首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Restrictocin, a member of the fungal ribotoxin family, specifically cleaves a single phosphodiester bond in the 28S rRNA and potently inhibits eukaryotic protein synthesis. The long loops in restrictocin molecule have been shown structurally to be involved in target RNA recognition. In this study we have investigated the role of some putative substrate-interacting residues in loops L2 and L4, spanning residues 36-48 and 99-117, respectively in restrictocin catalysis. The residues Lys42, Ser46, Pro48 and Lys111 were individually mutated to alanine to probe their role in restrictocin function. The mutation of Lys111 to alanine, although did not affect the ribonucleolytic activity, rendered the toxin completely inactive in inhibiting translation in HeLa cells as well in an in vitro cell free system. The loop L4 in restrictocin appears to be more critical compared to loop L2 for its interaction with the specific substrate.  相似文献   

2.
Restrictocin, produced by the fungus Aspergillus restrictus, is a highly specific ribonucleolytic toxin which cleaves a single phosphodiester bond between G4325 and A4326 in the 28S rRNA. It is a nonglycosylated, single-chain, basic protein of 149 amino acids. The putative catalytic site of restrictocin includes Tyr47, His49, Glu95, Arg120 and His136. To map the catalytic activity in the restrictocin molecule, and to study the role of N- and C-terminus in its activity, we have systematically deleted amino-acid residues from both the termini. Three N-terminal deletions removing 8, 15 and 30 amino acids, and three C-terminal deletions lacking 4, 6, and 11 amino acids were constructed. The deletion mutants were expressed in Escherichia coli, purified to homogeneity and functionally characterized. Removal of eight N-terminal or four C-terminal amino acids rendered restrictocin partially inactive, whereas any further deletions from either end resulted in the complete inactivation of the toxin. The study demonstrates that intact N- and C-termini are required for the optimum functional activity of restrictocin.  相似文献   

3.
The cytotoxic activities of restrictocin with aminoterminal extensions and specific mutations were investigated using in vivo and in vitro systems. Genes were constructed from the cDNA clone of restrictocin which encode: the native form of restrictocin (including the leader sequence); Met-prorestrictocin, in which a codon for methionine was placed before a putative pro region; Met-mature restrictocin, with a methionine codon prior to the mature form of restrictocin; and three mutated forms of Met-mature restrictocin, E95G, E115G/H136L, and H136L. These constructions were placed under the control of the GAL1 promoter and were transformed into Saccharomyces cerevisiae. Transformants were killed, and a new RNA band formed when any of these genes except those containing the H136L mutation were expressed. Restrictocin protein was detected by immunoblot only in cells expressing the native form of restrictocin and the forms containing the H136L mutation. Native restrictocin, Met-prorestrictocin, and Met-mature restrictocin mRNA were translated in an in vitro system resulting in proteins of the expected molecular weight and inactivation of the translation system. Restrictocin was not inactivated by the presence of the leader sequence and the putative prosequence. Amino acid His136 is putatively in the active site of restrictocin by analogy to ribonuclease U2 and the elimination of toxic effects in the S. cerevisiae expression and in vitro translation systems.  相似文献   

4.
S K Nayak  D Rathore  J K Batra 《Biochemistry》1999,38(31):10052-10058
Restrictocin, produced by the fungus Aspergillus restrictus, belongs to the group of ribonucleolytic toxins called ribotoxins. It specifically cleaves a single phosphodiester bond in a conserved stem and loop structure in the 28S rRNA of large ribosomal subunit and potently inhibits eukaryotic protein synthesis. Restrictocin contains 149 amino acid residues and includes four cysteines at positions 5, 75, 131, and 147. These cysteine residues are involved in the formation of two disulfide bonds, one between Cys 5 and Cys 147 and another between Cys 75 and Cys 131. In the current study, all four cysteine residues were changed to alanine individually and in different combinations by site-directed mutagenesis so as to remove one or both the disulfides. The mutants were expressed and purified from Escherichia coli. Removal of any cysteine or any one of the disulfide bonds individually did not affect the ability of the toxin to specifically cleave the 28S rRNA or to inhibit protein synthesis in vitro. However, the toxin without both disulfide bonds completely lost both ribonucleolytic and protein synthesis inhibition activities. The active mutants, containing only one disulfide bond, exhibited relatively high susceptibility to trypsin digestion. Thus, none of the four cysteine residues is directly involved in restrictocin catalysis; however, the presence of any one of the two disulfide bonds is absolutely essential and sufficient to maintain the enzymatically active conformation of restrictocin. For maintenance of the unique stability displayed by the native toxin, both disulfide bonds are required.  相似文献   

