首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A central feature of Salmonella pathogenicity is the bacterium's ability to enter into non-phagocytic cells. Bacterial internalization is the consequence of cellular responses characterized by Cdc42- and Rac-dependent actin cytoskeleton rearrangements. These responses are triggered by the co-ordinated function of bacterial proteins delivered into the host cell by a specialized protein secretion system termed type III. We report here that SopB, a Salmonella inositol polyphosphatase delivered to the host cell by this secretion system, mediates actin cytoskeleton rearrangements and bacterial entry in a Cdc42-dependent manner. SopB exhibits overlapping functions with two other effectors of bacterial entry, the Rho family GTPase exchange factors SopE and SopE2. Thus, Salmonella strains deficient in any one of these proteins can enter into cells at high efficiency, whereas a strain lacking all three effectors is completely defective for entry. Consistent with an important role for inositol phosphate metabolism in Salmonella-induced cellular responses, a catalytically defective mutant of SopB failed to stimulate actin cytoskeleton rearrangements and bacterial entry. Furthermore, bacterial infection of intestinal cells resulted in a marked increase in Ins(1,4,5,6)P4, a consumption of InsP5 and the activation of phospholipase C. In agreement with the in vivo findings, purified SopB specifically dephosphorylated InsP5 to Ins(1,4,5,6)P4 in vitro. Surprisingly, the inositol phosphate fluxes induced by Salmonella were not caused exclusively by SopB. We show that the SopB-independent inositol phosphate fluxes are the consequence of the SopE-dependent activation of an endogenous inositol phosphatase. The ability of Salmonella to stimulate Rho GTPases signalling and inositol phosphate metabolism through alternative mechanisms is an example of the remarkable ability of this bacterial pathogen to manipulate host cellular functions.  相似文献   

2.
RhoGTPases are key regulators of eukaryotic cell physiology. The bacterial enteropathogen Salmonella typhimurium modulates host cell physiology by translocating specific toxins into the cytoplasm of host cells that induce responses such as apoptotic cell death in macrophages, the production of proinflammatory cytokines, the rearrangement of the host cell actin cytoskeleton (membrane ruffling), and bacterial entry into host cells. One of the translocated toxins is SopE, which has been shown to bind to RhoGTPases of the host cell and to activate RhoGTPase signaling. SopE is sufficient to induce profuse membrane ruffling in Cos cells and to facilitate efficient bacterial internalization. We show here that SopE belongs to a novel class of bacterial toxins that modulate RhoGTPase function by transient interaction. Surface plasmon resonance measurements revealed that the kinetics of formation and dissociation of the SopE.CDC42 complex are in the same order of magnitude as those described for complex formation of GTPases of the Ras superfamily with their cognate guanine nucleotide exchange factors (GEFs). In the presence of excess GDP, dissociation of the SopE.CDC42 complex was accelerated more than 1000-fold. SopE-mediated guanine nucleotide exchange was very efficient (e.g. exchange rates almost 10(5)-fold above the level of the uncatalyzed reaction; substrate affinity), and the kinetic constants were similar to those described for guanine nucleotide exchange mediated by CDC25 or RCC1. Far-UV CD spectroscopy revealed that SopE has a high content of alpha-helical structure, a feature also found in Dbl homology domains, Sec7-like domains, and the Ras-GEF domain of Sos. Despite the lack of any obvious sequence similarity, our data suggest that SopE may closely mimic eukaryotic GEFs.  相似文献   

3.
The Salmonella pathogenicity island 1 (SPI-1) type three secretion system (TTSS) is essential for Salmonella invasion of host cells through its triggering of actin-dependent membrane ruffles. The SPI-1 effectors SipA, SopE, SopE2 and SopB all have actin regulating activities and contribute to invasion. The precise role of actin regulation by SipA in Salmonella invasion remains controversial since divergent data have been presented regarding the relationship between SipA and membrane ruffling. We hypothesized that the contribution of SipA to membrane ruffling and invasion might vary between Salmonella strains. We compared the effects of SipA deletion on Salmonella enterica serovar Typhimurium ( S.  Typhimurium) strains that possess or lack SopE. Loss of SipA reduced invasion in the early stages of infection by SopE+ and SopE- strains but the number of membrane ruffles elicited was unaffected. Salmonella strains lacking both SipA and SopE induced ruffles with very different morphology from those induced by wild-type strains or ones lacking single effectors, including the presence of highly dynamic finger-like protrusions and numerous filopodia. A similar phenotype was found for sipA - sopE -, sipA - sopE2 - and sipA - sopB - mutants. Thus, SipA plays a more prominent role in induction of invasion-competent membrane ruffles by Salmonella lacking a full complement of SPI-1 effectors.  相似文献   

