首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Cytochrome P-450 reductase and aryl hydrocarbon hydroxylase activities were investigated in hepatic microsomes from untreated C57BL/6J, DBA/2J, B6D2F1, and (B6D2) D2 mice. The dependence of the rate of P-450 reduction on the concentration of added pyridine nucleotide (NADPH or NADH) was biphasic in DBA/2J microsomes but monophasic in C57BL/6J microsomes. Analogous strain-specific patterns were observed when the dependence of the rate of benzpyrene hydroxylation on NADPH concentration was examined. In crosses between the two inbred strains and between B6D2F1 mice and DBA/2J mice, the biphasic pattern for both the reductase and the hydroxylase activities was found to co-segregate with the recessive allele for aromatic hydrocarbon responsiveness. These results might reflect an architectural difference between the microsomal electron transport systems of responsive and nonresponsive mice.  相似文献   

2.
Previous studies have demonstrated that the NADH‐dependent cytochrome b5 electron transfer pathway can support some cytochrome P450 monooxygenases in vitro in the absence of their normal redox partner, NADPH‐cytochrome P450 oxidoreductase. However, the ability of this pathway to support P450 activity in whole cells and in vivo remains unresolved. To address this question, liver microsomes and hepatocytes were prepared from hepatic cytochrome P450 oxidoreductase‐null mice and chlorzoxazone hydroxylation, a reaction catalyzed primarily by cytochrome P450 2E1, was evaluated. As expected, NADPH‐supported chlorzoxazone hydroxylation was absent in liver microsomes from oxidoreductase‐null mice, whereas NADH‐supported activity was about twofold higher than that found in normal (wild‐type) liver microsomes. This greater activity in oxidoreductase‐null microsomes could be attributed to the fourfold higher level of CYP2E1 and 1.4‐fold higher level of cytochrome b5. Chlorzoxazone hydroxylation in hepatocytes from oxidoreductase‐null mice was about 5% of that in hepatocytes from wild‐type mice and matched the results obtained with wild‐type microsomes, where activity obtained with NADH was about 5% of that obtained when both NADH and NADPH were included in the reaction mixture. These results argue that the cytochrome b5 electron transfer pathway can support a low but measurable level of CYP2E1 activity under physiological conditions. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:357–363, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20299  相似文献   

3.
The kinetic parameters of binding and hydroxylation of hydrophobic substrate 3,4-benzpyrene have been studied in liver microsomes of untreated and 3-methylcholanthrene treated mice. The reaction of benzpyrene-hydroxylase has been established to be described by hyperbolic curve, which characterizes the dependence of [ES] and d(P)/dt on [E0] for reactions in biphasic system. A key role of microsomal membraneous phospholipids has been revealed in competitive inhibition of 3,4-benzpyrene hydroxylation. For the adequate application of Michaelis--Menten theory for benzpyrene-hydroxylation reaction a modified method of 3,4-benzpyrene-hydroxylation in the samples with low content of protein in microsomal fraction is suggested.  相似文献   

4.
The kinetic mechanism of α-acetohydroxy acid isomeroreductase from Salmonella typhimurium has been investigated by initial velocity kinetic and product inhibition studies. The results of the initial velocity studies are consistent with a sequential reaction. The product inhibition studies suggest an ordered reaction with NADPH and the acetohydroxy acid adding in that order, and dihydroxy acid release before NADP release.NADPH binding has been studied both by fluorimetric techniques and difference spectroscopy. From these investigations it has been calculated that 4 moles of NADPH bind per mole of enzyme; the first molecule of NADPH binds with a dissociation constant of 1.7 × 10?6m, the subsequent 3 moles of NADPH bind with a constant of 6 × 10?6m. Biphasic kinetics have been demonstrated at a wide range of NADPH concentrations. The occurrence of biphasic kinetics and two separate binding constants are discussed in terms of negative cooperativity.  相似文献   

