首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and evolution of the plant mitochondrial genome may allow recurrent appearance of the same mitochondrial variants in different populations. Whether the same mitochondrial variant is distributed by migration or appears recurrently by mutation (creating homoplasy) in different populations is an important question with regard to the use of these markers for population genetic analyses. The genetic association observed between chloroplasts and mitochondria (i.e. two maternally inherited cytoplasmic genomes) may indicate whether or not homoplasy occurs in the mitochondrial genome. Four-hundred and fourteen individuals sampled in wild populations of beets from France and Spain were screened for their mitochondrial and chloroplast polymorphisms. Mitochondrial DNA (mtDNA) polymorphism was investigated with restriction fragment length polymorphism (RFLP) and chloroplast DNA (cpDNA) polymorphism was investigated with polymerase chain reaction PCR-RFLP, using universal primers for the amplification. Twenty and 13 variants for mtDNA and cpDNA were observed, respectively. Most exhibited a widespread geographical distribution. As a very strong linkage disequilibrium was estimated between mtDNA and cpDNA haplotypes, a high rate of recurrent mutation was excluded for the mitochondrial genome of beets. Identical mitochondrial variants found in populations of different regions probably occurred as a result of migration. We concluded from this study that mtDNA is a tool as valuable as cpDNA when a maternal marker is needed for population genetics analyses in beet on a large regional scale.  相似文献   

2.
Natural selection, random processes and gene flow are known to generate sex ratio variations among sexually polymorphic plant populations. In gynodioecious species, in which hermaphrodites and females coexist, the relative effect of these processes on the maintenance of sex polymorphism is still up for debate. The aim of this study was to document sex ratio and cytonuclear genetic variation at a very local scale in wind-pollinated gynodioecious Beta vulgaris ssp. maritima and attempt to elucidate which processes explained the observed variation. The study sites were characterized by geographically distinct patches of individuals and appeared to be dynamic entities, with recurrent establishment of distinct haplotypes through independent founder events. Along with substantial variation in sex ratio and unexpectedly low gene flow within study sites, our results showed a high genetic differentiation among a mosaic of genetically distinct demes, with isolation by distance or abrupt genetic discontinuities taking place within a few tens of metres. Overall, random founder events with restricted gene flow could be primary determinants of sex structure, by promoting the clumping of sex-determining genes. Such high levels of sex structure provide a landscape for differential selection acting on sex-determining genes, which could modify the conditions of maintenance of gynodioecy in structured populations.  相似文献   

3.
Recent advances in molecular biology have allowed the development of techniques to contrast spatial differentiation in nuclear and cytoplasmic genes and thus provide important data on relative levels of gene flow by pollen and seed in higher plants. In this paper, we compare the spatial structure of nuclear (allozymes) and cytoplasmic (cpDNA) genes among populations of the gynodioecious Thymus vulgaris in southern France. Based on a combination of three restriction enzymes (CfoI, EcoRV, and PstI), eight chlorotypes (combination of three restriction enzyme patterns revealed by Southern hybridization of Beta vulgaris cpDNA) were identified in the 13 studied populations. One chlorotype was particularly abundant and was detected in nearly all populations. Only one chlorotype was specific to a single population. Up to four different chlorotypes were observed in some populations. An FST of 0.238 (P < 0.002) for cpDNA haplotypes indicates spatial structure of cytoplasmic genes among the studied populations. Similar patterns were found within a single young population (CAB) structured in patches and surrounded by a continuous cover of T. vulgaris where the FST is 0.546 (P < 0.002). No significant correlation between sex and chlorotype nor between cpDNA diversity and female frequency was detected. Allozyme markers showed markedly less spatial structure (FST = 0.021 among populations and 0.019 in the CAB population, P < 0.001). This difference between cpDNA and nuclear allozyme markers suggests that pollen dispersal is more important than seed dispersal both among and within populations.  相似文献   

4.
Plant mating systems are known to influence population genetic structure because pollen and seed dispersal are often spatially restricted. However, the reciprocal outcomes of population structure on the dynamics of polymorphic mating systems have received little attention. In gynodioecious sea beet (Beta vulgaris ssp. maritima), three sexual types co‐occur: females carrying a cytoplasmic male sterility (CMS) gene, hermaphrodites carrying a non‐CMS cytoplasm and restored hermaphrodites that carry CMS genes and nuclear restorer alleles. This study investigated the effects of fine‐scale genetic structure on male reproductive success of the two hermaphroditic forms. Our study population was strongly structured and characterized by contrasting local sex‐ratios. Pollen flow was constrained over short distances and depended on local plant density. Interestingly, restored hermaphrodites sired significantly more seedlings than non‐CMS hermaphrodites, despite the previous observation that the former produce pollen of lower quality than the latter. This result was explained by the higher frequency of females in the local vicinity of restored (CMS) hermaphrodites as compared to non‐CMS hermaphrodites. Population structure thus strongly influences individual fitness and may locally counteract the expected effects of selection, suggesting that understanding fine scale population processes is central to predicting the evolution of gender polymorphism in angiosperms.  相似文献   

