首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steroid receptor antagonists are important biochemical probes for understanding the mode of steroid hormone action. We have studied the interaction between rat liver glucocorticoid receptor and a newly synthesized antisteroid ZK98299 (13-antigestagen; [11-beta-(4-dimethylaminophenyl)-17a-hydroxy-17 beta-(3- hydroxypropyl)-13 alpha-methyl-4,9-gonadien-3-one]). Glucocorticoid receptor from freshly prepared hepatic cytosol bound [3H]ZK98299 with affinity approximately equal to that of [3H]triamcinolone acetonide. The binding of both steroids reached a maximum at 4 h at 0 degrees C. Both ligands were able to compete for the steroid binding site but progesterone, estradiol and dihydrotestosterone (DHT) failed to compete for the [3H]ZK98299 and [3H]triamcinolone acetonide binding. While [3H]ZK98299 binding to glucocorticoid receptor could occur in the presence of iodoacetamide and N-ethylmaleimide (NEM), [3H]triamcinolone acetonide binding capacity was completely abolished following such treatments. The [3H]ZK98299-receptor complexes sedimented as 9 S and 4 S molecules under control (4 degrees C) and receptor transforming (23 degrees C) conditions, and exhibited a faster rate of dissociation at 23 degrees C when compared with [3H]triamcinolone acetonide-receptor complexes. These results indicate that ZK98299 interacts with hepatic glucocorticoid receptor. The differential effects of iodoacetamide and NEM on the interaction of glucocorticoid receptor with ZK98299 and triamcinolone acetonide, and the faster rate of dissociation of [3H]ZK98299-receptor complexes suggest that treatment with these agents (NEM and iodoacetamide) results in distinct conformational changes in glucocorticoid receptor structure with respect to triamcinolone acetonide and ZK98299 binding. Alternatively, ZK98299 may be interacting with a site which is distinct from one which accepts triamcinolone acetonide.  相似文献   

2.
Steroid antagonists, at receptor level, are valuable tools for elucidating the mechanism of steroid hormone action. We have examined and compared the interaction of avian and mammalian progesterone receptors with progestins; progesterone and R5020, and a newly synthesized antiprogesterone ZK98299. In the chicken oviduct cytosol, [3H]R5020 binding to macromolecule(s) could be eliminated with prior incubation of cytosol with excess radioinert steroids progesterone or R5020 but not ZK98299. Alternatively, [3H]ZK98299 binding in the chicken oviduct was not abolished in the presence of excess progesterone, R5020, or ZK98299. In the calf uterine cytosol, [3H]R5020 or [3H]ZK98299 binding was competeable with progesterone, R5020 and ZK98299 but not estradiol, DHT or cortisol. Furthermore, immunoprecipitation and protein A-Sepharose adsorption analysis revealed that in the calf uterine cytosol, the [3H]R5020-receptor complexes were recognized by anti-progesterone receptor monoclonal antibody PR6. This antibody, however, did not recognize [3H]ZK98299-receptor complexes. When phosphorylation of progesterone receptor was attempted in the chicken oviduct mince, presence of progesterone resulted in an increased phosphorylation of the known components A (79 kDa) and B (110 kDa) receptor proteins. Presence of ZK98299 neither enhanced the extent of phosphorylation of A and B proteins nor did it reverse the progesterone-dependent increase in the phosphorylation. The avian progesterone receptor, therefore, has unique steroid binding site(s) that exclude(s) interaction with ZK98299. The lack of immunorecognition of calf uterine [3H]ZK98299-receptor complexes, suggests that ZK98299 is either interacting with macromolecule(s) other than the progesterone receptor or with another site on the same protein. Alternatively, the antisteroid binds to the R5020 binding site but the complex adopts a conformation that is not recognized by the PRG antibodies.  相似文献   