5.
The kinetics of internal electron transfer in human cytochrome P450 reductase have been studied using temperature-jump relaxation spectroscopy. Temperature perturbation of CPR reduced at the two-electron level with NADPH yields biphasic absorption transients at 450 and 600 nm. The observed rate, 1/tau, for the fast phase is 2200 +/- 300 s(-1). The absence of this phase in fluorescence transients and in absorption transients collected with dithionite-reduced enzyme indicates this phase does not report on electron/hydride transfer and is consistent with its origin in local conformational change in the vicinity of the FAD isoalloxazine ring. The slow phase (1/tau = 55 +/- 2 s(-1)) observed in the absorption transients obtained with CPR reduced at the two-electron level with NADPH reports on internal electron transfer: FAD(sq)-FMN(sq) --> FAD(ox)-FMN(hq). The observed rate of this transient is slower (1/tau = 11 +/- 0.5 s(-1)) in CPR reduced to the two-electron level by dithionite rather than NADPH, demonstrating that coenzyme binding has an important influence on the observed rate of internal electron transfer. Temperature perturbation experiments with CPR reduced with 10-fold molar excess of NADPH produce monophasic absorption transients (1/tau = 20 +/- 0.2 s(-1)) reporting on internal electron transfer: FAD(sq)-FMN(hq) --> FAD(hq)-FMN(sq). The observed rate constants for electron transfer are substantially less than those expected from analysis of CPR by electron-transfer theory (approximately 10(10) s(-1)). Potential gating mechanisms have been investigated using the temperature-jump method. Observed rates for electron transfer were unaffected in experiments performed in deuterated solvent, indicating that deprotonation does not gate the reaction. Introduction of glycerol into the sample significantly decreased the observed rate for internal electron transfer, suggesting conformational gating of the reaction. Replacement of Trp-676 with His-676 reduces approximately 2-fold the observed rate of internal electron transfer in two-electron-reduced enzyme, whereas the observed rate for FAD(sq)-FMN(hq) --> FAD(hq)-FMN(sq) transfer is increased approximately 13-fold in the W676H mutant reduced with a 10-fold molar excess of NADPH. The studies reveal altered redox properties of the FAD in W676H CPR. The data are discussed in the context of previous stopped-flow studies of human CPR and the X-ray crystallographic structure of rat CPR.  相似文献   

6.
A fungal cytochrome P450 monooxygenase (CYP5150A2) from the white-rot basidiomycete Phanerochaete chrysosporium was heterologously expressed in Escherichia coli and purified as an active form. The purified CYP5150A2 was capable of hydroxylating 4-propylbenzoic acid (PBA) with NADPH-dependent cytochrome P450 oxidoreductase (CPR) as the single redox partner; the reaction efficiency was improved by the addition of electron transfer protein cytochrome b5 (Cyt-b5). Furthermore, CYP5150A2 exhibited substantial activity with redox partners Cyt-b5 and NADH-dependent Cyt-b5 reductase (CB5R) even in the absence of CPR. These results indicated that a combination of CB5R and Cyt-b5 may be capable of donating both the first and the second electrons required for the monooxygenation reaction. Under reaction conditions in which the redox system was associated with the CB5R-dependent Cyt-b5 reduction system, the exogenous addition of CPR and NADPH had no effect on the PBA hydroxylation rate or on coupling efficiency, indicating that the transfer of the second electron from Cyt-b5 was the rate-limiting step in the monooxygenase system. In addition, the rate of PBA hydroxylation was significantly dependent on Cyt-b5 concentration, exhibiting Michaelis-Menten kinetics. This study provides indubitable evidence that the combination of CB5R and Cyt-b5 is an alternative redox partner facilitating the monooxygenase reaction catalyzed by CYP5150A2.  相似文献   

7.
Human erythrocytes were shown previously to catalyze the oxyhemoglobin-requiring hydroxylation of aniline, and the reaction was stimulated apparently preferentially by NADPH in the presence of methylene blue (K. S. Blisard and J. J. Mieyal,J. Biol. Chem.254, 5104, 1979). The current study provides a further characterization of the involvement of the NADPH-dependent electron transport system in this reaction. In accordance with the role of NADPH, the hydroxylase activity of erythrocytes or hemolysates from individuals with glucose-6-phosphate dehydrogenase deficiency (i.e., with diminished capacity to form NADPH) displayed decreased responses to glucose or glucose 6-phosphate, respectively, in the presence of methylene blue in comparison to samples from normal adults; maximal activity could be restored by direct addition of NADPH to the deficient hemolysates. Kinetic studies of the methylene blue-stimulated aniline hydroxylase activity of normal hemolysates revealed a biphasic dependence on NADPH concentrations: a plateau was observed at relatively low concentrations (KmNADPH ~ 20 μm), whereas saturation was not achieved at the higher concentrations of NADPH. The latter low efficiency phase (i.e., at the higher concentrations of NADPH) could be ascribed to a direct transfer of electrons from NADPH to methylene blue to hemoglobin. The high efficiency phase suggested involvement of the NADPH-dependent methemoglobin reductase; accordingly 2′-AMP, an analog of NADP+, effectively inhibited this reaction, but the pattern was noncompetitive. This behavior is suggestive of a mechanism by which both NADPH and methylene blue are substrates for the reductase and interact with it in a sequential fashion. The kinetic patterns observed for variation in NADPH concentration at several fixed concentrations of methylene blue, and vice versa, are consistent with this interpretation.  相似文献   

