首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Analysis of deoxyribonucleic acid (DNA) from four species of Clostridium, including two thermophiles, a mesophile, and a psychrophile, revealed no obvious relationship between growth temperature and DNA base composition. The melting temperatures (T(m)) of the DNA from the four species varied no more among the thermophilic, mesophilic, and psychrophilic species than among many related mesophilic species. Characterization of ribosomes from the clostridia by means of optical rotatory dispersion yielded similar spectra in common with other unrelated organisms. Only small differences were noted in the base composition of ribosomal ribonucleic acid (RNA) and in the amino acid composition of ribosomal proteins, including half-cystine content, as determined by cysteic acid analysis, and accessible sulfhydryl groups, as determined by titration with dithiobis (2-nitrobenzoic acid). Except for the two thermophiles, the ribosomal protein electrophoretic patterns were dissimilar. No unusual thermal stability was manifested in the T(m) values of thermophile ribosomal RNA. However, thermophile ribosome T(m) values (69 C) were higher than were mesophile and psychrophile T(m) values (64 C). Ribosomes from the four clostridial species were also examined in regard to the effect of heat on their functional integrity, measured by their activity in poly U-directed (14)C-phenylaline incorporation, and their gross physical integrity, measured by sucrose gradient analysis. The T(d, 5) values (temperature which produces 50% inactivation after 5 min) was found to be 70 and 72 C for the two thermophiles C. tartarivorum and C. thermosaccharolyticum, respectively; 57 C for a mesophile, C. pasteurianum; and 53 C for a psychrophile, Clostridium sp. strain 69. At 55 C, little effect was seen on the thermophile ribosomes, but the mesophile ribosomes lost 90% of their activity in 1 hr, and psychrophile ribosomes lost 100% of their activity within 10 min. According to sucrose gradient profiles, heating at 55 C results in dissociation of mesophile ribosomes and aggregation of psychrophile ribosomes. Thermophile S-100 fractions were also more thermostable than were mesophile or psychrophile S-100 fractions. The T(d, 5) values were 69 C for C. tartarivorum and C. thermosaccharolyticum S-100 and 41 C for C. pasteurianum and Clostridium sp. strain 69 S-100. The effect of heat on the endogenous incorporation of (14)C-valine by polysomes was also examined. In the case of thermophile polysomes, the extent of incorporation at 55 and 37 C was about equal. In the case of mesophile and psychrophile polysomes, the extent at 55 C was 44 and 39%, respectively, of the value at 37 C. The initial rates of incorporation in all four cases were greater at 55 C than at 37 C.  相似文献   

2.
P M Padas  K S Wilson  C E Vorgias 《Gene》1992,117(1):39-44
The major histone-like bacterial protein (HU)-encoding genes (hup) from five different Bacilli have been cloned, sequenced and overexpressed in Escherichia coli. The five Bacilli selected are closely related, but have different optimum growth temperatures: greater than 70 degrees C for Bacillus caldolyticus and B. caldotenax; 60-65 degrees C for B. stearothermophilus (Bst); 37 degrees C for B. subtilis and 30 degrees C for B. globigii. The deduced amino acid (aa) sequences from the three thermophiles are identical. Those from the two mesophiles are also identical and differ from those of the thermophiles at eleven aa positions. The mesophilic proteins have an extra two aa at the C terminus. Cells harbouring plasmids containing the hup genes can produce HU. An efficient purification scheme using cation-exchange chromatography and fast protein liquid chromatography is presented. This gives approx. 30-40 mg of more than 95% pure Bst HU per litre of E. coli culture.  相似文献   

3.
The fatty acid distribution of three mesophilic and three thermophilic strains of the genus Bacillus was determined by gas chromatography of the fatty acid methyl esters. Fatty acid i-15:0 was the most abundant in both the mesophiles (51%) and the thermophiles (41%). The second most abundant fatty acid was a-15:0 in the mesophiles (22%), and i-17:0 in the thermophiles (27%). The fatty acid pair i-15:0, i-17:0 was the most predominant pair in both the mesophiles (61%) and the thermophiles (66%). The fatty acid pair a-15:0, a-17:0 was the second most predominant pair and was much higher in the mesophiles (30%) than in the thermophiles (15%). The average fatty acid chain length was 15.5 for the mesophiles and 16.0 for the thermophiles. The significance of these results for the lipid theory of thermophily is discussed.  相似文献   

