首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat hepatocytes were studied for [Ca2+]i with Fura-2 at the single cell level using a microfluorometer-imaging system which showed that both the number of cells elevating [Ca2+]i and the magnitude of [Ca2+]i increase were directly dependent upon ethanol concentration between 50 mM and 1 M. Peak [Ca2+]i increases ranged from 27 nM with 50 mM ethanol to 57 nM after 1 M ethanol. Ethanol appeared to initiate calcium release from intracellular stores and caused a dose dependent production of inositol(1,4,5) triphosphate (Ins(1,4,5)P3) in hepatocytes. Low concentrations of ethanol (50-100 mM) did not significantly raise Ins(1,4,5)P3 although 300 mM-1 M increased Ins(1,4,5)P3 comparable to that found with vasopressin (5 nM). In summary, physiologic amounts of ethanol raise [Ca2+]i in rat hepatocytes, although at lower levels (50-100 mM) the changes may or may not be related to an Ins(1,4,5)P3 pathway.  相似文献   

2.
J R Lopez  L Parra 《Cell calcium》1991,12(8):543-557
Inositol 1,4,5-trisphosphate (InsP3) has been proposed as an intracellular messenger which mobilizes calcium from the sarcoplasmic reticulum, during excitation-contraction coupling in skeletal muscle. We have measured the myoplasmic free calcium concentration ([Ca2+]i) by means of calcium selective microelectrodes in intact fibers isolated from Leptodactylus insularis microinjected with InsP3. In muscle fibers bathed in normal Ringer, the mean resting [Ca2+]i was 0.11 +/- 0.01 microM (M +/- SEM, n = 30). The microinjection of 0.3, 0.5 and 1 microM InsP3 induced transient increments in the [Ca2+]i to 0.35 +/- 0.02 microM (n = 9), to 0.53 +/- 0.03 microM (n = 11) and 0.94 +/- 0.06 microM (n = 10) respectively. Microinjection of 0.3, 0.5 and 1 microM InsP3 in muscle fibers incubated in low Ca2+ solution induced increments in [Ca2+]i similar to those observed in fibers bathed with normal Ringer. The microinjection of 0.3, 0.5 and 1 microM InsP3 in muscle fibers partially depolarized with 10 mM [K+]o induced transient enhancements of the resting [Ca2+]i that were greater than the transients observed in the normally polarized muscle. In partially depolarized fibers microinjected with 0.3, 0.5 and 1 microM InsP3, the [Ca2+]i was changed to 1.45 +/- 0.14 microM (n = 20), to 3.37 +/- 0.34 microM (n = 7) and to 7.43 +/- 0.70 microM (n = 6) respectively. In all partially depolarized fibers these increments in [Ca2+]i were associated with local contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
Ca2+i versus [Ca2+]i.   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

5.
6.
We previously found that Endothelin-1(1-31) (ET-1(1-31)) exhibited a pro-arrhythmogenic effect in isolated rat hearts. In this study, we further investigated the effects of ET-1(1-31) on a cell viability and observed [Ca(2+)](i) in cultured cardiomyocytes. Cultured neonatal rat cardiomyocytes were treated with 0.1, 1, and 10 nM ET-1(1-31) for 24h in the presence or absence of ET(A) receptor antagonist (BQ(123)) or phosphoramidon, a NEP/ECE inhibitor. Cell injury was evaluated by supernatant lactate dehydrogenase (LDH) assay, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content. Cell viability was assessed by MTT assay. [Ca(2+)](i) was measured with Fluo-3/AM under a laser confocal microscope. 1) ET-1(1-31) dose-dependently increased LDH release and decreased cell viability. 2) LDH and MDA levels were significantly elevated and SOD activity decreased after administration of 1 nM ET-1(1-31) for 24h, and these changes were markedly attenuated by 1 uM BQ(123). 3) Exposure to 10 nM ET 1(1-31) caused a continuous increase in [Ca(2+)](i) to cultured beating cardiomyocytes and termination of [Ca(2+)](i) transient within 6 min, and this change was reversed by 1 uM BQ(123) and attenuated by 0.5 mM phosphoramidon. These results suggest that ET-1(1-31) could cause cell injury, and that the effect of ET-1(1-31) on [Ca(2+)](i) transients is mainly mediated by ET(A) receptor and partially attributed to the conversion of ET-1(1-31) to ET-1(1-21).  相似文献   

