首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rules of the genetic code are established in reactions that aminoacylate tRNAs with specific amino acids. Ambiguity in the code is prevented by editing activities whereby incorrect aminoacylations are cleared by specialized hydrolytic reactions of aminoacyl tRNA synthetases. Whereas editing reactions have long been known, their significance for cell viability is still poorly understood. Here we investigated in vitro and in vivo four different mutations in the center for editing that diminish the proofreading activity of valyl-tRNA synthetase (ValRS). The four mutant enzymes were shown to differ quantitatively in the severity of the defect in their ability to clear mischarged tRNA in vitro. Strikingly, in the presence of excess concentrations of alpha-aminobutyrate, one of the amino acids that is misactivated by ValRS, growth of bacterial strains bearing these mutant alleles is arrested. The concentration of misactivated amino acid required for growth arrest correlates inversely in a rank order with the degree of the editing defect seen in vitro. Thus, cell viability depends directly on the suppression of genetic code ambiguity by these specific editing reactions and is finely tuned to any perturbation of these reactions.  相似文献   

2.
Aminoacyl-tRNA synthetases (ARSs) are critical components of protein translation, providing ribosomes with aminoacyl-tRNAs. In return, ribosomes release uncharged tRNAs as ARS substrates. Here, we show that tRNA deacylation can be uncoupled from protein synthesis in an amino acid specific manner. While tRNAs coupled to radiolabeled Met, Leu Lys, or Ser are stable in cells following translation inhibition with arsenite, radiolabeled Cys is released from tRNA at a high rate. We discuss possible translation independent functions for tRNA(Cys).  相似文献   

3.
Coenzyme A (CoA-SH), a cofactor in carboxyl group activation reactions, carries out a function in nonribosomal peptide synthesis that is analogous to the function of tRNA in ribosomal protein synthesis. The amino acid selectivity in the synthesis of aminoacyl-thioesters by nonribosomal peptide synthetases is relaxed, whereas the amino acid selectivity in the synthesis of aminoacyl-tRNA by aminoacyl-tRNA synthetases is restricted. Here I show that isoleucyl-tRNA synthetase aminoacylates CoA-SH with valine, leucine, threonine, alanine, and serine in addition to isoleucine. Valyl-tRNA synthetase catalyzes aminoacylations of CoA-SH with valine, threonine, alanine, serine, and isoleucine. Lysyl-tRNA synthetase aminoacylates CoA-SH with lysine, leucine, threonine, alanine, valine, and isoleucine. Thus, isoleucyl-, valyl-, and lysyl-tRNA synthetases behave as aminoacyl-S-CoA synthetases with relaxed amino acid selectivity. In contrast, RNA minihelices comprised of the acceptor-TpsiC helix of tRNA(Ile) or tRNA(Val) were aminoacylated by cognate synthetases selectively with isoleucine or valine, respectively. These and other data support a hypothesis that the present day aminoacyl-tRNA synthetases originated from ancestral forms that were involved in noncoded thioester-dependent peptide synthesis, functionally similar to the present day nonribosomal peptide synthetases.  相似文献   

4.
All living cells must conduct protein synthesis with a high degree of accuracy maintained in the transmission and flow of information from gene to finished protein product. One crucial "quality control" point in maintaining a high level of accuracy is the selectivity by which aminoacyl-tRNA synthetases furnish correctly activated amino acids, attached to tRNA species, as the building blocks for growing protein chains. During selection of amino acids, synthetases very often have to distinguish the cognate substrate from a homolog having just one fewer methyl group in its structure. The binding energy of a methyl group is estimated to contribute only a factor of 100 to the specificity of binding, yet synthetases distinguish such closely related amino acids with a discrimination factor of 10,000 to 100,000. Examples of this include methionine versus homocysteine, isoleucine versus valine, alanine versus glycine, and threonine versus serine. Many investigators have demonstrated in vitro the ability of certain aminoacyl-tRNA synthetases to edit, that is, correct or prevent incorrect attachment of amino acids to tRNA molecules. Several major editing pathways are now established from in vitro data. Further, at least some aminoacyl-tRNA synthetases have recently been shown to carry out the editing function in vivo. Editing has been demonstrated to occur in both Escherichia coli and Saccharomyces cerevisiae. Significant energy is expended by the cell for editing of misactivated amino acids, which can be reflected in the growth rate. Because of this, cellular levels of aminoacyl-tRNA synthetases, as well as amino acid biosynthetic pathways which yield competing substrates for protein synthesis, must be carefully regulated to prevent excessive editing. High-level expression of recombinant proteins imposes a strain on the biosynthetic capacity of the cell which frequently results in misincorporation of abnormal or wrong amino acids owing in part to limited editing by synthetases. Unbalanced amino acid pools associated with some genetic disorders in humans may also lead to errors in tRNA aminoacylation. The availability of X-ray crystallographic structures of some synthetases, combined with site-directed mutagenesis, allows insights into molecular details of the extraordinary selectivity of synthetases, including the editing function.  相似文献   