3.
We have examined steroid binding characteristics of a newly synthesized antisteroid, ZK98299 [onapristone, 11 beta-(4-dimethylaminophenyl)-17 alpha-hydroxy-17 beta-(3-hydroxypropyl)- 13 alpha-methyl-4,9-gonadien-3-one], in the calf uterus cytosol and compared the nature of this interaction with the binding of progesterone receptor (PR) agonist R5020 [promegestone, 17,21-dimethylpregna-4,9-diene-3,20-dione]. In the freshly prepared cytosol, [3H]ZK98299 interacted specifically with a macromolecule: the binding was abolished in the presence of excess progestins (R5020 and progesterone) and the antiprogesterone ZK98299. The high affinity (Kd = 2.5 nM) interaction between [3H]ZK98299 and PR was temperature- and time-dependent, reaching an optimum by 2-3 h at 0 degrees C, and was facilitated by 20 mM Na2MoO4. Under nontransforming conditions, [3H]ZK98299-receptor complexes sedimented as 8 S species in 8-30% linear glycerol gradients. Upon salt or thermal transformation, there was a loss of the 8 S form, with only a small fraction of total complexes (5-7%) binding to DNA-cellulose. In contrast, transformed [3H]R5020-receptor complexes exhibited a greater extent of binding (25-55%) to DNA-cellulose. [3H]ZK98299-receptor complexes could be resolved into two ionic species over DEAE-Sephacel following incubation of the complexes at 0 or 23 degrees C. [3H]ZK98299 binding was sensitive to sulfhydryl group modification as beta-mercaptoethanol increased the extent of steroid binding. Although treatment with iodoacetamide (IA) abolished [3H]R5020 binding, there was a significant (nearly twofold) increase in the [3H]ZK98299 binding. The results of this study point to similarities and differences between the steroid binding properties of the uterine PR occupied by R5020 and ZK98299: both steroids appear to bind the same 8 S receptor but exhibit differential DNA binding and sensitivity to IA. The reported antagonist properties of ZK98299 may, therefore, be explained on the basis of a distinct receptor conformation induced by the antisteroid.  相似文献   

4.
5.
Ovariectomized early pregnant rats given continuous steroid replacement therapy have been treated with antiprogesterone steroid, ZK98299 or RU38486. At 24 h following treatment, uterine explants in culture were found to produce significantly greater amounts of PGF2 alpha, but not of 6-keto-PGF1 alpha, when compared to controls. ZK98299 and RU38486 gave almost identical levels of uterine PG production. The 6-keto-PGF1 alpha/PGF2 alpha production ratio for uteri of treated rats was decreased by 45% relative to controls. Similar changes in uterine PGF2 alpha production and 6-keto-PGF1 alpha/PGF2 alpha ratio have been shown for ovariectomized early pregnant rats in which progesterone has been withdrawn when compared to control animals. It has been suggested that inhibiting or withdrawing progesterone in rat uteri exposed to estradiol and progesterone may lead to a stimulation of endoperoxide F-reductase and/or E2 9-ketoreductase activities. The presence of luminal fluid in the uteri was observed for animals treated with antiprogesterone steroid or in which progesterone had been withdrawn. This was associated with a decrease in % dry weight for the uteri of these animals.  相似文献   

6.
Antiprogesterone steroid, ZK98299 (Schering, Germany) or RU38486 (Roussel Uclaf, France), has been administered to ovariectomized early pregnant rats receiving continuous steroid replacement. At 24 h later, uterine explants of rats treated with ZK98299 produced significantly greater amounts of prostaglandin E (PGE) than did controls or animals treated with RU38486. The PGE/PGF2 alpha production ratio for uteri of rats treated with ZK98299 or RU38486 was markedly lowered compared to controls, and a significant decrease occurred in the PGE/6-keto PGF1 alpha production ratio for rats treated with RU38486. For ovariectomized early pregnant rats in which progesterone has been withdrawn, a significant reduction in uterine PGE production occurred when compared to control animals. There was also a marked decrease in PGE/PGF2 alpha production ratio, and the PGE/6-keto PGF1 alpha production ratio tended to be lowered relative to controls. The stimulated production (as by ZK98299) or unchanged production of PGE (as by RU38486) indicates a selective action on uterine PGE synthesis among the antiprogesterone steroids, and these findings cannot be explained simply in terms of a blockage of progesterone receptors.  相似文献   

