生地化循环的重要组成成分之一,对海洋生态系统中以浮游植物主导的初级生产力和硅碳循环具有重要的意义。普遍认为硅藻主导着全球海洋的硅循环,成为海洋硅循环和碳循环交互作用的重要桥梁。海洋单细胞聚球藻对海洋食物网和能量流具有关键启动和支撑作用,是全球碳循环中固碳过程的主要贡献者,近年又被发现其具有重要的硅质化作用,为我们提供了一个在海洋中(特别是寡营养海域),除硅藻之外,连接硅碳循环交互作用的新视角,对硅藻在全球海洋硅碳循环的绝对地位具有重要的挑战意义。面对聚球藻在大洋中如此巨大的生物量,甚至高于硅藻,有必要弄清楚其碳沉降机制以及准确的模拟其硅循环,然而关于其在海洋硅循环的研究极少,硅质化作用的吸收和储存机理以及环境调节机制也不清楚;另外,其对世界海洋硅碳循环的调节作用也未见报道。为此,通过前人对海洋单细胞聚球藻硅质化作用研究的基础上进行有针对性的探讨,可望对海洋单细胞聚球藻硅质化作用及其对硅碳循环的调控机制有一个基本的认识,为深入研究聚球藻在全球海洋硅循环中的作用提供基础。  相似文献   

4.
Mechanisms in microbial evolution   总被引:1,自引:0,他引:1  
Molecular genetic studies with prokaryotic microorganisms reveal that many different molecular processes contribute to the formation of spontaneous mutations. Besides infidelities in DNA replication and the consequences of environmental mutagens, enzyme-mediated DNA rearrangements bring about important, evolutionarily relevant alterations in the genetic information. Particular attention is given in this article to site-specific recombination at secondary crossover sites and to the transposition of mobile genetic elements with relaxed target specificity. Besides these diverse processes of genomic mutation the acquisition of genetic information from other organisms plays an uncontested role in microbial evolution. Enzymes and organelles mediating any of these mutational processes can be looked at as biological functions acting at the level of populations for the needs of biological evolution, rather than to fulfill the needs of individual living organisms.  相似文献   

5.
The development of molecular tools for the extraction, analysis and interpretation of DNA from the remains of ancient organisms (paleogenetics) has revolutionised a range of disciplines as diverse as the fields of human evolution, bioarchaeology, epidemiology, microbiology, taxonomy and population genetics. The paper draws attention to some of the challenges associated with the extraction and interpretation of ancient DNA from archaeological material, and then reviews the influence of paleogenetics on the field of human evolution. It discusses the main contributions of molecular studies to reconstructing the evolutionary and phylogenetic relationships between extinct hominins (human ancestors) and anatomically modern humans. It also explores the evidence for evolutionary changes in the genetic structure of anatomically modern humans in recent millennia. This breadth of research has led to discoveries that would never have been possible using traditional approaches to human evolution.  相似文献   

6.
DNA and RNA are nucleic acids that cells and viruses use to produce copies of themselves. However, there is an immense paucity of knowledge on how these nucleic acids originated and changed as early bacteria became capable of growth and cell division. One possibility is that parallel evolution of the genetic code and protein synthesis was required for assembly of the first cells capable of growth and division. It is also possible that DNA-RNA duplices were intermediate genetic material in the early assembly of the first cells. These ideas will be discussed as well as other aspects of the assembly of the first cells on the Earth.  相似文献   

7.
8.
The genome sequences of unicellular holozoans, the closest relatives to animals, are shedding light on the evolution of animal multicellularity, shaping the genetic contents of the putative premetazoans. However, the assembly quality of the genomes remains poor compared to the major model organisms such as human and fly. Improving the assembly is critical for precise comparative genomics studies and further molecular biological studies requiring accurate sequence information such as enhancer analysis and genome editing. In this report, we present a new strategy to improve the assembly by fully exploiting the information of Illumina mate-pair reads. By visualizing the distance and orientation of the mapped read pairs, we could highlight the regions where possible assembly errors exist in the genome sequence of Capsaspora, a lineage of unicellular holozoans. Manual modification of these errors repaired 590 assembly problems in total and reassembled 84 supercontigs into 55. Our telomere prediction analysis using the read pairs containing the pan-eukaryotic telomere-like sequence identified at least 13 chromosomes. The resulting new assembly posed us a re-annotation of 112 genes, including 15 putative receptor protein tyrosine kinases. Our strategy thus provides a useful approach for improving assemblies of draft genomes, and the new Capsaspora genome offers us an opportunity to adjust the view on the genome of the unicellular animal ancestor.  相似文献   