7.
With the use of fura 2 measurements in multiple and single cells, we examined whether cysteinyl leukotrienes (CysLT) mediate angiotensin II (ANG II)-evoked increases in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) in neonatal rat cardiomyocytes. ANG II-evoked CysLT release peaked at 1 min. The angiotensin type 1 (AT(1)) antagonist losartan, but not the AT(2) antagonist PD-123319, attenuated the elevations in [Ca(2+)](i) and CysLT levels evoked by ANG II. Vasopressin and endothelin-1 increased [Ca(2+)](i) but not CysLT levels. The 5-lipoxygenase (5-LO) inhibitor AA-861 and the CysLT(1)-selective antagonist MK-571 reduced the maximal [Ca(2+)](i) responses to ANG II but not to vasopressin and endothelin-1. While MK-571 reduced the responses to leukotriene D(4) (LTD(4)), the dual CysLT antagonist BAY-u9773 completely blocked the [Ca(2+)](i) elevation to both LTD(4) and LTC(4). These data confirm that ANG II-evoked increases, but not vasopressin- and endothelin-1-evoked increases, in [Ca(2+)](i) involve generation of the 5-lipoxygenase metabolite CysLT. The inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3)] antagonist 2-aminoethoxydiphenyl borate attenuated the [Ca(2+)](i) responses to ANG II and LTD(4). Thus AT(1) receptor activation by ANG II is linked to CysLT-mediated Ca(2+) release from Ins(1,4,5)P(3)-sensitive intracellular stores to augment direct ANG II-evoked Ca(2+) mobilization in rat cardiomyocytes.  相似文献   

8.
The effect of inositol-1,4,5-trisphosphate on Ca2+ release from microsomes isolated from dark-grown zucchini (Cucurbita pepo L.) hypocotyls was studied. Up to 30% of the Ca2+ taken up by the microsomes in the presence of 2mM ATP, was released by mumolar concentrations of inositol-1,4, 5-trisphosphate. This release was very rapid (less than 0.5 min) and was followed by a slower re-uptake of Ca2+. The microsomal levels of Ca2+ previously attained were not re-established within 5 min. External concentration of free Ca2+ was maintained in the 10(-8)M region during the release. This is the first time that inositol-1,4,5-trisphosphate has been shown to have a regulatory effect on Ca2+ in plant membrane fractions. Phosphoinositides may be important in signal transduction in plant cells, by altering the cytoplasmic Ca2+ activity, a function already known in animal cells.  相似文献   

9.
谷氨酸促进大鼠海马神经元的内钙升高   总被引:1,自引:0,他引:1  
谷氨酸能影响大鼠海马神经元胞内钙信号的变化,进而影响海马神经元神经冲动的发放和学习记忆过程。运用荧光测钙技术实时监测了大鼠海马神经元内钙信号的动态变化,同时分析了谷氨酸对其胞内钙信号的影响。试验表明:谷氨酸能够显著提高胞内游离钙离子的浓度;细胞外钙离子的存在、谷氨酸刺激时间及刺激频率的增加都能引起胞内钙信号不同程度的升高;但谷氨酸的过度刺激会引起钙离子浓度的超负荷,从而导致神经元结构和功能的损坏。  相似文献   

10.
Jan CR  Tseng CJ 《Life sciences》2000,66(18):1753-1762
The effect of nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells has been investigated. NDGA (10-100 microM) increased [Ca2+]i concentration-dependently. The [Ca2+]i increase comprised an initial slow rise and a plateau over a time period of 5 min. Ca2+ removal partly inhibited the Ca2+ signals induced by 25-100 microM NDGA and abolished that induced by 10 microM NDGA. In Ca(2+)-free medium, pretreatment with 0.1 mM NDGA for 12 min abolished the [Ca2+]i increase induced by the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP; 2 microM) and the endoplasmic reticulum (ER) Ca2+ pump inhibitor thapsigargin (1 microM). However, 0.1 mM NDGA still increased [Ca2+]i after Ca2+ stores had been depleted by pretreating with 2 microM CCCP, 1 microM thapsigargin and 0.1 mM cyclopiazonic acid. NDGA (50 microM) activated Mn2+ quench of fura-2 fluorescence at 360 nm excitation wavelength, which was almost abolished by 50 microM La3+. This implies NDGA induced Ca2+ influx mainly via a La(3+)-sensitive pathway. Consistently, 50 microM La3+ pretreatment inhibited 0.1 mM NDGA-induced [Ca2+]i increase. Adding 3 mM Ca2+ increased [Ca2+]i in cells pretreated with 0.1 mM NDGA in Ca(2+)-free medium, suggesting NDGA activated capacitative Ca2+ entry. Pretreatment with 0.1 mM NDGA for 200 s prior to Ca2+ did not alter 1 microM thapsigargin-induced capacitative Ca2+ entry. Pretreatment with 40 microM aristolochic acid to inhibit phospholipase A2 reduced 0.1 mM NDGA-induced Ca2+ release by 65%, but inhibiting phospholipase C with 2 microM U73122 had little effect. This suggests NDGA-induced Ca2+ release was independent of inositol 1,4,5-trisphosphate (IP3), but was modulated by phospholipase A2.  相似文献   