4.
Salmonella spp. possess a conserved type III secretion system encoded within the pathogenicity island 1 (SPI1; centisome 63), which mediates translocation of effector proteins into the host cell cytosol to trigger responses such as bacterial internalization. Several translocated effector proteins are encoded in other regions of the Salmonella chromosome. It remains unclear how this complex chromosomal arrangement of genes for the type III apparatus and the effector proteins emerged and how the different effector proteins cooperate to mediate virulence. By Southern blotting, PCR, and phylogenetic analyses of highly diverse Salmonella spp., we show here that effector protein genes located in the core of SPI1 are present in all Salmonella lineages. Surprisingly, the same holds true for several effector protein genes located in distant regions of the Salmonella chromosome, namely, sopB (SPI5, centisome 20), sopD (centisome 64), and sopE2 (centisomes 40 to 42). Our data demonstrate that sopB, sopD, and sopE2, along with SPI1, were already present in the last common ancestor of all contemporary Salmonella spp. Analysis of Salmonella mutants revealed that host cell invasion is mediated by SopB, SopE2, and, in the case of Salmonella enterica serovar Typhimurium SL1344, by SopE: a sopB sopE sopE2-deficient triple mutant was incapable of inducing membrane ruffling and was >100-fold attenuated in host cell invasion. We conclude that host cell invasion emerged early during evolution by acquisition of a mosaic of genetic elements (SPI1 itself, SPI5 [sopB], and sopE2) and that the last common ancestor of all contemporary Salmonella spp. was probably already invasive.  相似文献   

5.
Salmonella are able to invade non‐phagocytic cells such as intestinal epithelial cells by modulating the host actin cytoskeleton to produce membrane ruffles. Two type III effector proteins SopB and SopE play key roles to this modulation. SopE is a known guanine nucleotide exchange factor (GEF) capable of activating Rac1 and CDC42. SopB is a phosphatidylinositol 4‐phosphatase and 5‐phosphatase promoting membrane ruffles and invasion of Salmonella through undefined mechanisms. Previous studies have demonstrated that the 4‐phosphatase activity of SopB is required for PtdIns‐3‐phosphate (PtdIns(3)P) accumulation and SopB‐mediated invasion. We show here that both the 4‐phosphatase as well as the 5‐phosphatase activities of SopB are essential in ruffle formation and subsequent invasion. We found that the 5‐phosphatase activity of SopB is likely responsible for generating PtdIns‐3,4‐bisphosphate (PtdIns(3,4)P2) and subsequent recruitment of sorting nexin 9 (SNX9), an actin modulating protein. Intriguingly, the 4‐phosphatase activity is responsible for the dephosphorylation of PtdIns(3,4)P2 into PtdIns(3)P. Alone, neither activity is sufficient for ruffling but when acting in conjunction with one another, the 4‐phosphatase and 5‐phosphatase activities led to SNX9‐mediated ruffling and Salmonella invasion. This work reveals the unique ability of bacterial effector protein SopB to utilize both its 4‐ and 5‐phosphatase activities to regulate phosphoinositide dynamics to promote bacterial entry.  相似文献   

6.
Upon contact with intestinal epithelial cells, Salmonella enterica serovar spp. inject a set of bacterial proteins into host cells via the bacterial SPI-1 type III secretion system. SopE, SopE2 and SopB, activate CDC42 and Rac to initiate actin cytoskeleton rearrangements. SipA and SipC, two Salmonella actin-binding proteins, directly modulate host actin dynamics to facilitate bacterial uptake. SptP promotes the recovery of the actin cytoskeleton rearrangements by antagonizing CDC42 and Rac. Therefore, Salmonella-induced reversible actin cytoskeleton rearrangements are the result of two coordinated steps: (i) stimulation of host signal transduction to indirectly promote actin rearrangements and (ii) direct modulation of actin dynamics.  相似文献   