9.
A comparison of structural-functional features of genomic DNAs allowed to estimate the role of internal and external factors in evolution of different groups of organisms. The basic difference between higher and lower organisms has been demonstrated. It is reflected in the difference of their reaction on to external factors in accordance with two adaptation types, the openness and autonomization. There is a correlation between structural-functional organization of genomic DNAs of higher and lower organisms and the above mentioned types of adaptation. DNA of lower organisms has been proposed to be characterized as "labile", and that of higher organisms, as "stable". The "DNA lability" means high mutation ability, which characterizes the existence of and evolution of lower organisms (genetic inconstancy of the lower organisms). On the contrary, "DNA stability" means the creation of stable genetic apparatus, reduction of variability in higher organisms (genetic constancy of higher organisms). This suggests the existence of the two principal ways of evolution.  相似文献   

10.
11.
Diatoms are important protists that generate one fifth of the oxygen produced annually on earth. These aquatic organisms likely derived from a secondary endosymbiosis event, and they display peculiar genomic and structural features that reflect their chimeric origin. Diatoms were one of the first models of cell division and these early studies revealed a range of interesting features including a unique acentriolar microtubule‐organising centre. Unfortunately, almost nothing is known at the molecular level, in contrast to the advances in other experimental organisms. Recently the full genome sequences of two diatoms have been annotated and molecular tools have been developed. These resources offer new possibilities to re‐investigate the mechanisms of cell division in diatoms by recruiting information from more intensively studied organisms. A renaissance of the topic is further justified by the current interest in diatoms as a source of biofuels and for understanding massive diatom proliferation events in response to environmental stimuli.  相似文献   

12.
Biosilicification: the role of the organic matrix in structure control   总被引:5,自引:0,他引:5  
Silicon (although never in the elemental form) is present in all living organisms and is required for the production of structural materials in single-celled organisms through to higher plants and animals. Hydrated amorphous silica is a mineral of infinite functionality and yet it is formed into structures with microscopic and macroscopic form. Research into the mechanisms controlling the process have highlighted proteins and proteoglycans as possible control molecules. Such molecules are suggested to play a critical role in the catalysis of silica polycondensation reactions and in structure direction. This article reviews information on silica form and function, silica condensation chemistry, the role of macromolecules in structure control and in vitro studies of silica formation using biomolecules extracted from biological silicas. An understanding of the mechanisms by which biological organisms regulate mineral formation will assist in our understanding of the essentiality of silicon to life processes and in the generation of new materials with specific form and function for industrial application in the 21st century.  相似文献   

13.
Recent attempts to establish a molecular time-scale of eukaryote evolution failed to provide a congruent view on the timing of the origin and early diversification of eukaryotes. The major discrepancies in molecular time estimates are related to questions concerning the calibration of the tree. To limit these uncertainties, we used here as a source of calibration points the rich and continuous microfossil record of dinoflagellates, diatoms and coccolithophorids. We calibrated a small-subunit ribosomal RNA tree of eukaryotes with four maximum and 22 minimum time constraints. Using these multiple calibration points in a Bayesian relaxed molecular clock framework, we inferred that the early radiation of eukaryotes occurred near the Mesoproterozoic-Neoproterozoic boundary, about 1100 million years ago. Our results indicate that most Proterozoic fossils of possible eukaryotic origin cannot be confidently assigned to extant lineages and should therefore not be used as calibration points in molecular dating.  相似文献   