5.
The production and secretion of restrictocin (a cytotoxin that cleaves ribosomal RNA) by cultures of the fungus Aspergillus restrictus was investigated. Previous studies have indicated that restrictocin production in liquid culture coincides with the appearance of differentiated cell structures. A study of the correlation between the appearance of differentiated structures and restrictocin production was conducted with A. restrictus grown on agar medium. Restrictocin was found to be associated with the cell mass of the agar-grown culture (in contrast to liquid cultures), and was first observed when aerial hyphae emerged. Restrictocin levels increased until the time of conidiation, after which they fell off sharply. No restrictocin could be found in the agar medium. The presence of restrictocin upon and within various cell structures was determined by immunofluorescent laser microscopy. This study showed that restrictocin became localized to the conidiophores and phialides during the process of conidiation. Prior to this, restrictocin was found within the hyphae in localized concentrations that may correspond to secretory vesicles.  相似文献   

6.
Restrictocin is a site-specific endoribonuclease that inactivates ribosomes by cleaving the sarcin/ricin loop (SRL) of 23S-28S rRNA. Here we present a kinetic and thermodynamic analysis of the SRL cleavage reaction based on monitoring the cleavage of RNA oligonucleotides (2-27-mers). Restrictocin binds to a 27-mer SRL model substrate (designated wild-type SRL) via electrostatic interactions to form a nonspecific ground state complex E:S. At pH 6.7, physical steps govern the reaction rate: the wild-type substrate reacts at a partially diffusion-limited rate, and a faster-reacting SRL, containing a 3'-sulfur atom at the scissile phosphate, reacts at a fully diffusion-limited rate (k2/K1/2 = 1.1 x 10(9) M-1 s-1). At pH 7.4, the chemical step apparently limits the SRL cleavage rate. After the nonspecific binding step, restrictocin recognizes the SRL structure, which imparts 4.3 kcal/mol transition state stabilization relative to a single-stranded RNA. The two conserved SRL modules, bulged-G motif and GAGA tetraloop, contribute at least 2.4 and 1.9 kcal/mol, respectively, to the recognition. These findings suggest a model of SRL recognition in which restrictocin contacts the GAGA tetraloop and the bulged guanosine of the bulged-G motif to progress from the nonspecific ground state complex (E:S) to the higher-energy-specific complex (E.S) en route to the chemical transition state. Comparison of restrictocin with other ribonucleases revealed that restrictocin exhibits a 10(3)-10(6)-fold smaller ribonuclease activity against single-stranded RNA than do the restrictocin homologues, non-structure-specific ribonucleases T1 and U2. Together, these findings show how structural features of the SRL substrate facilitate catalysis and provide a mechanism for distinguishing between cognate and noncognate RNA.  相似文献   