7.
Salmonella enterica serovar Typhimurium encodes two type III secretion systems (TTSSs) within pathogenicity island 1 (SPI-1) and island 2 (SPI-2). These type III protein secretion and translocation systems transport a panel of bacterial effector proteins across both the bacterial and the host cell membranes to promote bacterial entry and subsequent survival inside host cells. Effector proteins contain secretion and translocation signals that are often located at their N termini. We have developed a ruffling-based translocation reporter system that uses the secretion- and translocation-deficient catalytic domain of SopE, SopE78-240, as a reporter. Using this assay, we determined that the N-terminal 45 amino acid residues of Salmonella SopA are necessary and sufficient for directing its secretion and translocation through the SPI-1 TTSS. SopA1-45, but not SopA1-44, is also able to bind to its chaperone, InvB, indicating that SPI-1 type III secretion and translocation of SopA require its chaperone.  相似文献   

8.
Salmonella typhimurium translocates effector proteins into host cells via the SPI1 type III secretion system to induce responses such as membrane ruffling and internalization by non-phagocytic cells. Activation of the host cellular RhoGTPase Cdc42 is thought to be a key event during internalization. The translocated Salmonella protein SopE is an activator for Cdc42. Because SopE is absent from most S. typhimurium strains it remains unclear whether all S. typhimurium strains rely on activation of Cdc42 to invade host cells. We have identified SopE2, a translocated effector protein common to all S. typhimurium strains. SopE2 is a guanine nucleotide exchange factor for Cdc42 and shows 69% sequence similarity to SopE. Analysis of S. typhimurium mutants demonstrated that SopE2 plays a role in recruitment of the actin-nucleating Arp2/3 complex to the membrane ruffles and in efficient host cell invasion. Transfection experiments showed that SopE2 is sufficient to activate host cellular Cdc42, to recruit the actin-nucleating Arp2/3 complex and to induce actin cytoskeletal rearrangements and internalization. In conclusion, as a result of SopE2 all S. typhimurium strains tested have the capacity to activate Cdc42 signalling inside host cells which is important to ensure efficient entry.  相似文献   

9.
Salmonella enterica, the cause of food poisoning and typhoid fever, has evolved sophisticated mechanisms to modulate Rho family guanosine triphosphatases (GTPases) to mediate specific cellular responses such as actin remodeling, macropinocytosis, and nuclear responses. These responses are largely the result of the activity of a set of bacterial proteins (SopE, SopE2, and SopB) that, upon delivery into host cells via a type III secretion system, activate specific Rho family GTPases either directly (SopE and SopE2) or indirectly (SopB) through the stimulation of an endogenous exchange factor. We show that different Rho family GTPases play a distinct role in Salmonella-induced cellular responses. In addition, we report that SopB stimulates cellular responses by activating SH3-containing guanine nucleotide exchange factor (SGEF), an exchange factor for RhoG, which we found plays a central role in the actin cytoskeleton remodeling stimulated by Salmonella. These results reveal a remarkable level of complexity in the manipulation of Rho family GTPases by a bacterial pathogen.  相似文献   

10.
Salmonella virulence effectors elicit host cell membrane ruffling to facilitate pathogen invasion. The WAVE regulatory complex (WRC) governs the underlying membrane-localized actin polymerization, but how Salmonella manipulates WRC is unknown. We show that Rho GTPase activation by the Salmonella guanine nucleotide exchange factor (GEF) SopE efficiently triggered WRC recruitment but not its activation, which required host Arf GTPase activity. Invading Salmonella recruited and activated Arf1 to facilitate ruffling and uptake. Arf3 and Arf6 could also enhance invasion. RNAi screening of host Arf-family GEFs revealed a key role for ARNO in pathogen invasion and generation of pathogen-containing macropinosomes enriched in Arf1 and WRC. Salmonella recruited ARNO via Arf6 and the phosphoinositide phosphatase effector SopB-induced PIP3 generation. ARNO in turn triggered WRC recruitment and activation, which was dramatically enhanced when SopE and ARNO cooperated. Thus, we uncover a mechanism by which pathogen and host GEFs synergize to regulate WRC and trigger Salmonella invasion.  相似文献   