8.
Human cytochrome P450 1B1 (CYP1B1) catalyzes the hydroxylation of 17beta-estradiol (E(2)) at C-4, with a lesser activity at C-2. The E(2) 4-hydroxylase activity of human CYP1B1 was first observed in studies of MCF-7 breast cancer cells. Sequencing of polymerase chain reaction products revealed that CYP1B1 expressed in MCF-7 cells was not the previously characterized enzyme but a polymorphic form with leucine substituted for valine at position 432 and serine substituted for asparagine at position 453. To investigate the NADPH- and organic hydroperoxide-supported E(2) hydroxylase activities of the 432L, 453S form of human CYP1B1, the MCF-7 CYP1B1 cDNA was cloned and the enzyme was expressed in Sf9 insect cells. In microsomal assays supplemented with human NADPH:cytochrome P450 oxidoreductase, the expressed 432L, 453S form catalyzed NADPH-supported E(2) hydroxylation with a similar preference for 4-hydroxylation as the 432V, 453N form, with maximal rates of 1.97 and 0.37 nmol (min)(-1)(nmol cytochrome P450)(-1) for 4- and 2-hydroxylation, respectively. Cumeme hydroperoxide efficiently supported E(2) hydroxylation by both the 432V, 453N and 432L, 453S forms at several-fold higher rates than the NADPH-supported activities and with a lesser preference for E(2) 4- versus 2-hydroxylation (2:1). The hydroperoxide-supported activities of both forms were potently inhibited by the CYP1B1 inhibitor, 3,3',4, 4',5,5'-hexachlorobiphenyl. These results indicate that the 432V, 453N and 432L, 453S forms of CYP1B1 have similar catalytic properties for E(2) hydroxylation, and that human CYP1B1 is very efficient in catalyzing the hydroperoxide-dependent formation of catecholestrogens.  相似文献   

9.
A test of the 'iron-wire' hypothesis for the role of Fe2+ in promoting the electron transfer between the primary (Q1) and secondary (Q2) quinones in bacterial reaction centers of Rhodopseudomonas sphaeroides strain R-26.1 has been conducted. Kinetics of this step, P+Q-1Q2----P+Q1Q-2, and of recombination with the oxidized donor, P+Q-1----PQ1 and P+Q-2----PQ2, were followed optically at 4 degrees C in normal iron-containing reaction centers and in reaction centers having 58% Mn2+, replacing Fe2+. This significant replacement is accomplished biosynthetically by control of the growth conditions, and so should preserve the native interactions between the cofactors. There are no significant differences observed in the recombination kinetics of the two types of reaction centers. The electron transfer between the quinones was observed to show apparent biphasic kinetics with major components of approx. 170 microseconds and 1.5 ms at 4 degrees C and pH = 7.5. There is no statistically significant difference observed between the two types of reaction centers. This major change in the electronic structure of the metal and the unaltered kinetics discount the likelihood of any direct orbital participation of the metal in the electron transfer between the quinones.  相似文献   

10.
The monooxygenase of Aspergillus ochraceus TS capable of 11 alpha-hydroxylation of progesterone has been resolved into three components and characterized as (i) cytochrome P450, (ii) NADPH-cytochrome P450-reductase and (iii) phosphatidyl choline. The 11 alpha-hydroxylase was observed to be NADPH dependent, and hydroxylation was enhanced by a NADPH regenerating system. This fungal monooxygenase has many features in common with that of mammalian liver microsomes. The role of mammalian cytochrome P450 inducers were tested for induction of 11 alpha-hydroxylase in Aspergillus ochraceus TS. The reductase has been partially purified.  相似文献   