7.
R Shapiro  B L Vallee 《Biochemistry》1989,28(18):7401-7408
The roles of His-13 and His-114 in the ribonucleolytic and angiogenic activities of human angiogenin have been investigated by site-directed mutagenesis. Replacement of either residue by alanine (H13A and H114A) decreases enzymatic activity toward tRNA by at least 10,000-fold and virtually abolishes 10,000-fold and virtually abolishes angiogenic activity in the chick embryo chorioallantoic membrane assay. Both the H13A and H114A mutant proteins compete effectively with angiogenin in the latter assay; only a 5-fold molar excess of H13A over unmodified protein is required for complete inhibition. The His----Ala substitutions, however, do not have any significant effect on the interaction of angiogenin with human placental ribonuclease inhibitor, an extremely potent inhibitor of angiogenin (Ki approximately 7 x 10(-16 M) previously shown to interact with another active-site residue, Lys-40. The effects of more conservative replacements-glutamine at position 13 and asparagine at position 114--were also examined. While the enzymatic activity of the H114N mutant was at least 3300-fold less than for the unmodified protein, the H13Q derivative had only 300-fold reduced activity toward tRNA and cytidylyl(3'----5') adenosine. Both substitutions substantially decreased angiogenic activity. The parallel effects on ribonucleolytic and biological activities observed with all four mutant proteins provide strong evidence that the latter activity of angiogenin is dependent on a functional enzymatic active site. The capacity of the H13A and H114A derivatives to compete with angiogenin in the chorioallantoic membrane assay suggests several additional features of the biological mode of action of this protein.  相似文献   

8.
Ribonuclease (RNase) A can be endowed with cytotoxic activity by enabling it to evade the cytosolic ribonuclease inhibitor protein (RI). Enhancing its conformational stability can increase further its cytotoxicity. Herein, the A4C/K41R/G88R/V118C variant of RNase A was created to integrate four individual changes that greatly decrease RI affinity (K41R/G88R) and increase conformational stability (A4C/V118C). Yet, the variant suffers a decrease in ribonucleolytic activity and is only as potent a cytotoxin as its precursors. Thus, individual changes that increase cytotoxicity can have offsetting consequences. Overall, cytotoxicity correlates well with the maintenance of ribonucleolytic activity in the presence of RI. The parameter (k(cat)/K(m))(cyto), which reports on the ability of a ribonuclease to manifest its ribonucleolytic activity in the cytosol, is especially useful in predicting the cytotoxicity of an RNase A variant.  相似文献   

9.
The production of restrictocin (a cytotoxin that specifically cleaves ribosomal RNA) by cultures of Aspergillus restrictus grown in liquid medium was investigated. The function of restrictocin, the method of its accumulation and the mode of resistance to restrictocin in A. restrictus are unknown. Previous studies have indicated that restrictocin accumulates in the medium with culture age. These observations have been extended in this study by cloning the cDNA of the res gene and using this cDNA clone to probe the onset of messenger RNA synthesis in the cells. The results of the Northern analysis were compared to the production and accumulation of restrictocin and morphological differentiation of the cells in culture. Restrictocin was found in the medium at the same time that mRNA was detected in the cells. This suggests that the leader sequence encoded by the cDNA provides an efficient secretion system for the protein. Both the protein and the mRNA were detected coincident with the formation of differentiated cell structures. These structures develop into conidiophores with one layer of sterigmata and conidia forming from the sterigmata. These results suggest that restrictocin is either involved in the process of conidiation or is coordinately regulated with differentiation leading to conidiation.  相似文献   

10.
Ribonucleases can be cytotoxic if they retain their ribonucleolytic activity in the cytosol. The cytosolic ribonucleolytic activity of ribonuclease A (RNase A) and other pancreatic-type ribonucleases is limited by the presence of excess ribonuclease inhibitor (RI). RI is a 50-kDa cytosolic scavenger of pancreatic-type ribonucleases that competitively inhibits their ribonucleolytic activity. RI had been overproduced as inclusion bodies, but its folding in vitro is inefficient. Here, porcine RI (pRI) was overproduced in Escherichia coli using the trp promoter and minimal medium. This expression system maintains pRI in the soluble fraction of the cytosol. pRI was purified by affinity chromatography using immobilized RNase A and by anion-exchange chromatography. The resulting yield of 15 mg of purified RI per liter of culture represents a 60-fold increase relative to previously reported recombinant DNA systems. Differential scanning calorimetry was used to study the thermal denaturation of pRI, RNase A, and the pRI-RNase A complex. The conformational stability of the complex is greater than that of the individual components.  相似文献   