11.
Salmonella entry into epithelial host cells results from the host actin cytoskeleton reorganization that is induced by a group of bacterial proteins delivered to the host cells by the Salmonella type III secretion system. SopE, SopE2 and SopB activate CDC42 and Rac1 to intercept the signal transduction pathways involved in actin cytoskeleton rearrangements. SipA and SipC directly bind actin to modulate the actin dynamics facilitating bacterial entry. Biochemical studies have indicated that SipA decreases the critical concentration for actin polymerization and may be involved in promoting the initial actin polymerization in Salmonella-induced actin reorganization. In this report, we conducted experiments to analyze the in vivo function(s) of SipA during Salmonella invasion. SipA was found to be preferentially associated with peripheral cortical actin filaments but not stress fibres using permeabilized epithelial cells. When polarized Caco-2 cells were infected with Salmonella, actin cytoskeleton rearrangements induced by the wild-type strain had many filopodia structures that were intimately associated with the bacteria. In contrast, ruffles induced by the sipA null mutant were smoother and distant from the bacteria. We also found that the F-actin content in cells infected with the sipA mutant decreased nearly 80% as compared to uninfected cells or those infected with the wild-type Salmonella strain. Furthermore, expression of either the full-length or the SipA(459-684) actin-binding fragment induced prominent punctuate actin assembly in the cortical region of COS-1 cells. These results indicate that SipA is involved in modulating actin dynamics in cultured epithelial cells during Salmonella invasion.  相似文献   

12.
Salmonella species trigger host membrane ruffling to force their internalization into non-phagocytic intestinal epithelial cells. This requires bacterial effector protein delivery into the target cell via a type III secretion system. Six translocated effectors manipulate cellular actin dynamics, but how their direct and indirect activities are spatially and temporally co-ordinated to promote productive cytoskeletal rearrangements remains essentially unexplored. To gain further insight into this process, we applied mechanical cell fractionation and immunofluorescence microscopy to systematically investigate the subcellular localization of epitope-tagged effectors in transiently transfected and Salmonella-infected cultured cells. Although five effectors contain no apparent membrane-targeting domains, all six localized exclusively in the target cell plasma membrane fraction and correspondingly were visualized at the cell periphery, from where they induced distinct effects on the actin cytoskeleton. Unexpectedly, no translocated effector pool was detectable in the cell cytosol. Using parallel in vitro assays, we demonstrate that the prenylated cellular GTPase Cdc42 is necessary and sufficient for membrane association of the Salmonella GTP exchange factor and GTPase-activating protein mimics SopE and SptP, which have no intrinsic lipid affinity. The data show that the host plasma membrane is a critical interface for effector-target interaction, and establish versatile systems to further dissect effector interplay.  相似文献   

13.
We report the characterization of BopE, a type III secreted protein that is encoded adjacent to the Burkholderia pseudomallei bsa locus and is homologous to Salmonella enterica SopE/SopE2. Inactivation of bopE impaired bacterial entry into HeLa cells, indicating that BopE facilitates invasion. Consistent with this notion, BopE expressed in eukaryotic cells induced rearrangements in the subcortical actin cytoskeleton, and purified BopE exhibited guanine nucleotide exchange factor activity for Cdc42 and Rac1 in vitro.  相似文献   

14.
Type III secretion systems (TTSS) are virulence-associated components of many gram-negative bacteria that translocate bacterial proteins directly from the bacterial cytoplasm into the host cell. The Salmonella translocated effector protein SopE has no consensus cleavable amino-terminal secretion sequence, and the mechanism leading to its secretion through the Salmonella pathogenicity island 1 (SPI-1) TTSS is still not fully understood. There is evidence from other bacteria which suggests that the TTSS signal may reside within the 5' untranslated region (UTR) of the mRNA of secreted effectors. We investigated the role of the 5' UTR in the SPI-1 TTSS-mediated secretion of SopE using promoter fusions and obtained data indicating that the mRNA sequence is not involved in the secretion process. To clarify the proteinaceous versus RNA nature of the signal, we constructed frameshift mutations in the amino-terminal region of SopE of Salmonella enterica serovar Typhimurium SL1344. Only constructs with the native amino acid sequence were secreted, highlighting the importance of the amino acid sequence versus the mRNA sequence for secretion. Additionally, we obtained frameshift mutation data suggesting that the first 15 amino acids are important for secretion of SopE independent of the presence of the chaperone binding site. These data shed light on the nature of the signal for SopE secretion and highlight the importance of the amino-terminal amino acids for correct targeting and secretion of SopE via the SPI-1-encoded TTSS during host cell invasion.  相似文献   