4.
It has long been known that amino acid substitutions in proteins of organisms living at moderate and high temperatures (mesophiles and thermophiles, respectively) are not all symmetrical; for example, more aligned sites have lysine in mesophiles and arginine in thermophiles than have the opposite pattern. This is generally taken to indicate that certain amino acids are favored over others by selection at different temperatures. Previous comparisons of protein sequences from mesophiles and thermophiles have used relatively small numbers of sequences from a diverse array of species, meaning that only the most common amino acid substitutions could be examined and any taxon-specific patterns would be obscured. Here, we compare a large number of proteins between mesophiles and thermophiles in the archaeal genus Methanococcus and the bacterial genus Bacillus. Each genus exhibits dramatically asymmetrical substitution patterns for many pairs of amino acids. There are several pairs of amino acids for which one amino acid is favored in thermophilic Bacillus and the other is favored in thermophilic Methanococcus; this appears to result from the higher G + C content of the DNA of thermophilic Bacillus, a complication not seen in Methanococcus.  相似文献   

5.
Singer GA  Hickey DA 《Gene》2003,317(1-2):39-47
A number of recent studies have shown that thermophilic prokaryotes have distinguishable patterns of both synonymous codon usage and amino acid composition, indicating the action of natural selection related to thermophily. On the other hand, several other studies of whole genomes have illustrated that nucleotide bias can have dramatic effects on synonymous codon usage and also on the amino acid composition of the encoded proteins. This raises the possibility that the thermophile-specific patterns observed at both the codon and protein levels are merely reflections of a single underlying effect at the level of nucleotide composition. Moreover, such an effect at the nucleotide level might be due entirely to mutational bias. In this study, we have compared the genomes of thermophiles and mesophiles at three levels: nucleotide content, codon usage and amino acid composition. Our results indicate that the genomes of thermophiles are distinguishable from mesophiles at all three levels and that the codon and amino acid frequency differences cannot be explained simply by the patterns of nucleotide composition. At the nucleotide level, we see a consistent tendency for the frequency of adenine to increase at all codon positions within the thermophiles. Thermophiles are also distinguished by their pattern of synonymous codon usage for several amino acids, particularly arginine and isoleucine. At the protein level, the most dramatic effect is a two-fold decrease in the frequency of glutamine residues among thermophiles. These results indicate that adaptation to growth at high temperature requires a coordinated set of evolutionary changes affecting (i) mRNA thermostability, (ii) stability of codon-anticodon interactions and (iii) increased thermostability of the protein products. We conclude that elevated growth temperature imposes selective constraints at all three molecular levels: nucleotide content, codon usage and amino acid composition. In addition to these multiple selective effects, however, the genomes of both thermophiles and mesophiles are often subject to superimposed large changes in composition due to mutational bias.  相似文献   

6.
Understanding the molecular basis for the enhanced stability of proteins from thermophiles has been hindered by a lack of structural data for homologous pairs of proteins from thermophiles and mesophiles. To overcome this difficulty, complete genome sequences from 9 thermophilic and 21 mesophilic bacterial genomes were aligned with protein sequences with known structures from the protein data bank. Sequences with high homology to proteins with known structures were chosen for further analysis. High quality models of these chosen sequences were obtained using homology modeling. The current study is based on a data set of models of 900 mesophilic and 300 thermophilic protein single chains and also includes 178 templates of known structure. Structural comparisons of models of homologous proteins allowed several factors responsible for enhanced thermostability to be identified. Several statistically significant, specific amino acid substitutions that occur going from mesophiles to thermophiles are identified. Most of these are at solvent-exposed sites. Salt bridges occur significantly more often in thermophiles. The additional salt bridges in thermophiles are almost exclusively in solvent-exposed regions, and 35% are in the same element of secondary structure. Helices in thermophiles are stabilized by intrahelical salt bridges and by an increase in negative charge at the N-terminus. There is an approximate decrease of 1% in the overall loop content and a corresponding increase in helical content in thermophiles. Previously overlooked cation-pi interactions, estimated to be twice as strong as ion-pairs, are significantly enriched in thermophiles. At buried sites, statistically significant hydrophobic amino acid substitutions are typically consistent with decreased side chain conformational entropy.  相似文献   