14.
Origin of sex   总被引:1,自引:0,他引:1  
The competitive advantage of sex consists in being able to use redundancy to recover lost genetic information while minimizing the cost of redundancy. We show that the major selective forces acting early in evolution lead to RNA protocells in which each protocell contains one genome, since this maximizes the growth rate. However, damages to the RNA which block replication and failure of segregation make it advantageous to fuse periodically with another protocell to restore reproductive ability. This early, simple form of genetic recovery is similar to that occurring in extant segmented single stranded RNA viruses. As duplex DNA became the predominant form of the genetic material, the mechanism of genetic recovery evolved into the more complex process of recombinational repair, found today in a range of species. We thus conclude that sexual reproduction arose early in the evolution of life and has had a continuous evolutionary history. We cite reasons to reject arguments for gaps in the evolutionary sequence of sexual reproduction based on the presumed absence of sex in the cyanobacteria. Concerning the maintenance of the sexual cycle among current organisms, we take care to distinguish between the recombinational and outbreeding aspects of the sexual cycle. We argue that recombination, whether it be in outbreeding organisms, self-fertilizing organisms or automictic parthenogens, is maintained by the advantages of recombinational repair. We also discuss the role of DNA repair in maintaining the outbreeding aspects of the sexual cycle.  相似文献   

15.
植物的硅素营养研究综述   总被引:2,自引:0,他引:2  
邢雪荣  张蕾 《植物学报》1998,15(2):33-40
本文阐述了硅在植物中的形态、分布、吸收、积累、生理作用及其与其它元素的关系。研究表明:1.硅主要以二氧化硅胶(SiO2.nH2O)的无机物形态存在于植物表皮细胞和细胞壁。植物体内硅的含量在不同物种间差异很大。根据硅的含量,可将一般栽培植物分为三种类群;同时根据植物硅钙摩尔比值可将植物分为喜硅植物和非喜硅植物。硅在植物各部分分布不均匀,并且随着植株的生长发育,植株中的硅含量不断变化。植物中硅的积累受环境中多种因素的影响。2.植物主要以单硅酸形态吸收硅,不同植物吸收硅的能力不同。水稻具有主动吸硅能力,其吸收过程受体内代谢活动影响<请合法使用软件>其它大多数植物主要以被动方式吸收硅,但不排除具有选择性吸收硅的可能性。3.硅对植物的生长发育产生影响。硅是一些植物(如禾本科植物、甜菜、木贼属植物及某些硅藻)的必需元素。硅对其它很多植物具有有益作用。硅对植物的作用主要表现在对形态结构、生理过程和抗逆能力三方面的影响 上。在去硅条件下,多种植物表现出缺硅症状。4.硅对植物吸收利用对其它营养元素产生影响。硅对不同元素的影响方式和程度不同,同时随着植物的生长发育,对某种元素的作用常发生变化。  相似文献   

16.
The evolutionary strategy to generate genetic variants by DNA acquisition involving horizontal gene transfer seems to be widely used by many, if not all, living organisms. A common language between donor and recipient organisms, as provided by the quasi universality of the genetic code, can favor the effectiveness of the DNA acquisition strategy. These considerations are here discussed in the context of our knowledge on the natural strategies of molecular evolution and on the commonly used genetic code.  相似文献   

17.
Silicon biomineralization is a widespread mechanism found in several kingdoms that concerns both unicellular and multicellular organisms. As a result of genomic and molecular tools, diatoms have emerged as a good model for biomineralization studies and have provided most of the current knowledge on this process. However, the number of techniques available to study its dynamics at the cellular level is still rather limited. Here, new probes were developed specifically to label the pre-existing or the newly synthesized silica frustule of several diatoms species. It is shown that the LysoTracker Yellow HCK-123, which can be used to visualize silica frustules with common filter sets, presents an enhanced signal-to-noise ratio and allows details of the frustules to be imaged without of the use of ionophores. It is also demonstrated that methoxysilane derivatives can be coupled to fluorescein-5-isothiocyanate (FITC) to preferentially label the silica components of living cells. The coupling of labeling procedures might help to address the challenging question of the process of frustule exocytosis.  相似文献   