15.
The bacterial enteropathogen Salmonella typhimurium employs a specialized type III secretion system to inject toxins into host cells, which trigger signaling cascades leading to cell death in macrophages, secretion of pro-inflammatory cytokines, or rearrangements of the host cell cytoskeleton and thus to bacterial invasion. Two of the injected toxins, SopE and the 69% identical protein SopE2, are highly efficient guanine nucleotide exchange factors for the RhoGTPase Cdc42 of the host cell. However, it has been a puzzle why S. typhimurium might employ two toxins with redundant function. We hypothesized that SopE and SopE2 might have different specificities for certain host cellular RhoGTPases. In vitro guanine nucleotide exchange assays and surface plasmon resonance measurements revealed that SopE is an efficient guanine nucleotide exchange factor for Cdc42 and Rac1, whereas SopE2 was interacting efficiently only with Cdc42, but not with Rac1. Affinity precipitation of Cdc42.GTP and Rac1.GTP from lysates and characteristic cytoskeletal rearrangements of infected tissue culture cells confirmed that SopE is highly efficient at activating Cdc42 and Rac1 in vivo, whereas SopE2 was efficiently activating Cdc42, but not Rac1. We conclude that the translocated effector proteins SopE and SopE2 allow S. typhimurium to specifically activate different sets of RhoGTPase signaling cascades.  相似文献   

16.
The pathogen Salmonella Typhimurium is a common cause of diarrhea and invades the gut tissue by injecting a cocktail of virulence factors into epithelial cells, triggering actin rearrangements, membrane ruffling and pathogen entry. One of these factors is SopE, a G‐nucleotide exchange factor for the host cellular Rho GTPases Rac1 and Cdc42. How SopE mediates cellular invasion is incompletely understood. Using genome‐scale RNAi screening we identified 72 known and novel host cell proteins affecting SopE‐mediated entry. Follow‐up assays assigned these ‘hits’ to particular steps of the invasion process; i.e., binding, effector injection, membrane ruffling, membrane closure and maturation of the Salmonella‐containing vacuole. Depletion of the COPI complex revealed a unique effect on virulence factor injection and membrane ruffling. Both effects are attributable to mislocalization of cholesterol, sphingolipids, Rac1 and Cdc42 away from the plasma membrane into a large intracellular compartment. Equivalent results were obtained with the vesicular stomatitis virus. Therefore, COPI‐facilitated maintenance of lipids may represent a novel, unifying mechanism essential for a wide range of pathogens, offering opportunities for designing new drugs.  相似文献   

17.
Abstract: In SH-SY5Y human neuroblastoma cells, insulin-like growth factor (IGF)-I mediates membrane ruffling and growth cone extension. We have previously shown that IGF-I activates the tyrosine phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated protein kinase (ERK) 2. In the current study, we examined which signaling pathway underlies IGF-I-mediated FAK phosphorylation and cytoskeletal changes and determined if an intact cytoskeleton was required for IGF-I signaling. Treatment of SH-SY5Y cells with cytochalasin D disrupted the actin cytoskeleton and prevented any morphological changes induced by IGF-I. Inhibitors of phosphatidylinositol 3-kinase (PI 3-K) blocked IGF-I-mediated changes in the actin cytoskeleton as measured by membrane ruffling. In contrast, PD98059, a selective inhibitor of ERK kinase, had no effect on IGF-I-induced membrane ruffling. In parallel with effects on the actin cytoskeleton, cytochalasin D and PI 3-K inhibitors blocked IGF-I-induced FAK tyrosine phosphorylation, whereas PD98059 had no effect. It is interesting that cytochalasin D did not block IGF-I-induced ERK2 tyrosine phosphorylation. Therefore, it is likely that FAK and ERK2 tyrosine phosphorylations are regulated by separate pathways during IGF-I signaling. Our study suggests that integrity as well as dynamic motility of the actin cytoskeleton mediated by PI 3-K is required for IGF-I-induced FAK tyrosine phosphorylation, but not for ERK2 activation.  相似文献   