7.
The amino acid compositions of proteins from halophilic archaea were compared with those from non-halophilic mesophiles and thermophiles, in terms of the protein surface and interior, on a genome-wide scale. As we previously reported for proteins from thermophiles, a biased amino acid composition also exists in halophiles, in which an abundance of acidic residues was found on the protein surface as compared to the interior. This general feature did not seem to depend on the individual protein structures, but was applicable to all proteins encoded within the entire genome. Unique protein surface compositions are common in both halophiles and thermophiles. Statistical tests have shown that significant surface compositional differences exist among halophiles, non-halophiles, and thermophiles, while the interior composition within each of the three types of organisms does not significantly differ. Although thermophilic proteins have an almost equal abundance of both acidic and basic residues, a large excess of acidic residues in halophilic proteins seems to be compensated by fewer basic residues. Aspartic acid, lysine, asparagine, alanine, and threonine significantly contributed to the compositional differences of halophiles from meso- and thermophiles. Among them, however, only aspartic acid deviated largely from the expected amount estimated from the dinucleotide composition of the genomic DNA sequence of the halophile, which has an extremely high G+C content (68%). Thus, the other residues with large deviations (Lys, Ala, etc.) from their non-halophilic frequencies could have arisen merely as "dragging effects" caused by the compositional shift of the DNA, which would have changed to increase principally the fraction of aspartic acid alone.  相似文献   

8.
We address the question of the thermal stability of proteins in thermophiles through comprehensive genome comparison, focussing on the occurrence of salt bridges. We compared a set of 12 genomes (from four thermophilic archaeons, one eukaryote, six mesophilic eubacteria, and one thermophilic eubacteria). Our results showed that thermophiles have a greater content of charged residues than mesophiles, both at the overall genomic level and in alpha helices. Furthermore, we found that in thermophiles the charged residues in helices tend to be preferentially arranged with a 1–4 helical spacing and oriented so that intra-helical charge pairs agree with the helix dipole. Collectively, these results imply that intra-helical salt bridges are more prevalent in thermophiles than mesophiles and thus suggest that they are an important factor stabilizing thermophilic proteins. We also found that the proteins in thermophiles appear to be somewhat shorter than those in mesophiles. However, this later observation may have more to do with evolutionary relationships than with physically stabilizing factors. In all our statistics we were careful to controls for various biases. These could have, for instance, arisen due to repetitive or duplicated sequences. In particular, we repeated our calculation using a variety of random and directed sampling schemes. One of these involved making a "stratified sample," a representative cross-section of the genomes derived from a set of 52 orthologous proteins present roughly once in each genome. For another sample, we focused on the subset of the 52 orthologs that had a known 3D structure. This allowed us to determine the frequency of tertiary as well as main-chain salt bridges. Our statistical controls supported our overall conclusion about the prevalence of salt bridges in thermophiles in comparison to mesophiles. Electronic Publication  相似文献   

9.
1. The ability of Escherichia coli ribosomes to function in poly(U)-directed protein synthesis was measured at elevated temperatures by using thermostable supernatant factors from Bacillus stearothermophilus. The amount of polyphenylalanine synthesized at 55 degrees C was about the same as at 37 degrees C, but the rate of synthesis was increased approximately fivefold. At 60 degrees C the activity of the ribosomes was halved. 2. E. coli ribosomes can sustain the loss of approx. 10% of the double-helical secondary structure of RNA without losing activity. 3. Within the active ribosome the double-helical secondary structure of the rRNA moiety is stabilized compared with isolated rRNA, as judged by enzymic hydrolysis and by measurements of E(260). 4. The main products, over the range 0-55 degrees C, of ribonuclease T(1) digestion of the smaller subribosomal particle of E. coli were two fragments (s(0) (20,w) 15S and 25.3S) of approximately one-quarter and three-quarters of the size of the intact molecule, revealing the presence of a ;weak spot' where intramolecular bonds appear insufficient to hold the fragments together. 5. Subribosomal particles of B. stearothermophilus were more stable to heating, by approx. 10 degrees C, than those of E. coli, and the stabilization of double-helical secondary structure of the RNA moiety was more striking. 6. Rabbit reticulocyte ribosomes were active in poly(U)-directed protein synthesis at 45 degrees C, and half the activity was lost after heating to 53 degrees C. Active subribosomal particles of rabbit reticulocytes and of oocytes of Xenopus laevis, like the bacterial subribosomal particles, underwent a conformational change to a slower-sedimenting form on heating. The temperature range of the transition depended on the species. 7. Slower-sedimenting particles, whether produced by EDTA treatment or by heating, had different ;melting' profiles compared with active subribosomal particles, providing another indication of conformational differences. 8. Comparison of the properties of the various subribosomal particles revealed greater variation in the secondary structure of the protein moieties (judged by measurement of circular dichroism) than in the secondary structure of the RNA moieties, which appeared to have features in common.  相似文献   