5.
Summary Mitochondrial DNA (mtDNA) variation in natural Beta maritima populations has been characterized by way of Southern blot hybridizations of total DNA using non-radioactive probes and chemiluminescent detection. It was found that the previously described N (normal) mitochondrial type could be subdivided into three subtypes. A new mitochondrial genotype (type R) was distinguished in addition to the previously described type S. Both are male-sterile cytoplasms and can produce a. segregation of sexual phenotypes in their progenies depending on the nuclear background. The populations contained at least two to four different mitochondrial genotypes.  相似文献   

6.
In sexually polymorphic plants, the spatial distribution of sexes is usually not random. Local variation in phenotype frequencies is expected to affect individual fitness of the different phenotypes. For gynodioecious species, with co-occurrence of hermaphrodites and females, if sexual phenotypes are structured in space and pollen flow is spatially restricted, local pollen availability should vary among patches. Female fitness may thus be low when hermaphrodites are locally rare. To test this hypothesis, we analysed how the reproductive output of females varied among patches within two natural study sites of the gynodioecious wind-pollinated Beta vulgaris ssp. maritima. Plants growing in female-biased areas and experiencing pollen limitation were found to have low fruit and seed sets but did not reallocate resources towards better offspring. Our results show that fine-scale processes influence individual fitness and the evolution of sex ratio in sexually polymorphic plants.  相似文献   

7.
Molecular markers can be used to estimate gene flow indirectly by monitoring the relative frequency of alleles in adjacent populations. Sea beet (Beta vulgaris ssp. maritima) is a wild plant species found along the coastlines of many European countries and is closely related to cultivated beets. A set of six simple sequence repeat (SSR) markers that are polymorphic in UK populations have been developed for sea beet to assess the problems of indirect measurement of gene flow in these populations.  相似文献   

8.
Variation in the chloroplast genome of Calluna vulgaris (heather), the dominant species of northwest European heath communities, was analysed using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) and microsatellites. No length polymorphisms were detected in the 100-200 base pair (bp) fragments amplified by the conserved microsatellite primers, and sequencing revealed that the repeat regions were interrupted relative to the corresponding sequence in Nicotiana tabacum. In contrast, PCR-RFLP analysis revealed high levels of haplotype diversity within populations (hS = 0.443, hT = 0.842), as well as substantial differentiation between populations (GST = 0.473). Diversity and differentiation were higher in southern Europe than in northern Europe. Interpreted in the light of data from allozyme studies and pollen core records, the results suggest that the main glacial refugia for C. vulgaris were located in southwest Europe, including northern Spain, the Pyrenees and the Massif Central region of France. There is also evidence for diffuse survival of the species at more northerly latitudes.  相似文献   

9.
We present draft genome assemblies of Beta patula, a critically endangered wild beet endemic to the Madeira archipelago, and of the closely related Beta vulgaris ssp. maritima (sea beet). Evidence‐based reference gene sets for B. patula and sea beet were generated, consisting of 25 127 and 27 662 genes, respectively. The genomes and gene sets of the two wild beets were compared with their cultivated sister taxon B. vulgaris ssp. vulgaris (sugar beet). Large syntenic regions were identified, and a display tool for automatic genome‐wide synteny image generation was developed. Phylogenetic analysis based on 9861 genes showing 1:1:1 orthology supported the close relationship of B. patula to sea beet and sugar beet. A comparative analysis of the Rz2 locus, responsible for rhizomania resistance, suggested that the sequenced B. patula accession was rhizomania susceptible. Reference karyotypes for the two wild beets were established, and genomic rearrangements were detected. We consider our data as highly valuable and comprehensive resources for wild beet studies, B. patula conservation management, and sugar beet breeding research.  相似文献   