5.
The correct aminoacylation of tRNA with the proper aminoacid by aminoacyl-tRNA synthetase is one of the key reactions which determines the overall high fidelity of protein biosynthesis. The initial selection of the amino acid is achieved in the active centre of the synthetase at the activation step due to differences in the side chains binding energies of specific substrate and the competing amino acids present in cell. If, nevertheless, the activation of amino acids structurally similar to the cognate one does proceed, additional mechanisms of correction which are based on the decomposition of unstable noncognate (intermediate or final) product of the tRNA aminoacylation reaction, by synthetase are switched on. In this review the literature on the specificity of aminoacyl-tRNA synthetases at amino acid activation step is analyzed along with the proofreading mechanisms which allow the elimination of the errors, leading to so called superspecifity of aminoacyl-tRNA synthetases.  相似文献   

6.
Farrow MA  Schimmel P 《Biochemistry》2001,40(14):4478-4483
Aminoacyl-tRNA synthetases establish the rules of the genetic code by aminoacylation reactions. Occasional activation of the wrong amino acid can lead to errors of protein synthesis. For isoleucyl-tRNA synthetase, these errors are reduced by tRNA-dependent hydrolytic editing reactions that occur at a site 25 A from the active site. These reactions require that the misactivated amino acid be translocated from the active site to the center for editing. One mechanism describes translocation as requiring the mischarging of tRNA followed by a conformational change in the tRNA that moves the amino acid from one site to the other. Here a specific DNA aptamer is investigated. The aptamer can stimulate amino acid-specific editing but cannot be aminoacylated. Although the aptamer could in principle stimulate hydrolysis of a misactivated amino acid by an idiosyncratic mechanism, the aptamer is shown here to induce translocation and hydrolysis of misactivated aminoacyl adenylate at the same site as that seen with the tRNA cofactor. Thus, translocation to the site for editing does not require joining of the amino acid to the nucleic acid. Further experiments demonstrated that aptamer-induced editing is sensitive to aptamer sequence and that the aptamer is directed to a site other than the active site or tRNA binding site of the enzyme.  相似文献   

7.
Many peptide antibiotics in prokaryotes and lower eukaryotes are produced non-ribosomally by multi-enzyme complexes. Analysis of gene-derived amino acid sequences of some peptide synthetases of bacterial and fungal origins revealed a high degree of conservation (35-50% identity). The genes encoding those peptide synthetases are clustered into large operons with repetitive domains (about 600 amino acids), in the case of synthetases activating more than one amino acid. We used two 35-mer oligonucleotides derived from two highly conserved regions of known peptide synthetases to identify the surfactin synthetase operon in Bacillus subtilis ATCC 21332, a strain not accessible to genetic manipulation. We show that the derived oligonucleotides can be used not only for the identification of unknown peptide synthetase genes by hybridization experiments but also in sequencing reactions as primers to identify internal domain sequences. Using this method, a 25.8-kb chromosomal DNA fragment bearing a part of the surfactin biosynthesis operon was cloned and partial sequences of two internal domains were obtained.  相似文献   