11.
The cytotoxic action of some ribonucleases homologous to bovine pancreatic RNase A, the superfamily prototype, has interested and intrigued investigators. Their ribonucleolytic activity is essential for their cytotoxic action, and their target RNA is in the cytosol. It has been proposed that the cytosolic RNase inhibitor (cRI) plays a major role in determining the ability of an RNase to be cytotoxic. However, to interact with cRI RNases must reach the cytosol, and cross intracellular membranes. To investigate the interactions of cytotoxic RNases with membranes, cytotoxic dimeric RNases resistant, or considered to be resistant to cRI, were assayed for their effects on negatively charged membranes. Furthermore, we analyzed the electrostatic interaction energy of the RNases complexed in silico with a model membrane. The results of this study suggest that close correlations can be recognized between the cytotoxic action of a dimeric RNase and its ability to complex and destabilize negatively charged membranes.  相似文献   

12.
Nayak SK  Bagga S  Gaur D  Nair DT  Salunke DM  Batra JK 《Biochemistry》2001,40(31):9115-9124
Restrictocin, a member of the fungal ribotoxin family, specifically cleaves a single phosphodiester bond in the 28S rRNA and potently inhibits eukaryotic protein synthesis. Residues Tyr47, His49, Glu95, Phe96, Pro97, Arg120, and His136 have been predicted to form the active site of restrictocin. In this study, we have individually mutated these amino acids to alanine to probe their role in restrictocin structure and function. The role of Tyr47, His49, Arg120, and His136 was further investigated by making additional mutants. Mutating Arg120 or His136 to alanine or the other amino acids rendered the toxin completely inactive, whereas mutating Glu95 to alanine only partially inactivated the toxin. Mutation of Phe96 and Pro97 to Ala had no effect on the activity of restrictocin. The Tyr47 to alanine mutant was inactive in inhibiting protein synthesis, and had a nonspecific ribonuclease activity on 28S rRNA similar to that shown previously for the His49 to Ala mutant. Unlike the His136 to Ala mutant, the double mutants containing Tyr47 or His49 mutated to alanine along with His136 did not compete with restrictocin to cause a significant reduction in the extent of cleavage of 28S rRNA. In a model of restrictocin and a 29-mer RNA substrate complex, residues Tyr47, His49, Glu95, Arg120, and His136 were found to be near the cleavage site on RNA. It is proposed that in restrictocin Glu95 and His136 are directly involved in catalysis, Arg120 is involved in the stabilization of the enzyme-substrate complex, Tyr47 provides structural stability to the active site, and His49 determines the substrate specificity.  相似文献   

13.
Fungal ribotoxins, such as mitogillin and the related Aspergillus toxins restrictocin and α-sarcin, are highly specific ribonucleases, which inactivate the ribosome enzymatically by cleaving the eukaryotic 28S RNA of the large ribosomal subunit at a single phosphodiester bond. The site of cleavage occurs between G4325 and A4326, which are present in a 14-base sequence (the α-sarcin loop) conserved among the large subunit rRNAs of all living species. The amino acid residues involved in the cytotoxic activities of mitogillin were investigated by introducing point mutations using hydroxylamine into a recombinant Met-mature mitogillin (mitogillin with a Met codon at the N-terminus and no leader sequence) gene constructed from an Aspergillus fumigatus cDNA clone. These constructs were cloned into a yeast expression vector under the control of the GAL1 promoter and transformed into Saccharomyces cerevisiae. Upon induction of mitogillin expression, surviving transformants revealed that substitutions of certain amino acid residues on mitogillin abolished its cytotoxicity. Non-toxic mutant genes were cloned into an Escherichia coli expression vector, the proteins overexpressed and purified to homogeneity and their activities examined by in vitro ribonucleolytic assays. These studies identified the His-49Tyr, Glu-95Lys, Arg-120Lys and His-136Tyr mutations to have a profound impact on the ribonucleolytic activities of mitogillin. We conclude that these residues are key components of the active site contributing to the catalytic activities of mitogillin.  相似文献   