10.
In a self-compatible gynodioecious species, the abundance of female plants (which are obligate outcrossers) relative to hermaphrodites (which may self and outcross) may be a critical factor influencing genetic diversity and population structure. In the gynodioecious Thymus vulgaris L., female frequency varies from 5 to 95%, providing a suitable model to examine this issue. In this study, we use allozyme markers to (1) evaluate the relationship between female frequency, genetic diversity and population structure, (2) determine whether females and hermaphrodites vary in heterozygote deficiency and (3) examine whether other factors such as plant density are related to heterozygote deficiency. Twenty three natural populations, with female frequencies ranging from 11 to 92%, were sampled in and around the St-Martin-de-Londres basin in southern France. Based on four polymorphic allozyme loci, we found no significant correlation between female frequency and heterozygote deficiency. A significant (P < 0.05) FIS value over loci and over populations of 0.11 was detected. The FIS value per population showed a significant heterozygote deficiency in 11 of the 23 populations. However, no significant difference between female and hermaphrodite FIS values was found. A significant heterozygote deficiency only occurred in populations of intermediate density. There was little differentiation among populations (FST = 0.038) nor among subpopulations within each population. The significant FIS values are thus mostly due to inbreeding effects. The lack of a correlation between FIS values and female frequency may be due to outcrossing in hermaphrodites and/or restoration of male fertility which may occur to a greater extent at low female frequency. The similarity of female and hermaphrodite FIS values indicates that females may occasion high levels of biparental inbreeding.  相似文献   

11.
A highly variable mitochondrial DNA (mtDNA) restriction fragment length polymorphism (RFLP) locus is used to assess the population structure of mitochondrial genomes in the gynodioecious plant Silene vulgaris at two spatial scales. Thirteen mtDNA haplotypes were identified within 250 individuals from 18 populations in a 20-km diameter region of western Virginia. The population structure of these mtDNA haplotypes was estimated as thetaST = 0.574 (+/- 0.066 SE) and, surprisingly, genetic differentiation among populations was negatively correlated with geographic distance (Mantel r = -0.246, P < 0.002). Additionally, mtDNA haplotypes were spatially clumped at the scale of meters within one population. Gender in S. vulgaris is determined by an interaction between autosomal male fertility restorers and cytoplasmic male sterility (CMS) factors, and seed fitness is affected by an interaction between gender and population sex ratio; thus, selection acting on gender could influence the distribution of mtDNA RFLP haplotypes. The sex ratio (females:hermaphrodites) varied among mtDNA haplotypes across the entire metapopulation, possibly because the haplotypes were in linkage disequilibrium with different CMS factors. The gender associated with some of the most common haplotypes varied among populations, suggesting that there is also population structure in male fertility restorer genes. In comparison with reports of mtDNA variation from other published studies, we found that S. vulgaris exhibits a large number of mtDNA haplotypes relative to that observed in other species.  相似文献   

12.
High chloroplast DNA (cpDNA) diversity was found within and among populations of Prunus spinosa sampled from seven European deciduous forests. A study of 12% of the total chloroplast genome detected 44 mutations, which were distributed over 24 haplotypes; four were common to two or more populations and the rest were unique haplotypes. The most-abundant and widely distributed haplotype was H2 (frequency = 41% approximately). Six of the seven populations were polymorphic. All of the six polymorphic populations had ”private” haplotypes (frequency < 5%) in addition to common haplotypes. The UPGMA dendrogram demonstrated a correlation between populations and their geographical locations. The total diversity was high (hT = 0.824) and a major portion of it was within populations (hs = 0.663). The level of population subdivision for unordered alleles was low (GST = 19.5%) and for ordered alleles was lower (NST = 13.6%). No phylogeographic structure could be demonstrated in the present geographical scale. High polymorphism in the cpDNA of P. spinosa has to be considered carefully when planning phylogenetic studies involving this species. Received: 20 September 1999 / Accepted: 10 November 1999  相似文献   

13.
Summary Plants of two natural populations of Beta maritima, characterized by high percentages of male-sterile plants, have been investigated for organelle DNA polymorphism. We confirm the two classes of mitochondrial DNA variation previously described: (i) mitochondrial DNA (mtDNA) type N is associated with male fertility, whereas mtDNA type S can cause cytoplasmic male sterility (CMS); (ii) the 10.4-kb linear plasmid is observed in both types of mitochondria and is not correlated with the cytoplasmic male sterility occurring in this plant material. A third polymorphism is now described for chloroplast DNA (ctDNA). This polymorphism occurs within single populations of Beta maritima. Three different ctDNA types have been identified by HindIII restriction analysis. Among the plants studied, ctDNA type 1 is associated with N mitochondria and type 2 with S mitochondria. Chloroplast DNA type 3 has been found both in a fertile N plant and in a sterile S plant. This finding suggests that the chloroplast DNA polymorphism reported is not involved in the expression of male sterility. A comparison with Beta vulgaris indicates that ctDNA type 3 of Beta maritima corresponds to the ctDNA of fertile sugar beet maintainer lines. The three types of Beta maritima ctDNA described in this study differ from the ctDNA of male-sterile sugar beet.  相似文献   