8.
The review deals with interactions of the key enzymes of the protein biosynthesis-aminoacyl-tRNA synthetases (EC 6.1.1.) with amino acids and their analogues, considering the contribution of different groups in the process of specific complex formation and catalysis. The important role of alpha-amino group of amino acid in the enzyme recognition has been revealed. Modification of the carboxylic group does not change significantly the analogues complex formation with aminoacyl-tRNA synthetases. However this group is essential for amino acid rearrangement in the specific complex with the enzyme. The structural organization of the enzyme binding sites specific for amino acids and the enzyme interaction with the analogues of aminoacyladenylates are discussed.  相似文献   

9.
RNA minihelices and the decoding of genetic information   总被引:1,自引:0,他引:1  
P Schimmel 《FASEB journal》1991,5(8):2180-2187
The rules of the genetic code are determined by the specific aminoacylation of transfer RNAs by aminoacyl transfer RNA synthetase. A straightforward analysis shows that a system of synthetase-tRNA interactions that relies on anticodons for specificity could, in principle, enable most synthetases to distinguish their cognate tRNA isoacceptors from all others. Although the anticodons of some tRNAs are recognition sites for the cognate aminoacyl tRNA synthetases, for other synthetases the anticodon is dispensable for specific aminoacylation. In particular, alanine and histidine tRNA synthetases aminoacylate small RNA minihelices that reconstruct the part of their cognate tRNAs that is proximate to the amino acid attachment site. Helices with as few as six base pairs can be efficiently aminoacylated. The specificity of aminoacylation is determined by a few nucleotides and can be converted from one amino acid to another by the change of only a few nucleotides. These findings suggest that, for a subgroup of the synthetases, there is a distinct code in the acceptor helix of transfer RNAs that determines aminoacylation specificity.  相似文献   

10.
Abstract

The genetic code is based on the aminoacylation of tRNA with amino acids catalyzed by the aminoacyl-tRNA synthetases. The synthetases are constructed from discrete domains and all synthetases possess a core catalytic domain that catalyzes amino acid activation, binds the acceptor stem of tRNA, and transfers the amino acid to tRNA. Fused to the core domain are additional domains that mediate RNA interactions distal to the acceptor stem. Several synthetases catalyze the aminoacylation of RNA oligonucleotide substrates that recreate only the tRNA acceptor stems. In one case, a relatively small catalytic domain catalyzes the aminoacylation of these substrates independent of the rest of the protein. Thus, the active site domain may represent a primordial synthetase in which polypeptide insertions that mediate RNA acceptor stem interactions are tightly integrated with determinants for aminoacyl adenylate synthesis. The relationship between nucleotide sequences in small RNA oligonucleotides and the specific amino acids that are attached to these oligonucleotides could constitute a second genetic code.  相似文献   

11.
氨酰tRNA合成酶的分子网络和功能   总被引:3,自引:0,他引:3  
氨酰tRNA合成酶是生命进化过程中最早出现的一类蛋白质,氨酰tRNA合成酶帮助氨基酸转移到相应的tRNA上,进而参与蛋白质的合成保证了生命体的严谨性和多样性.随着后基因组时代的到来,氨酰tRNA合成酶的结构和功能成为新的研究热点.结构生物学和生物信息学的研究结果表明,氨酰tRNA合成酶在真核生物体内以多聚复合物的形式行使功能,形成复杂的分子网络体系.最新的实验证据显示,氨酰tRNA合成酶不但是蛋白质合成过程中一类最重要的酶,而且参与了转录、翻译水平的调控、RNA剪接、信号传导和免疫应答等众多生命活动.  相似文献   

12.
Glutamyl-tRNA synthetase (GluRS) is one of the aminoacyl-tRNA synthetases that require the cognate tRNA for specific amino acid recognition and activation. We analyzed the role of tRNA in amino acid recognition by crystallography. In the GluRS*tRNA(Glu)*Glu structure, GluRS and tRNA(Glu) collaborate to form a highly complementary L-glutamate-binding site. This collaborative site is functional, as it is formed in the same manner in pretransition-state mimic, GluRS*tRNA(Glu)*ATP*Eol (a glutamate analog), and posttransition-state mimic, GluRS*tRNA(Glu)*ESA (a glutamyl-adenylate analog) structures. In contrast, in the GluRS*Glu structure, only GluRS forms the amino acid-binding site, which is defective and accounts for the binding of incorrect amino acids, such as D-glutamate and L-glutamine. Therefore, tRNA(Glu) is essential for formation of the completely functional binding site for L-glutamate. These structures, together with our previously described structures, reveal that tRNA plays a crucial role in accurate positioning of both L-glutamate and ATP, thus driving the amino acid activation.  相似文献   