7.
The inhibition of prostaglandin (PG) synthesis found in early human decidua is antagonized by the anti-progestin, ZK 98734. This action of ZK 98734 is abolished by actinomycin, an inhibitor of protein synthesis and by the calcium channel blocker, verapamil. Calmidazolium, an antagonist of the intracellular calcium binding protein calmodulin was less effective in inhibiting the stimulation of PG synthesis induced by the anti-progestin. Chronic stimulation of protein kinase C activity by 1-oleoyl-2-acetyl-sn-glycerol (OAG) induced a slight reduction of PG release and was antagonized by polymixin. These findings suggest that inhibition of PG synthesis in early pregnancy is caused by progesterone and that increased release of PGs induced by anti-progestins is dependent on new protein formation and requires extracellular calcium.  相似文献   

8.
The antiprogestin ZK 98.734 (11 beta-(4-dimethylaminophenyl-17 beta-hydroxy-17 alpha-(3-hydroxy-prop-1(Z)-enyl-4,9(10)-estradien-3-one) was administered i.m. (5 mg/day) for three consecutive days to two groups of common marmosets. In one group (nonpregnant, n = 6), it was injected during the luteal phase, and to the second group (pregnant, n = 7), it was injected during early pregnancy, on Days 24-26 of the mid-cycle estradiol peak. Administration of ZK 98.734 during the luteal phase caused a sharp drop in plasma progesterone levels. The luteal phase was shortened whether the drug was administered during the early or the late luteal phase. Similarly, administration of ZK 98.734 during early pregnancy caused a significant drop in progesterone levels, and pregnancy was terminated in all of the animals. The post-treatment cycles in both groups of animals were ovulatory and of normal duration. 3H-ZK 98.734 showed specific binding to myometrial cytosol fraction. ZK 98.734 also displaced the binding of 3H-progesterone to progesterone receptors. However, progesterone had higher binding affinity than did ZK 98.734. The antifertility action of ZK 98.734 could be a result either of its luteolytic action or of its blocking the progesterone receptors in the target tissue. This study, therefore, indicates that in the common marmoset ZK 98.734 is a progesterone antagonist with a potential to terminate early pregnancy.  相似文献   

9.
The binding of ZK 98.299, a synthetic progesterone antagonist, with human endometrium and myometrium cytosol was studied and compared with that of progesterone. Progesterone showed specific saturable binding to its receptors in both endometrium and myometrium. ZK 98.299 and progesterone were mutually competitive for binding to progesterone receptors; however, the relative binding affinity of ZK 98.299 was 16% that of progesterone. ZK 98.299 exchanged the progesterone-labelled receptor sites. [3H]ZK 98.299 showed specific binding which was linearly related to the cytosol protein concentration. The binding was not saturable at 15 nM of ligand. The binding capacity and binding affinity of ZK 98.299 receptor was less than that of progesterone. Progesterone also partially displaced the binding of [3H]ZK 98.299. This study suggest that ZK 98.299 and progesterone both bind to the same protein. However, whether ZK 98.299 binds to progesterone receptors alone or even to other functionally related sites is not known. It appears that ZK 98.299 when present in higher concentration than progesterone would be an effective receptor ligand.  相似文献   

10.
In order to gain a better understanding of the distinctive mechanisms of the various types of antiprogestins, we have characterized in vitro ligand binding, specific DNA binding and phosphorylation of progesterone receptor (PR) from T47D cells after treatment of cells with progestins (progesterone, R5020) and antiprogestins (RU486, ZK98299, Org 31806 and Org 31710). Treatment of the cells with R5020 or PR antagonists, with the exception of ZK98299, resulted in a quantitative upshift of PR-A and PR-B indicative of ligand/DNA-induced phosphorylation of PR. Treatment of cells with RU486, Org 31710 or Org 31806, but not R5020 or ZK98299 resulted in detectable PR-progesterone response element complexes (PR-PREc) as assessed by gel mobility shift assay. Although treatment of cells with ZK98299, a type I PR antagonist, did not induce phosphorylation, the antiprogestins, Org 31806 and Org 31710, in a manner identical to RU486, did. Our data suggest that Org 31806 and Org 31710 affect propertie s of PR from T47D cells that are similar to RU486. (Mol Cell Biochem 175: 205–212, 1997)  相似文献   