11.
Cytochrome P450 BM-3 from Bacillus megaterium catalyzed NADPH-supported indole hydroxylation under alkaline conditions with homotropic cooperativity toward indole. The activity was also found with the support of H2O2, tert-butyl hydroperoxide (tBuOOH), or cumene hydroperoxide (CuOOH). Enhanced activity and heterotropic cooperativity were observed in CuOOH-supported hydroxylation, and both the Hill coefficient and substrate concentration required for half-maximal activity in the CuOOH-supported reaction were much lower than those in the H2O2-, tBuOOH-, or NADPH-supported reactions. CuOOH greatly enhanced NADPH consumption and indole hydroxylation in the NADPH-supported reaction. However, when CuOOH was replaced by tBuOOH or H2O2, heterotropic cooperativity was not observed. Spectral studies also confirmed that CuOOH stimulated indole binding to P450 BM-3. Interestingly, a mutant enzyme with enhanced indole-hydroxylation activity, F87V (Phe87 was replaced by Val), lost homotropic cooperativity towards indole and heterotropic cooperativity towards CuOOH, indicating that the active-site structure affects the cooperativities.  相似文献   

12.
Rat liver cytochrome P-450 mediates a novel reaction between equimolar quantities of dissolved oxygen and organic hydroperoxides. The reaction shares some of the properties of both NADPH-O2 dependent hydroxylation and NADPH-O2 independent peroxidase reactions, but does not require either NADPH, phosphatidylcholine, or any substrates other than hydroperoxide and oxygen. It proceeds at a rate approximately 100 times faster than other well known P-450 hydroxylation reactions. Monitoring the rate of O2 consumption in this novel reaction may be a simple and rapid means for studying the kinetics of cytochrome P-450.  相似文献   

13.
Ge L  Seah SY 《Journal of bacteriology》2006,188(20):7205-7210
Pseudomonas aeruginosa is an opportunistic pathogen that produces the siderophore pyoverdine, which enables it to acquire the essential nutrient iron from its host. Formation of the iron-chelating hydroxamate functional group in pyoverdine requires the enzyme PvdA, a flavin-dependent monooxygenase that catalyzes the N(5) hydroxylation of l-ornithine. pvdA from P. aeruginosa was successfully overexpressed in Escherichia coli, and the enzyme was purified for the first time. The enzyme possessed its maximum activity at pH 8.0. In the absence of l-ornithine, PvdA has an NADPH oxidase activity of 0.24 +/- 0.02 micromol min(-1) mg(-1). The substrate l-ornithine stimulated this activity by a factor of 5, and the reaction was tightly coupled to the formation of hydroxylamine. The enzyme is specific for NADPH and flavin adenine dinucleotide (FAD(+)) as cofactors, as it cannot utilize NADH and flavin mononucleotide. By fluorescence titration, the dissociation constants for NADPH and FAD(+) were determined to be 105.6 +/- 6.0 microM and 9.9 +/- 0.3 microM, respectively. Steady-state kinetic analysis showed that the l-ornithine-dependent NADPH oxidation obeyed Michaelis-Menten kinetics with apparent K(m) and V(max) values of 0.58 mM and 1.34 micromol min(-1) mg(-1). l-Lysine was a nonsubstrate effector that stimulated NADPH oxidation, but uncoupling occurred and hydrogen peroxide instead of hydroxylated l-lysine was produced. l-2,4-Diaminobutyrate, l-homoserine, and 5-aminopentanoic acid were not substrates or effectors, but they were competitive inhibitors of the l-ornithine-dependent NADPH oxidation reaction, with K(ic)s of 3 to 8 mM. The results indicate that the chemical nature of effectors is important for simulation of the NADPH oxidation rate in PvdA.  相似文献   