13.
In the presence or absence of its regulatory factor, the monomeric glutamyl-tRNA synthetase from Bacillus subtilis can aminoacylate in vitro with glutamate both tRNAGlu and tRNAGln from B. subtilis and tRNAGln1 but not tRNAGln2 or tRNAGlu from Escherichia coli. The Km and Vmax values of the enzyme for its substrates in these homologous or heterologous aminoacylation reactions are very similar. This enzyme is the only aminoacyl-tRNA synthetase reported to aminoacylate with normal kinetic parameters two tRNA species coding for different amino acids and to misacylate at a high rate a heterologous tRNA under normal aminoacylation conditions. The exceptional lack of specificity of this enzyme for its tRNAGlu and tRNAGln substrates, together with structural and catalytic peculiarities shared with the E. coli glutamyl- and glutaminyl-tRNA synthetases, suggests the existence of a close evolutionary linkage between the aminoacyl-tRNA synthetases specific for glutamate and those specific for glutamine. A comparison of the primary structures of the three tRNAs efficiently charged by the B. subtilis glutamyl-tRNA synthetase with those of E. coli tRNAGlu and tRNAGln2 suggests that this enzyme interacts with the G64-C50 or G64-U50 in the T psi stem of its tRNA substrates.  相似文献   

14.
Nordin BE  Schimmel P 《Biochemistry》2003,42(44):12989-12997
The genetic code depends on amino acid fine structure discrimination by aminoacyl-tRNA synthetases. For isoleucyl- (IleRS) and valyl-tRNA synthetases (ValRS), reactions that hydrolyze misactivated noncognate amino acids help to achieve high accuracy in aminoacylation. Two editing pathways contribute to aminoacylation fidelity: pretransfer and post-transfer. In pretransfer editing, the misactivated amino acid is hydrolyzed as an aminoacyl adenylate, while in post-transfer editing a misacylated tRNA is deacylated. Both reactions are dependent on a tRNA cofactor and require translocation to a site located approximately 30 A from the site of amino acid activation. Using a series of 3'-end modified tRNAs that are deficient in either aminoacylation, deacylation, or both, total editing (the sum of pre- and post-transfer editing) was shown to require both aminoacylation and deacylation activities. These and additional results with IleRS are consistent with a post-transfer deacylation event initiating formation of an editing-active enzyme/tRNA complex. In this state, the primed complex processively edits misactivated valyl-adenylate via the pretransfer route. Thus, misacylated tRNA is an obligatory intermediate for editing by either pathway.  相似文献   

15.
Valyl-, isoleucyl-, and leucyl-transfer ribonucleic acid synthetase formation was compared in isogenic strains of Escherichia coli K-12 that differed only in that one strain carried a deletion of three genes of the ilv gene cluster, ilvD, -A, and -C. It was found that: (i) the activities of these synthetases in the deletion strain were less than those in the normal strain during growth in minimal medium supplemented with excess isoleucine, valine, and leucine, and (ii) their stability was reduced in the deletion strain during specific branched-chain amino acid limitations. The results of density-labeling experiments suggest that the in vivo stability of valyl-, isoleucyl-, and leucyl-transfer ribonucleic acid synthetases requires some product missing in the ilvDAC deletion strain.  相似文献   

16.
Accurate protein synthesis requires the hydrolytic editing of tRNAs incorrectly aminoacylated by aminoacyl-tRNA synthetases (ARSs). Recognition of cognate tRNAs by ARS is less error-prone than amino acid recognition, and, consequently, editing domains are generally believed to act only on the tRNAs cognate to their related ARSs. For example, the AlaX family of editing domains, including the editing domain of alanyl-tRNA synthetase and the related free-standing trans-editing AlaX enzymes, are thought to specifically act on tRNAAla, whereas the editing domains of threonyl-tRNA synthetases are specific for tRNAThr. Here we show that, contrary to this belief, AlaX-S, the smallest of the extant AlaX enzymes, deacylates Ser-tRNAThr in addition to Ser-tRNAAla and that a single residue is important to determine this behavior. Our data indicate that promiscuous forms of AlaX are ancestral to tRNA-specific AlaXs. We propose that former AlaX domains were used to maintain translational fidelity in earlier stages of genetic code evolution when mis-serylation of several tRNAs was possible.  相似文献   