11.
A considerable fraction (65%) of single rat chromaffin cells loaded with the fluorescent [Ca2+]i indicator fura-2 exhibited spontaneous rhythmic fluctuations with an average period of approximately 100 s. Parallel patch clamp experiments as well as fura-2 experiments carried out in Ca2(+)-free and other modified media in the presence of Ca2+ and Na+ channel blockers indicated an origin from intracellular stores. Appropriate concentrations of agonists (bradykinin and histamine) for receptors (B2 and H1) that trigger generation of inositol 1,4,5-trisphosphate induced increased fluctuation frequency, recruitment of silent cells, and large [Ca2+]i changes at high doses. These effects were blocked by cell pretreatment with neomycin, a drug that inhibits inositol 1,4,5-trisphosphate generation. In contrast, spontaneous fluctuations and the effects of another drug, caffeine, which also induced increased frequency and recruitment, were unaffected by neomycin. Ryanodine caused first a prolongation and then (approximately 10 min) a block of both spontaneous fluctuations and caffeine effects, where the single transients after bradykinin and histamine were maintained. Caffeine and ryanodine are known to affect selectively the process of calcium-induced Ca2+ release; this is the first demonstration of [Ca2+]i fluctuation activity arising from Ca2(+)-induced Ca2+ release in nonmuscle cells with no strict requirement for inositol 1,4,5-trisphosphate involvement.  相似文献   

12.
13.
We have studied the effects of epidermal growth factor (EGF) on both cholecystokinin octapeptide (CCK-OP)-induced inositol-1,4,5 trisphosphate (IP3) production and on cytosolic free calcium concentrations [Ca2+]i by fluorescence measurements in fura-2-loaded pancreatic acini. Our data show that EGF inhibits CCK-OP induced IP3 production by 40 +/- 9% and decreases CCK-OP induced rise in cytosolic Ca2+ by 41 +/- 9%. These data indicate that activation of EGF receptors leads to inhibition of CCK-OP induced stimulation of phospholipase C (PLC).  相似文献   

14.
Purified internal platelet membranes were treated with the catalytic subunit of protein kinase A to determine its effect on inositol-1,4,5-trisphosphate (IP3)-mediated Ca2+ release. Release kinetics were monitored using rhod-2, a Ca(2+)-specific fluorophore. Protein kinase A maximally inhibited the rate of IP3-mediated Ca2+ release by approximately 30% at saturating IP3 (10 microM). This inhibition was eliminated by pretreatment with a specific kinase inhibitor peptide. Partial purification of the platelet IP3 receptor showed that both endogenous kinases and added A kinase directly phosphorylate the receptor. Since the IP3 receptor is phosphorylated in the absence of added kinase, the observed inhibition (30%) by protein kinase A does not represent the maximal effect of phosphorylation.  相似文献   

15.
16.
胞质[Ca2 ]i震荡的动力学变化在哺乳动物早期胚胎发育中发挥重要作用。卵母细胞的成熟伴随间断的、快速的[Ca2 ]i震荡的时空表达;在受精过程中精子因子诱导的反复[Ca2 ]i震荡的振幅和持续时间是卵细胞最有效的激活信号,这种信号形成自然连续的受精[Ca2 ]i波,并以长时持续[Ca2 ]i震荡形式在受精卵空间传递并持续数小时,直至受精完成;受精卵内源性的Ca2 释放所引起的[Ca2 ]i震荡形成第一次卵裂信号,启动早期胚胎的发育。精子PLCζ和cPKCs是形成受精卵[Ca2 ]波、[Ca2 ]震荡的重要因素。  相似文献   