10.
Kosmotoga olearia strain TBF 19.5.1 is a member of the Thermotogales that grows best at 65°C and very well even at 37°C. Information about this organism is important for understanding the evolution of mesophiles from thermophiles. Its genome sequence reveals extensive gene gains and a large content of mobile genetic elements. It also contains putative hydrogenase genes that have no homologs in the other member of the Thermotogales.  相似文献   

11.
Gromiha MM  Suresh MX 《Proteins》2008,70(4):1274-1279
Discriminating thermophilic proteins from their mesophilic counterparts is a challenging task and it would help to design stable proteins. In this work, we have systematically analyzed the amino acid compositions of 3075 mesophilic and 1609 thermophilic proteins belonging to 9 and 15 families, respectively. We found that the charged residues Lys, Arg, and Glu as well as the hydrophobic residues, Val and Ile have higher occurrence in thermophiles than mesophiles. Further, we have analyzed the performance of different methods, based on Bayes rules, logistic functions, neural networks, support vector machines, decision trees and so forth for discriminating mesophilic and thermophilic proteins. We found that most of the machine learning techniques discriminate these classes of proteins with similar accuracy. The neural network-based method could discriminate the thermophiles from mesophiles at the five-fold cross-validation accuracy of 89% in a dataset of 4684 proteins. Moreover, this method is tested with 325 mesophiles in Xylella fastidosa and 382 thermophiles in Aquifex aeolicus and it could successfully discriminate them with the accuracy of 91%. These accuracy levels are better than other methods in the literature and we suggest that this method could be effectively used to discriminate mesophilic and thermophilic proteins.  相似文献   

12.
Asymmetrical patterns of amino acid substitution in proteins of organisms living at moderate and high temperatures (mesophiles and thermophiles, respectively) are generally taken to indicate selection favoring different amino acids at different temperatures due to their biochemical properties. If that were the case, comparisons of different pairs of mesophilic and thermophilic taxa would exhibit similar patterns of substitutional asymmetry. A previous comparison of mesophilic versus thermophilic Methanococcus with mesophilic versus thermophilic Bacillus revealed several pairs of amino acids for which one amino acid was favored in thermophilic Bacillus and the other was favored in thermophilic Methanococcus. Most of this could be explained by the higher G+C content of the DNA of thermophilic Bacillus, a phenomenon not seen in the Methanococcus comparison. Here, I compared the mesophilic bacterium Deinococcus radiodurans and its thermophilic relative Thermus thermophilus, which are similar in G+C content. Of the 190 pairs of amino acids, 83 exhibited significant substitutional asymmetry, consistent with the pervasive effects of selection. Most of these significantly asymmetrical pairs of amino acids were asymmetrical in the direction predicted from the Methanococcus data, consistent with thermal adaptation resulting from universal biochemical properties of the amino acids. However, 12 pairs of amino acids exhibited asymmetry significantly different from and in the opposite direction of that found in the Methanococcus comparison, and 21 pairs of amino acids exhibited asymmetry that was significantly different from that found in the Bacillus comparison and could not be explained by the greater G+C content in thermophilic Bacillus. This suggests that selection due to universal biochemical properties of the amino acids and differences in G+C content are not the only causes of substitutional asymmetry between mesophiles and thermophiles. Instead, selection on taxon-specific properties of amino acids, such as their metabolic cost, may play a role in causing asymmetrical patterns of substitution.  相似文献   