14.
Ribotoxins are a family of potent cytotoxic proteins from Aspergillus whose members display a high sequence identity (85% for about 150 amino acid residues). The three-dimensional structures of two of these proteins, alpha-sarcin and restrictocin, are known. They interact with phospholipid bilayers, according to their ability to enter cells, and cleave a specific phosphodiester bond in the large subunit of ribosome thus inhibiting protein biosynthesis. Two nonconservative sequence changes between these proteins are located at the amino-terminal beta-hairpin of alpha-sarcin, a characteristic structure that is absent in other nontoxic structurally related microbial RNases. These two residues of alpha-sarcin, Lys 11 and Thr 20, have been substituted with the equivalent amino acids in restrictocin. The single mutants (K11L and T20D) and the corresponding K11L/T20D double mutant have been produced in Escherichia coli and purified to homogeneity. The spectroscopic characterization of the purified proteins reveals that the overall native structure is preserved. The ribonuclease and lipid-perturbing activities of the three mutants and restrictocin have been evaluated and compared with those of alpha-sarcin. These proteins exhibit the same ability to specifically inactivate ribosomes, although they show different activity against nonspecific substrate analogs such as poly(A). The mutant variant K11L and restrictocin display a lower phospholipid-interacting ability correlated with a decreased cytotoxicity. The results obtained are interpreted in terms of the involvement of the amino-terminal beta-hairpin in the interaction with both membranes and polyadenylic acid.  相似文献   

15.
M D Bond  B L Vallee 《Biochemistry》1990,29(13):3341-3349
The region of human angiogenin containing residues 8-21 is highly conserved in angiogenins from four mammalian species but differs substantially from the corresponding region of the homologous protein ribonuclease A (RNase A). Regional mutagenesis has been employed to replace this segment of angiogenin with the corresponding RNase A sequence, and the activities of the resulting covalent angiogenin/RNase hybrid, designated ARH-III, have been examined. The ribonucleolytic activity of ARH-III is unchanged toward most substrates, including tRNA, naked 18S and 28S rRNA, CpA, CpG, UpA, and UpG. In contrast, the capacity of ARH-III to inhibit cell-free protein synthesis is decreased 20-30-fold compared to that of angiogenin. The angiogenic activity of ARH-III is also different; it is actually more potent. It induces a maximal response in the chick chorioallantoic membrane assay at 0.1 ng per egg, a 10-fold lower dose than required for angiogenin. In addition, binding of ARH-III to the placental ribonuclease inhibitor is increased by at least 1 order of magnitude (Ki less than or equal to 7 x 10(-17) M) compared to angiogenin. Thus, mutation of a highly conserved region of angiogenin markedly affects those properties likely involved in its biological function(s); it does not, however, alter ribonucleolytic activity toward most substrates.  相似文献   

16.
Aspergillus fumigatus, the most common cause of invasive pulmonary aspergillosis (IPA), produces a potent cytotoxjn called restrictocin. To investigate the role of restrictocin in (PA, we have constructed fungal strains in which the res gene has been inactivated by gene disruption. These disruptants lack the specific extracellular ribonucleolytic activity associated with restrictocin, as measured by an in vitro rabbit reticulocyte lysate assay. Western blot analysis of one drsruptant, using an anti-restrictocin monoclonal antibody, confirmed that the toxin is not produced. The growth characteristics of the disruptants could not be distinguished from those of their parental isolates on a variety of culture media. The pathogenicity of two disruptants was assessed in a murine model of IPA. There were no significant differences in mortality when these strains were compared with the parental isolates and an ectopic transformant. In addition, histological examination of infectediung tissue did not reveal any obvious differences in the number or size of fungal colonies or in the polymorphonuclearleucocyte response. Our results demonstrate that restrictocin is not an important virulence factor in this model of IPA.  相似文献   

17.
Alpha-sarcin ribotoxins comprise a unique family of ribonucleases that cripple the ribosome by catalyzing endoribonucleolytic cleavage of ribosomal RNA at a specific location in the sarcin/ricin loop (SRL). The SRL structure alone is cleaved site-specifically by the ribotoxin, but the ribosomal context enhances the reaction rate by several orders of magnitude. We show that, for the alpha-sarcin-like ribotoxin restrictocin, this catalytic advantage arises from favorable electrostatic interactions with the ribosome. Restrictocin binds at many sites on the ribosomal surface and under certain conditions cleaves the SRL with a second-order rate constant of 1.7 x 10(10) M(-1) s(-1), a value that matches the predicted frequency of random restrictocin-ribosome encounters. The results suggest a mechanism of target location whereby restrictocin encounters ribosomes randomly and diffuses within the ribosomal electrostatic field to the SRL. These studies show a role for electrostatics in protein-ribosome recognition.  相似文献   