14.
Intra-specific chloroplast DNA (cpDNA) variation was studied in Sorbus aucuparia L., an entomophilous, mid-or early successional tree producing fleshy fruits. Eight PCR-amplified fragments of the chloroplast genome were screened for restriction fragment length polymorphisms, using one or two 4 bp-cutter restriction endonucleases. cpDNA variation was investigated on two geographical scales: (1) among four regions in France and Belgium; and (2) within the Belgian region. A total of 150 individuals from six populations were analysed. Fourteen polymorphisms were detected in six of the cpDNA fragments. All polymorphisms probably resulted from insertions or deletions, and allowed the identification of 12 haplotypes. The level of genetic differentiation computed on the basis of haplotype frequencies was similar on the two geographical scales considered (G(STc) = 0.286 among regions, G(STc) = 0.259 among populations within the Belgian region). These values are much lower than those obtained in nine previously studied temperate tree species, which are all wind-pollinated, late-successional species producing dry fruits. These results might primarily be accounted for by the contrasting life history traits of S. aucuparia. In order to obtain insights into the relative contribution of pollen and seeds to gene flow, G(STc) was also compared with previously obtained G(ST) estimates based on allozyme data.  相似文献   

15.
It has been suggested that the dynamics of chloroplast DNA (cpDNA) or mitochondrial DNA (mtDNA) genetic markers used in studies of plant populations could be influenced by natural selection acting elsewhere in the genome. This could be particularly true in gynodioecious plants if cpDNA or mtDNA genetic markers are in gametic disequilibrium with genes responsible for sex expression. In order to investigate this possibility, a natural population of the gynodioecious plant Silene vulgaris was used to study associations among mtDNA haplotype, cpDNA haplotype, sex and some components of fitness through seed. Individuals were sampled for mtDNA and cpDNA haplotype as determined using restriction fragment length polymorphism (RFLP) methods, sex (female or hermaphrodite), fruit number, fruit set, seeds/fruit and seed germination. The sex of surviving germinating seeds was also noted. All individuals in the population fell into one of two cytoplasmic categories, designated haplotypes f and g by a unique electrophoretic signature in both the mtDNA and cpDNA. The subset of the population carrying haplotype g included a significantly higher proportion of females when compared with the sex ratio of the subset carrying the f haplotype. Haplotype g had a significantly higher fitness when measured by fruit number, fruit set and seeds/fruit, whereas haplotype f had significantly higher fitness when measured by seed germination. Offspring of individuals carrying haplotype g included a significantly greater proportion of females when compared with offspring of individuals carrying the f haplotype. Other studies of gynodioecious plants have shown that females generally have higher fitness through seed than hermaphrodites, but in this study not all fitness differences between haplotypes could be predicted from differences in haplotype-specific sex ratio alone. Rather, some differences in haplotype-specific fitness were due to differences in fitness between individuals of the same sex, but carrying different haplotypes. The results are discussed with regard to the potential for hitchhiking selection to influence the dynamics of the noncoding regions used to designate the cpDNA and mtDNA haplotypes.  相似文献   

16.
Gene flow from sugar beets to sea beets occurs in the seed propagation areas in southern Europe. Some seed propagation also takes place in Denmark, but here the crop-wild gene flow has not been investigated. Hence, we studied gene flow to sea beet populations from sugar beet lines used in Danish seed propagation areas. A set of 12 Danish, two Swedish, one French, one Italian, one Dutch, and one Irish populations of sea beets, and four lines of sugar beet were analysed. To evaluate the genetic variation and gene flow, eight microsatellite loci were screened. This analysis revealed hybridization with cultivated beet in one of the sea beet populations from the centre of the Danish seed propagation area. Triploid hybrids found in this population were verified with flow cytometry. Possible hybrids or introgressed plants were also found in the French and Italian populations. However, individual assignment test using a Bayesian method provided 100% assignment success of diploid individuals into their correct subspecies of origin, and a Bayesian Markov chain Monte Carlo (MC MC) approach revealed clear distinction of individuals into groups according to their subspecies of origin, with a zero level of genetic admixture among subspecies. This underlines that introgression beyond the first hybridization is not extensive. The overall pattern of genetic distance and structure showed that Danish and Swedish sea beet populations were closely related to each other, and they are both more closely related to the population from Ireland than to the populations from France, the Netherlands, and Italy.  相似文献   