18.
The entry of Salmonella into cultured epithelial cells is dependent on genes located in several adjacent chromosomal loci. One of these loci encodes the recently identified secretory proteins, denoted Sips ( Salmonella invasion proteins). SipB,C,D proteins are essential for the ability of the pathogen to invade epithelial cells. To examine if additional invasion-associated proteins were secreted by Salmonella dublin , the genes encoding already characterized secretory proteins were inactivated to facilitate this analysis. The proteins produced and secreted by a double fliM /polar sipB mutant of S. dublin were analysed; this revealed a set of novel secreted proteins. These proteins, which we denoted Sops ( Salmonella outer proteins), formed large filamentous aggregates in the medium of bacterial culture growing at 37°C. These aggregates contained five predominant proteins. Here we report the identification and characterization of one of these proteins, SopE, which is a novel invasion-associated secretory protein of S. dublin . A specific sopE mutant of S. dublin was found to be defective for invasion into epithelial cells. Upon interaction of Salmonella with HeLa cells, SopE was found to be translocated into the cytoplasm of the target cell by extracellular bacteria. The translocation of SopE was shown to be dependent on the Sip proteins because a polar sipB mutant did not translocate SopE across the HeLa cell membrane.  相似文献   

19.
鼠伤寒沙门菌表达两个不同的Ⅲ型分泌系统(typeⅢsecretion/translocation systems, TTSS),分别由致病岛1和2(pathogenicityi slands 1 and 2, SPI-1 and SPI-2)编码。细菌依赖TTSS将效应蛋白转运至宿主细胞,通过“触发”机制诱导细菌进入宿主细胞。这些效应蛋白可诱导细胞骨架重排,导致“巨吞饮”,促使细菌入侵。本综述依据多种沙门菌效应蛋白的功能,建立沙门菌侵袭模型。TTSS活化并转运效应蛋白进入宿主细胞发挥功能(Ⅰ)。小G蛋白交换因子SopE和肌醇磷酸酯酶SopB通过激活CDC42和Rac1,诱导内陷相关的蛋白聚集(Ⅱ)。SipA和SipC通过降低肌动蛋白临界浓度、刺激网素成束、稳定纤维状肌动蛋白(fibrousactin, F-actin)以及使肌动蛋白核化等功能,促使细菌入侵(Ⅲ)。SopB可使膜内陷区PIP2的浓度降低以及VAMP8聚集,促使细胞膜分裂(Ⅳ)。这些效应蛋白的联合作用,使膜皱褶在局部向外显著延伸,使沙门菌被细胞内形成的特殊膜结构包裹。沙门菌的另一种效应蛋白SptP,通过刺激小G蛋白内源性GTPase的活性,抑制小G蛋白的活化,使细胞膜恢复至原有状态(Ⅴ)。  相似文献   

20.
Enteropathogenic Escherichia coli (EPEC) is a bacterial pathogen that causes infantile diarrhea worldwide. EPEC injects a bacterial protein, translocated intimin receptor (Tir), into the host-cell plasma membrane where it acts as a receptor for the bacterial outer membrane protein, intimin. The interaction of Tir and intimin triggers a marked rearrangement of the host actin cytoskeleton into pedestals beneath adherent bacteria. On delivery into host cells, EPEC Tir is phosphorylated on tyrosine 474 of the intracellular carboxy-terminal domain, an event that is required for pedestal formation. Despite its essential role, the function of Tir tyrosine phosphorylation has not yet been elucidated. Here we show that tyrosine 474 of Tir directly binds the host-cell adaptor protein Nck, and that Nck is required for the recruitment of both neural Wiskott-Aldrich-syndrome protein (N-WASP) and the actin-related protein (Arp)2/3 complex to the EPEC pedestal, directly linking Tir to the cytoskeleton. Cells with null alleles of both mammalian Nck genes are resistant to the effects of EPEC on the actin cytoskeleton. These results implicate Nck adaptors as host-cell determinants of EPEC virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号