13.
The isolation of a new methanogenic bacterium, Methanobacterium thermoautotrophicus sp. n., is described. Successful isolation required a medium containing inorganic salts, an atmosphere consisting of an 80:20 mixture of hydrogen-carbon dioxide, and incubation temperatures of 65 to 70 C. Isolates of M. thermoautotrophicus were gram-positive, nonmotile, irregularly curved rods which frequently formed long filaments. The organism was found to be an autotroph and a strict anaerobe, and to have a pH optimum of 7.2 to 7.6. The optimal temperature for growth was 65 to 70 C, the maximum being 75 C and the minimum about 40 C. The generation time at the optimum was about 5 hr. The deoxyribonucleic acid of M. thermoautotrophicus had a guanine plus cytosine (GC) content of 52 moles per cent, whereas Methanobacterium sp. strain M.O.H. had a GC content of 38%. When heated, intact ribosomes of Methanobacterium sp. strain M.O.H. were stable up to 55 C and had a T(m) of 73 C. In contrast, ribosomes of M. thermoautotrophicus were stable up to 75 C and had a T(m) of 82 C. Upon complete thermal denaturation, ribosomes of strain M.O.H. underwent a 59% hyperchromic shift, whereas those of the thermophile showed only a 20% increase in hyperchromicity. Methane formation in cell-free extracts of M. thermoautotrophicus was temperature-dependent and required hydrogen and carbon dioxide; methyl cobalamin served as a methyl donor, and addition of coenzyme M stimulated methanogenesis.  相似文献   

14.
A database analysis was done to study the role of weak interactions such as CHcdots, three dots, centeredO, CHcdots, three dots, centeredPI(m) and NHcdots, three dots, centeredPI(m) in the thermal stability of proteins. The CHcdots, three dots, centeredO and CHcdots, three dots, centeredPI(m) interactions are more in the case of thermophilic proteins as compared to mesophiles. Amino acid analysis showed that hydrophobic amino acids like Val and Ile, and Cys contribute more to CHcdots, three dots, centeredO hydrogen bonds where as Pro and Gly contribute more to CHcdots, three dots, centeredPI(m) interactions. Though NHcdots, three dots, centeredPI(m) interactions are dominated by Lys and Arg in thermophiles and mesophiles, the Arg contribution is significantly higher in thermophiles. Interestingly, Glycine is a predominant contributor to all the weak interactions. The number of aromatic amino acids in the thermophiles is more and hence a large number of aromatic clusters were observed in this class. Thus, a cumulative effect of weak interactions seems to be important in thermal stability of proteins. The study also shows that introduction of Gly, Arg, Phe, Pro, and Tyr may enhance the thermal stability.  相似文献   

15.

Background

Most organisms grow at temperatures from 20 to 50°C but some prokaryotes, including Archaea and Bacteria, are capable of withstanding higher temperatures, from 60 to >100°C. What makes these cells so resistant to heat? Their biomolecules must be sufficiently stable, especially proteins, to work under these extreme conditions, but the bases for thermostability remains elusive.

Results

The preferential usage of certain couples of amino acids and codons in thermal adaptation was investigated, by comparative proteome analysis, using 28 complete genomes from 18 mesophiles, 4 thermophiles, and 6 hyperthermophiles. In the hyperthermophiles proteomes, whenever the percent of Glu (E) and Lys (K) Increased, the percent of Gln (Q) and His (H) decreased, so that the E+K/Q+H ratio was > 4,5; in the mesophiles proteomes, it was < 2,5 and in the thermophiles an intermediary value was observed. The E+K/Q+H ratios for chaperonins, potentially thermostable proteins, were higher than their proteome ratios whereas, for DNA ligases, not necessarily thermostable, they followed the proteome ones. Analysis of codon usage revealed that hyperthermophiles preferred AGR codons for Arg in detriment of CGN codons, which were preferred by mesophiles.

Conclusions

The results suggested that the E+K/Q+H ratio may provide a useful mark for distinguishing hyperthermophilic, thermophilic and mesophilic prokaryotes and that the high percent of the amino acid couple E+K, consistently associated to the low percent of the pair Q+H, could contribute to protein thermostability. Second, the preference for AGR codons for Arg was a signature of all hyperthermophilics so far analyzed.
  相似文献   

16.
A total of 59 bacteria samples from Antarctic sea water were collected and screened for their ability to produce alpha-amylase. The highest activity was recorded from an isolate identified as an Alteromonas species. The purified alpha-amylase shows a molecular mass of about 50,000 Da and a pI of 5.2. The enzyme is stable from pH 7.5 to 9 and has a maximal activity at pH 7.5. Compared with other alpha-amylases from mesophiles and thermophiles, the "cold enzyme" displays a higher activity at low temperature and a lower stability at high temperature. The psychrophilic alpha-amylase requires both Cl- and Ca2+ for its amylolytic activity. Br- is also quite efficient as an allosteric effector. The comparison of the amino acid composition with those of other alpha-amylases from various organisms shows that the cold alpha-amylase has the lowest content in Arg and Pro residues. This could be involved in the principle used by the psychrophilic enzyme to adapt its molecular structure to the low temperature of the environment.  相似文献   