18.
Ribonucleases (RNases) are potential alternatives to non-mutagenic antitumour drugs. Among these enzymes, onconase, bovine-seminal ribonuclease and the Rana catesbeiana and Rana japonica lectins exert a cytotoxic activity that is selective for tumour cells. A model for the mechanism of cytotoxicity of these RNases which involves different steps is generally accepted. The model predicts that cytotoxicity requires interaction of the RNases with the cell membrane and internalisation to occur by endocytosis. Then, at a precise point, the RNases are translocated to the cytosol where they cleave cellular RNA if they have been able to preserve their ribonucleolytic activity. The cleavage of cellular RNA induces apoptosis but there is evidence suggesting that RNase-triggered apoptosis does not entirely result from the inhibition of protein synthesis. How efficiently a particular RNase carries out each of the steps determines its potency as a cytotoxin.  相似文献   

19.
Restrictocin, a member of the alpha-sarcin family of site-specific endoribonucleases, uses electrostatic interactions to bind to the ribosome and to RNA oligonucleotides, including the minimal specific substrate, the sarcin/ricin loop (SRL) of 23S-28S rRNA. Restrictocin binds to the SRL by forming a ground-state E:S complex that is stabilized predominantly by Coulomb interactions and depends on neither the sequence nor structure of the RNA, suggesting a nonspecific complex. The 22 cationic residues of restrictocin are dispersed throughout this protein surface, complicating a priori identification of a Coulomb interacting surface. Structural studies have identified an enzyme-substrate interface, which is expected to overlap with the electrostatic E:S interface. Here, we identified restrictocin residues that contribute to binding in the E:S complex by determining the salt dependence [partial differential log(k 2/ K 1/2)/ partial differential log[KCl]] of cleavage of the minimal SRL substrate for eight point mutants within the protein designed to disrupt contacts in the crystallographically defined interface. Relative to the wild-type salt dependence of -4.1, a subset of the mutants clustering near the active site shows significant changes in salt dependence, with differences of magnitude being >or=0.4. This same subset was identified using calculated salt dependencies for each mutant derived from solutions to the nonlinear Poisson-Boltzmann equation. Our findings support a mechanism in which specific residues on the active site face of restrictocin (primarily K110, K111, and K113) contribute to formation of the E:S complex, thereby positioning the SRL substrate for site-specific cleavage. The same restrictocin residues are expected to facilitate targeting of the SRL on the surface of the ribosome.  相似文献   

20.
A ribonuclease A variant with low catalytic activity but high cytotoxicity   总被引:5,自引:0,他引:5  
Onconase, a homolog of ribonuclease A (RNase A) with low ribonucleolytic activity, is cytotoxic and has efficacy as a cancer chemotherapeutic. Here variants of RNase A were used to probe the interplay between ribonucleolytic activity and evasion of the cytosolic ribonuclease inhibitor protein (RI) in the cytotoxicity of ribonucleases. K41R/G88R RNase A is a less active catalyst than G88R RNase A but, surprisingly, is more cytotoxic. Like Onconase, the K41R/G88R variant has a low affinity for RI, which apparently compensates for its low ribonucleolytic activity. In contrast, K41A/G88R RNase A, which has the same affinity for RI as does the K41R/G88R variant, is not cytotoxic. The nontoxic K41A/G88R variant is a much less active catalyst than is the toxic K41R/G88R variant. These data indicate that maintaining sufficient ribonucleolytic activity in the presence of RI is a requirement for a homolog or variant of RNase A to be cytotoxic. This principle can guide the design of new chemotherapeutics based on homologs and variants of RNase A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号