14.
The complex monooxygenatic enzyme exhibits different functional behaviour at different integrational levels, thus indicating distinct organizational states. The aerobic NADPH reduction of microsomes, solubilized and reconstituted systems follows a biphasic kinetics, the two phases are attributed to associated state (cluster) and random cytochrome P-450 reduction. States of different cytochrome P-450/reductase ratio (associates) could not be differentiated in rate. Detergents (Triton N-101, cholate) are capable of disintegrating the system, at last only monophasic slow reduction is observed. The hydroxylation activity follows the respective reduction behaviour. Sedimentation analysis proves the distinct structural states. Reconstitution of the system can be achieved by means of detergent dilution as well as by combining the constituents. The activity of the reconstituted system depends on the composition of the phospholipids as well as on its organizational state. The reassociation of the solubilized enzyme system at nearly microsomal components stoichiometry (Triton N-101 dilution) proves to be thermodynamically governed leading to self-organization of the system without matrix prerequisite. Individual step rate constants of the reduction reaction and other system parameters are accessible by means of a model treatment of the disintegrated system. Further application to mixed kinetics systems is in progress.  相似文献   

15.
Changes in the ultraviolet/visible spectrum of human oxyferrohemoglobin upon addition of aniline were indicative of a concentration-dependent interaction of aniline with hemoglobin, resulting in accelerated autooxidation of the hemoprotein. Oxygen was found to markedly inhibit this interaction of aniline with oxyhemoglobin. The dependence of the rate of autooxidation on aniline concentration followed saturation kinetics and showed a half-maximal response at 8 mM aniline. This value is equal to the value of Km for aniline as substrate for the O2-dependent, hemoglobin-catalyzed hydroxylation reaction which yields p-aminophenol (Mieyal, J. J., Ackerman, R.S., Blumer, J.L., and Freeman, L.S. (1976) J. Biol. Chem. 241, 3436-3441). Thus, an aniline-oxyhemoglobin complex is implicated in the overall catalytic reaction. No detectable p-aminophenol was formed when aniline was combined with oxyhemoglobin in the absence of an electron donor, but hydroxylation of aniline does occur when NADPH, NADPH plus P-450 reductase, or Na2S2O4 are also added.  相似文献   

16.
The reaction of Old Yellow Enzyme (OYE) with pyridine nucleotides has been examined using steady state kinetics, rapid reaction kinetics, and equilibrium binding. alpha-NADPH, beta-NADPH, and the acid breakdown products of NADPH all bind to oxidized OYE with dissociation constants below 1 microM. These complexes produce characteristic red shifts in the absorption spectrum of OYE. A similar red shift which occurs after multiple turnovers of OYE with NADPH has been found to be due to an impurity in the NADPH preparation, possibly an acid breakdown product. Anions such as chloride, acetate, azide, and phenolates compete with the pyridine nucleotides for binding to a common site in oxidized OYE. Anaerobic reduction of OYE by NADPH proceeds via two intermediates to establish a readily reversible equilibrium. In contrast to most other NADPH-dependent enzymes, both alpha- and beta-NADPH are capable of reducing OYE, and alpha-NADPH is more effective. Using beta-[4(R)-2H]NADPH, a primary deuterium isotope effect was observed in the reduction reaction. Results from rapid reaction and steady state studies showed that reduction of OYE was rate limiting in turnover. Consistent with this, the turnover number with alpha-NADPH was significantly higher than that with beta-NADPH.  相似文献   

17.
The hydroxylation of CMP-N-acetylneuraminic acid (CMP-NeuAc) in the formation of CMP-N-glycolylneuraminic acid requires several components which comprise an electron transport system. A protein, which replaces one of the components, was purified to homogeneity from a horse erythrocyte lysate. Based on its partial amino acid sequence and immunological cross-reactivity, this protein was identified as soluble cytochrome b5 lacking the membrane domain of microsomal cytochrome b5. The electron transport system involved in CMP-NeuAc hydroxylation was reconstituted, and then characterized using the purified horse soluble cytochrome b5 and a fraction from mouse liver cytosol. The hydroxylation reaction requires a reducing reagent, DTT being the most effective. Either NADH or NADPH was used as an electron donor, but the activity with NADPH amounted to about 74% of that with NADH. The hydroxylation was inhibited by salts and azide due to interruption of the electron transport from NAD(P)H to cytochrome b5 and in the terminal enzyme reaction, respectively.  相似文献   