17.
We isolated a small multicopy cryptic plasmid, pNHK101, from Thermus sp. TK10 for use as a replicon of a Thermus expression vector. The nucleotide sequence of pNHK101 revealed that this plasmid was 1564bp long, with a total G+C content of 66.8%, which was in agreement with that of Thermus genomic DNA. The sequence did not show any significant similarities to any other plasmids; also, the amino acid sequences of four putative open reading frames, found in the plasmid, did not show strong similarities to those in the databases, except the ORF1, which had very slight similarities to several replication proteins of plasmids from other bacteria. pNHK101 was able to replicate in Thermus thermophilus HB27 with copy number about 80, and was stably maintained at 60 degrees C, but became unstable at 70 degrees C. Based on pNHK101, we constructed a plasmid vector, pKMH052, containing the highly thermostable kanamycin resistance gene as a selective marker. The copy number of pKMH052 decreased to about one-fourth of that of pNHK101, but stability at 60 degrees C did not alter under non-selective conditions. pKMH052 was compatible with pTT8, and interestingly, the presence of pTT8 in the same cells improved the stability of pKMH052 at 70 degrees C. Cloning of the crtB gene of T. thermophilus HB27 encoding phytoene synthase into pKMH052, and introduction into T. thermophilus cells resulted in a 2.8-fold production of carotenoids, indicating the potential use of this plasmid for overexpression of genes from thermophiles and hyperthermophiles.  相似文献   

18.
We attempt to understand the origin of enhanced stability in thermophilic proteins by analyzing thermodynamic data for 116 proteins, the largest data set achieved to date. We compute changes in entropy and enthalpy at the convergence temperature where different driving forces are maximally decoupled, in contrast to the majority of previous studies that were performed at the melting temperature. We find, on average, that the gain in enthalpy upon folding is lower in thermophiles than in mesophiles, whereas the loss in entropy upon folding is higher in mesophiles than in thermophiles. This implies that entropic stabilization may be responsible for the high melting temperature, and hints at residual structure or compactness of the denatured state in thermophiles. We find a similar trend by analyzing a homologous set of proteins classified based only on the optimum growth temperature of the organisms from which they were extracted. We find that the folding free energy at the temperature of maximal stability is significantly more favorable in thermophiles than in mesophiles, whereas the maximal stability temperature itself is similar between these two classes. Furthermore, we extend the thermodynamic analysis to model the entire proteome. The results explain the high optimal growth temperature in thermophilic organisms and are in excellent quantitative agreement with full thermal growth rate data obtained in a dozen thermophilic and mesophilic organisms.  相似文献   

19.
编码序列的(G+C)%与蛋白质的耐热性相关性分析   总被引:4,自引:0,他引:4  
朱蔚  郑佐华 《遗传学报》1999,26(4):418-427
运用计算机统计方法,对以木糖异构酶为主的几个蛋白质家族的核酸和氨基酸序列进行分析,发现密码子各位上的(G+C)%与编码序列的(G+C)%成线性正相关,大多数氨基酸的含量与编码序列的(G+C)%也存在相关性,按其相关性,将氨基酸分为正相关,负相关和不相关3类,对木糖异构酶氨基酸序列和酶的耐热性的统计发现,那些在统计学上显著的,可能提高蛋白质耐热性的氨基酸替换,往往伴随关编码序列中GC含量的上升,这提  相似文献   

20.
Salmonella enteritidis-inoculated poultry sausages were pressurized at 500 MPa by combining different times (10 and 30 min) and temperatures (50, 60 and 70 degrees C) or heat treated with the same temperature-time combinations and a standard cooking (75 degrees C for 30 min). Counts of Salm. enteritidis and mesophilic bacteria were determined. Most pressure treatments generated statistically higher reductions than the corresponding heat treatments alone. Lethalities of about 7.5 and 6.5 log cfu g(-1) for Salm. enteritidis and mesophiles, respectively, were found in pressurized sausages. There was no significant difference in counts between pressurization at 60 degrees C for 30 min or at 70 degrees C and the standard cooking. High-pressure processing is a suitable alternative method in poultry sausage manufacture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号