17.
Agonist-induced Ca2+ oscillations in rat hepatocytes involve the production of myo-inositol-1,4,5-trisphosphate (IP3), which stimulates the release of Ca2+ from intracellular stores. The oscillatory frequency is conditioned by the agonist concentration. This study investigated the role of IP3 concentration in the modulation of oscillatory frequency by using microinjected photolabile IP3 analogs. Photorelease of IP3 during hormone-induced oscillations evoked a Ca2+ spike, after which oscillations resumed with a delay corresponding to the period set by the agonists. IP3 photorelease had no influence on the frequency of oscillations. After photorelease of 1-(alpha-glycerophosphoryl)-D-myo-inositol-4,5-diphosphate (GPIP2), a slowly metabolized IP3 analog, the frequency of oscillations initially increased by 34% and declined to its original level within approximately 6 min. Both IP3 and GPIP2 effects can be explained by their rate of degradation: the half-life of IP3, which is a few seconds, can account for the lack of influence of IP3 photorelease on the frequency, whereas the slower metabolism of GPIP2 allowed a transient acceleration of the oscillations. The phase shift introduced by IP3 is likely the result of the brief elevation of Ca2+ during spiking that resets the IP3 receptor to a state of maximum inactivation. A mathematical model of Ca2+ oscillations is in satisfactory agreement with the observed results.  相似文献   

18.
In individual fura-2 loaded cells of rat pancreatic acini endothelin-1 (ET-1) (10-50 nM) induced sustained oscillations in [Ca2+]i. At higher concentrations a larger, but transient increase in [Ca2+]i was observed, which was largely unaffected by removal of extracellular Ca2+. ET-1 induced the release of Ca2+i from the same store as cholecystokinin (CCK), but with less potency. At concentrations of endothelin which transiently increased Ca2+, ET-1 increased the accumulation of inositol phosphates. Specific binding sites for 125I-endothelin were demonstrated on rat pancreatic acini. A single class of binding sites was identified with an apparent Kd 108 +/- 12 pM and Bmax of 171 +/- 17 fmol/mg for ET-1. The relative potency order for displacing [125I]ET was ET-1 greater than ET-2 greater than ET-3. In contrast to CCK and the non-phorbol ester tumour promoter Thapsigargin (TG) which induce both transient and sustained components of [Ca2+]i elevation, ET-1 failed to increase amylase release over the range 100 pM-1 microM.  相似文献   

19.
20.
We have demonstrated that inhibition of NO synthase (NOS) in endothelial cells by either the NOS inhibitor N(omega)-monomethyl-l-arginine (l-NMMA) or the internalization of caveolin-1 scaffolding domain attenuated platelet-activating factor (PAF)-induced increases in microvessel permeability (Am J Physiol Heart Circ Physiol 286: H195-H201, 2004) indicating the involvement of an NO-dependent signaling pathway. To investigate whether an increase in endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) is the initiating event and Ca(2+)-dependent NO production is crucial for permeability increases, PAF (10 nM)-induced changes in endothelial [Ca(2+)](i) and NO production were measured in individually perfused rat mesenteric venular microvessels via fluorescence microscopy. When venular microvessels were exposed to PAF, endothelial [Ca(2+)](i) increased from 69 +/- 8 nM to a peak value of 374 +/- 26 nM within 3 min and then declined to a sustained level at 190 +/- 12 nM after 15 min. Inhibition of NOS did not modify PAF-induced increases in endothelial [Ca(2+)](i). PAF-induced NO production was visualized and quantified at cellular levels in individually perfused microvessels using 4,5-diaminofluorescein diacetate and fluorescence imaging. Increased fluorescence intensity (FI), which is an indication of increased NO production, occurred in 75 +/- 7% of endothelial cells in each vessel. The mean maximum FI increase was 140 +/- 7% of baseline value. This increased FI was abolished by pretreatment of the vessel with l-NMMA and attenuated in the absence of extracellular Ca(2+). These results provide direct evidence from intact microvessels that increased endothelial [Ca(2+)](i) is the initial signal that activates endothelial NOS, and the subsequent increased NO production contributes to PAF-induced increases in microvessel permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号