18.
The novel cytochrome P450/redox partner fusion enzyme CYP116B1 from Cupriavidus?metallidurans was expressed in and purified from Escherichia coli. Isolated CYP116B1 exhibited a characteristic Fe(II)CO complex with Soret maximum at 449 nm. EPR and resonance Raman analyses indicated low-spin, cysteinate-coordinated ferric haem iron at both 10 K and ambient temperature, respectively, for oxidized CYP116B1. The EPR of reduced CYP116B1 demonstrated stoichiometric binding of a 2Fe-2S cluster in the reductase domain. FMN binding in the reductase domain was confirmed by flavin fluorescence studies. Steady-state reduction of cytochrome c and ferricyanide were supported by both NADPH/NADH, with NADPH used more efficiently (K(m[NADPH]) = 0.9 ± 0.5 μM and K(m[NADH]) = 399.1 ± 52.1 μM). Stopped-flow studies of NAD(P)H-dependent electron transfer to the reductase confirmed the preference for NADPH. The reduction potential of the P450 haem iron was -301 ± 7 mV, with retention of haem thiolate ligation in the ferrous enzyme. Redox potentials for the 2Fe-2S and FMN cofactors were more positive than that of the haem iron. Multi-angle laser light scattering demonstrated CYP116B1 to be monomeric. Type I (substrate-like) binding of selected unsaturated fatty acids (myristoleic, palmitoleic and arachidonic acids) was shown, but these substrates were not oxidized by CYP116B1. However, CYP116B1 catalysed hydroxylation (on propyl chains) of the herbicides S-ethyl dipropylthiocarbamate (EPTC) and S-propyl dipropylthiocarbamate (vernolate), and the subsequent N-dealkylation of vernolate. CYP116B1 thus has similar thiocarbamate-oxidizing catalytic properties to Rhodoccocus erythropolis CYP116A1, a P450 involved in the oxidative degradation of EPTC.  相似文献   

19.
The interactions between cytochrome P450 2B4 (d-2B4), NADPH:cytochrome P450 reductase and cytochrome b5 have been investigated in the monomeric reconstituted P450 2B4-containing monooxygenase system in the presence of a substrate (7-pentoxyresorufin) and an electron donor, NADPH. Each partner was immobilized via its amino groups on the carboxymethyldextran biochip surface of the optical biosensor IAsys+. Such mode immobilization was not accompanied by any loss of activities of the immobilized proteins. The formation of binary d-Fp/d-2B4 complexes was registered. The association/dissociation rate constants (kon/koff) were (0.013 ± 0.005) × 106 M?1 s?1/0.05 ± 0.02 s?1, and dissociation constant (KD) was (0.26 ± 0.13) × 10?6 M. Comparison of kon, koff and KD values for d-Fp/d-2B4 complexes formed under hydroxylation (O-dealkylation) with corresponding constants obtained for the oxidized proteins of (0.10 ± 0.03) × 106 M?1 s?1/(0.14 ± 0.06) s?1, and (0.71 ± 0.37) × 10?6 M, respectively shows that the decrease in kon and an insignificant decrease in KD are associated with the increase of complex lifetime during transition from the oxidized to hydroxylation conditions. Complex formation between d-Fp and d-b5 was not registered in both hydroxylation conditions and in the case of oxidized forms of these proteins. In both cases formation of the ternary d-Fp/d-2B4/d-b5 complexes occurred.  相似文献   

20.
R-(+)-Pulegone, a monoterpene ketone, is a potent hepatotoxin. One of the major metabolites of pulegone has been shown to be p-cresol, a glutathione depletor and a known toxin. Allylic hydroxylation of 4-methyl-2-cyclohexenone results in the formation of p-cresol. The present study documents for the first time the involvement of cytochrome P-450 system and the stereochemical preference in this hydroxylation reaction. Incubation of PB-induced rat liver microsomes as well as reconstituted PB-induced cytochrome P-450 system with +/-4-methyl-2-cyclohexenone in the presence of NADPH and O(2) resulted in the formation of 4-hydroxy-4-methyl-2-cyclohexenone and p-cresol. From the assay mixture, the unreacted substrate, viz., 4-methyl-2-cyclohexenone was isolated and purified and its optical rotation was found to be 2.2 (in CHCl(3)). The observed enantiomeric excess in the recovered substrate was further confirmed by circular dichroism (CD) studies. The CD spectrum has a peak at 292nm and a trough at 270nm. The enantiomeric excess in the recovered substrate indicates that the hydroxylation at C-4 position is stereoselective. The significance of these results with respect to pulegone-mediated hepatotoxicity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号