18.
The study of metazoan evolution has fascinated biologists for centuries, and it will certainly keep doing so. Recent interest on the origin of metazoan body plans, early metazoan evolution, genetic mechanisms generating disparity and diversity, molecular clock information, paleontology, and biogeochemistry is contributing to a better understanding of the current phyletic diversity. Unfortunately, the pattern of the metazoan tree of life still shows some important gaps in knowledge. It is the aim of this article to review some of the most important issues related to the inference of the metazoan tree, and point towards possible ways of solving certain obscure aspects in the history of animal evolution. A new hypothesis of the metazoan diversification during the Cambrian explosion is proposed by synthesizing ideas from phylogenetics, molecular evolution, paleontology, and developmental biology.  相似文献   

19.
Evolution depends upon the occurrence of occasional changes, large or small, in hereditary characteristics. Molecular genetics gave rise to the new field of molecular evolution, which is currently exploring the changes that take place in proteins and nucleic acids over long periods of time. The following are some of the fundamental assumptions:
  1. The phenotypic characteristics of organisms depend directly on proteins.
  2. Proteins are synthesized in accordance with information carried in molecules of DNA as sequences of the four bases, adenine, guanine, cytosine, and thymine. The information is transcribed into molecules of messenger RNA and is translated into proteins by the intervention of the genetic code.
  3. Changes in the composition of the base sequences in DNA can take place in living organisms, and these changes can affect the phenotypic characteristics of the next generation.
  4. The process of natural selection favors the perpetuation of organisms which compete successfully in the struggle for existence. This process leads to the elimination of all but a small fraction of the astronomical number of possible protein molecules that could result from genetic translation of the possible variants of DNA. Furthermore, the number of protein molecules was originally much smaller than it is to-day, and it has increased by hereditary processes rather than by the chance appearance of entirely new proteins.
  5. The DNA present in any single cell contains the complete information for all the hereditary characteristics of the organism. The amount of DNA per cell may increase during evolution and this increase has produced modern organisms that are ‘higher’, more specialized, and more complex, from carlicr and simpler forms.
  6. Protein molecules are slowly and steadily differentiated during evolution if their genes are physically separated from each other, by allopatric speciation or even by duplication and translocation, whether or not the function of the proteins are changed.
  7. Mutations, together with recombination, contribute to changes in the genetic pool which provide the variability within populations that is necessary for evolution of species.
The field of molecular evolution should include a theory of the chemical events leading to the formation of the first living organism from molecules of non-living origin. The gentic code may have evolved through multiplication of transfer RNA molecules by gene duplication followed by differentiation. This proposal is supported by the similarities between all tRNA molecules of known structures. The DNA of higher organisms contains families of repetitive sequences. The families may contain thousands or hundreds of thousands of individual members. The ‘family resemblance’ within each group grows less with the passage of time because this leads to differentiation resulting from the accumulation of point mutations.  相似文献   

20.
Silicon is an important element in biology, for organisms ranging from unicellular algae to humans. It acts as a structural material for both plants and animals, but can also function as a metabolite or regulator of gene expression, affecting a wide range of cellular processes. Molecular details of biological interaction with silicon are poorly understood. Diatoms, the largest group of silicifying organisms, are a good model system for studying this interaction. The first proteins shown to directly interact with silicon were diatom silicon transporters (SITs). Because the basis for substrate recognition lies within the primary sequence of a protein, identification of conserved amino acid residues would provide insight into the mechanism of SIT function. Lack of SIT sequences from a diversity of diatoms and high sequence conservation in known SITs has precluded identification of such residues. In this study, PCR was used to amplify partial SIT sequences from eight diverse diatom species. Multiple gene copies were prevalent in each species, and phylogenetic analysis showed that SITs generally group according to species. In addition to partial SIT sequences, full‐length SIT genes were identified from the pennate diatom, Nitzschia alba (Lewin and Lewin), and the centric diatom Skeletonema costatum (Greville) Cleve. Comparing these SITs with previously identified SITs showed structural differences between SITs of centrics and pennates, suggesting differences in transport mechanism or regulation. Comparative amino acid analysis identified conserved regions that may be important for silicon transport, including repeats of the motif GXQ. A model for silicon uptake and efflux is presented that is consistent with known aspects of transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号