17.
Bovine mitochondrial tRNAPhe, tRNASer (AGY), and tRNASer (UCN) possessing unusual structures were purified using a new hybridization assay system and their properties in aminoacylation were examined. Bovine mitochondrial phenyl-alanyl- and seryl-tRNA synthetases could aminoacylate the same amino acid-specific tRNAs obtained not only from the mitochondria but also from other sources such as E. coli, Thermus thermophilus, bovine and yeast cytosols and archaebacteria, Sulfolobus acidocaldarius. On the contrary, none of both bacterial and cytosolic synthetases could aminoacylate the same amino acid specific tRNAs from the heterologous sources with some exceptions. We consider that the bovine mitochondrial aminoacyl-tRNA synthetases have considerably simple recognition mechanism toward the substrate tRNAs compared with the non-mitochondrial ones. This mechanism may be correlated with the occurrence of structural varieties of the mitochondrial tRNA species with unusual structures.  相似文献   

18.
Misactivation of amino acids by aminoacyl-tRNA synthetases can lead to significant errors in protein synthesis that are prevented by editing reactions. As an example, discrete sites in isoleucyl-tRNA synthetase for amino acid activation and editing are about 25 A apart. The details of how misactivated valine is translocated from one site to the other are unknown. Here, we present a kinetic study in which a fluorescent probe is used to monitor translocation of misactivated valine from the active site to the editing site. Isoleucine-specific tRNA, and not other tRNAs, is essential for translocation of misactivated valine. Misactivation and translocation occur on the same enzyme molecule, with translocation being rate limiting for editing. These results illustrate a remarkable capacity for a specific tRNA to enhance amino acid fine structure recognition by triggering a unimolecular translocation event.  相似文献   

19.
The usefulness of affinity chromatography for the purification of aminoacyl-tRNA synthetases was explored by using column ligands derived from the corresponding amino acid and aminoalkyladenylate, a non-labile analogue of the aminoacyladenylate reaction intermediate. Four modes of attachment of the aminoalkyladenylate to Sepharose were studied. The interaction between amino acid derivatives and the corresponding aminoacyl-tRNA synthetases is too weak to allow their use as ligands for affinity chromatography. Attachment of the aminoalkyladenylate via the alpha-nitrogen atom of the amino acid or via C-8 of the nucleotide abolishes synthetase binding, and immobilization via the oxidized ribose ring is only marginally useful. However, attachment of the aminoalkyladenylate to the matrix via N-6 of the nucleotide allows strong and specific synthetase binding, and the use of such columns permits the isolation of homogeneous synthetase from crude mixtures. The effect of non-specific adsorption and the utility of pre-columns and of specific substrate elution are investigated and discussed.  相似文献   

20.
Aminoacyl tRNA synthetases (ARS) catalyze the ligation of amino acids to cognate tRNAs. Chordate ARSs have evolved distinctive features absent from ancestral forms, including compartmentalization in a multisynthetase complex (MSC), noncatalytic peptide appendages, and ancillary functions unrelated to aminoacylation. Here, we show that glutamyl-prolyl-tRNA synthetase (GluProRS), a bifunctional ARS of the MSC, has a regulated, noncanonical activity that blocks synthesis of a specific protein. GluProRS was identified as a component of the interferon (IFN)-gamma-activated inhibitor of translation (GAIT) complex by RNA affinity chromatography using the ceruloplasmin (Cp) GAIT element as ligand. In response to IFN-gamma, GluProRS is phosphorylated and released from the MSC, binds the Cp 3'-untranslated region in an mRNP containing three additional proteins, and silences Cp mRNA translation. Thus, GluProRS has divergent functions in protein synthesis: in the MSC, its aminoacylation activity supports global translation, but translocation of GluProRS to an inflammation-responsive mRNP causes gene-specific translational silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号