17.
The organization of the mitochondrial genome of B3, B4 and B5generations of hybrids created by backcrossing sterile wild beet Betamaritima with a fertile O-type sugar beet line was studied usingrestriction fragment length polymorphism (RFLP) analysis. Random amplifiedpolymorphic DNA (RAPD) analysis was used to study restoration of the fertile(O-type) sugar beet genotype in hybrids after multiple backcrossings.Restriction of mtDNAs from the cytoplasm of B. maritimaandhybrids revealed BamHI, EcoRI andXhoI restriction patterns different from those for sterileand fertile sugar beet lines. The most conspicuous feature of our accession ofsterile wild beet mtDNA was the absence of the 10.7-kbEcoRI fragment detected in the cytoplasm of S-type sterileB. maritima and sugar beet. The hybridization of digestedmtDNAs with coxII, atpA andatp6 homologous probes revealed alterations within thesegene loci that distinguished wild beet and hybrids from sugar beets.Characteristic hybridization profiles for the wild beet and B3, B4 and B5hybrids were observed for all probes regardless of the restrictase used todigest mtDNA. Notable changes in atpA andatp6 genes resulted when probes that comprised the5flanking sequences of these genes and a small part of the coding sequences wereused. RFLP analysis of the sterile B. maritimamitochondrial genome further supported the unique character of this source ofwild beet sterility. The genotypic differences between hybrids and parentalaccessions were determined by scoring PCR-RAPD reaction products for nineselected primers. The diversity of the B. maritimagenotyperesulted in a lower genetic similarity index in comparison with hybrids,sterileand fertile lines of sugar beet. The dendrogram obtained after cluster analysisdistinguished hybrids as a group that differed from wild beet and themaintainersugar beet line used for backcrossing. These results may indicate incompleterestoration of the fertile sugar beet genotype in hybrids.  相似文献   

18.
There has been very little empirical study of quantitative genetic variation in flower size in sexually dimorphic plant species, despite the frequent occurrence of flower size differences between sexual phenotypes. In this study we quantify the nature of quantitative flower size variation in females and hermaphrodites of gynodioecious Thymus vulgaris. In a field study, females had significantly smaller flowers than hermaphrodites, and the degree of flower size dimorphism varied significantly among populations. To quantify the genetic basis of flower size variation we sampled maternal progeny from 10 F0 females in three populations (across the range of variation in flower size in the field), performed controlled crosses on F1 offspring in the glasshouse and grew F2 progeny to flowering in uniform field conditions. A significant population * sex interaction was again observed, hence the degree of sexual dimorphism shows genetic variation among populations. A significant family * sex interaction was also observed, indicating that the degree of sexual dimorphism shows genetic variation among families. Females showed significantly greater variation among populations and among families than hermaphrodites. Female flower size varied significantly depending on the degree of stamen abortion, with morphologically intermediate females having flowers more similar to hermaphrodites than to other females. The frequency of female types that differ in the degree of stamen abortion varied among populations and families and mean family female flower size increased as the proportion of intermediate female types increased across families. Variation in the degree of flower size dimorphism thus appears to be a result of variation in the degree of stamen abortion in females, the potential causes of which are discussed.  相似文献   

19.
 Diversity among sugar beet accessions released over the first 50 years of public breeding in the United States was examined to ascertain a baseline of genetic diversity and to gauge the effect of breeding on the loss or gain of diversity over this time period. Accessions were chosen as released germplasm from the major breeding stations contributing to the US germplasm pool and their presumed ancestors from Europe, including representatives for the wild forms Beta vulgaris ssp. maritima. Sixty nine polymorphic RAPD fragments were used for gene frequency analysis, and heterozygosity was determined within and among groups of accessions related either by breeding station or simply inherited agronomic characters for monogerm seed and restoration of fertility in a cytoplasmic male-sterile background. In general, heterozygosity within releases declined with time, but total genetic diversity in the US germplasm pool remained constant. Breeding for the agronomic characters had a marked influence in reducing diversity. Received: 20 October 1998 / Accepted: 28 October 1998  相似文献   

20.
Abstract. It is highly probable that transgenic cultivars of sugar beet may influence wild beets in the seed-production-area of northern Italy. For this reason a survey of the local wild beet populations and their habitat characteristics was conducted in 1994/1995, i.e. before transgenic beets and their off spring could have become established. Wild beets (Beta vulgaris ssp. maritima) were found at 21 locations between Trieste and Cesenatico, as part of the natural littoral vegetation classified as Atriplicetum tatarici (Cakiletea maritimae) and Crithmetum (Crithmo-Staticetea). The analysis of phenotypic attributes leads to a division into three different sub-populations. Greenhouse studies on the morphology and life-cycle attributes demonstrated actual gene flow between conventional seed beet and the examined wild beet population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号