11.
The influence of sex steroid and pregnancy on the tissue concentration, uterine motor effect and receptor binding of VIP has been studied in the female genital tract of pregnant rabbits and oophorectomized rabbits during progesterone and/or oestrogen substitution. The concentration of immunoreactive VIP was high in the vagina and cervix, and lower in the uterine body of both pregnant and non-pregnant rabbits. A significant decrease in the VIP concentration (pmol/g wet weight) of the uterine body was observed toward term of pregnancy. The total uterine content of VIP, however, seems unchanged. Treatment of oophorectomized rabbits with ovarian steroids had no effect on the VIP concentration. The sensitivity for and potency of VIP on the relaxation of uterine muscle was significantly higher in oophorectomized rabbits treated with a combination of progesterone and oestrogen than in control rabbits. No difference was observed between non-pregnant and pregnant rabbits. The degradation and binding affinity for 125I-labelled VIP was highest in oophorectomized rabbits substituted with both oestrogen and progesterone. In the pregnant rabbits, the amount of receptors was decreased near term. In conclusion, sex steroids are able to influence the motor effect of VIP at the receptor level, but have no effect on the VIP concentration in the female genital tract.  相似文献   

12.
W Sutanto  E R de Kloet 《Life sciences》1988,43(19):1537-1543
In vitro cytosol binding assays have shown the properties of binding of a novel steroid, ZK91587 (15 beta, 16 beta-methylene-mexrenone) in the brain of rats. Scatchard and Woolf analyses of the binding data reveal the binding of [3H] ZK91587 to the total hippocampal corticosteroid receptor sites with high affinity (Kd 1.9 nM), and low capacity (Bmax 17.3 fmol/mg protein). When 100-fold excess RU28362 was included simultaneously with [3H] ZK91587, the labelled steroid binds with the same affinity (Kd 1.8 nM) and capacity (Bmax 15.5 fmol/mg protein). Relative binding affinities (RBA) of various steroids for the Type I or Type II corticosteroid receptor in these animals are: Type I: ZK91587 = corticosterone (B) greater than cortisol (F); Type II: B greater than F much greater than ZK91587. In the binding kinetic study, ZK91587 has a high association rate of binding in the rat (20.0 x 10(7) M-1 min-1). The steroid dissociates following a one slope pattern (t 1/2 30 h), indicating, the present data demonstrate that in the rat hippocampus, ZK91587 binds specifically to the Type I (corticosterone-preferring/mineralocorticoid-like) receptor.  相似文献   

13.
14.
Winneker RC  Bitran D  Zhang Z 《Steroids》2003,68(10-13):915-920
Trimegestone (TMG) is a 19-norpregnane progestin being developed, in combination with an estrogen, for the treatment of postmenopausal symptoms. TMG binds to the human progesterone receptor with an affinity greater than medroxyprogesterone acetate (MPA), norethindrone (NET), and levonorgestrel (LNG). In contrast, TMG binds with low affinity to the androgen, glucocorticoid and mineralocorticoid receptor and has no measurable affinity for the estrogen receptor. Compared to other progestins, TMG demonstrates an improved separation of its PR affinity from its affinity to other classical steroid hormone receptors. In vivo, TMG has potent progestin activity. For example, TMG produces glandular differentiation of the uterine endometrium in rabbits and is about 30 and 60 times more potent than MPA and NET, respectively. In the rat, TMG maintains pregnancy, induces deciduoma formation, inhibits ovulation and has uterine anti-estrogenic activity. With respect to these endpoints, TMG appears to be more potent and selective on uterine epithelial responses than other classical progestin responses. In vivo, TMG does not have significant androgenic, glucocorticoid, anti-glucocorticoid or mineralocorticoid activity but does have anti-mineralocorticoid activity and modest anti-androgenic effects. This overall profile is qualitatively similar to progesterone. When TMG is administered chronically, it antagonizes the effect of estradiol on the uterus but does not antagonize the beneficial bone sparing activity of estradiol. In rat studies evaluating CNS GABAA receptor modulatory activity, TMG is less active on this likely undesirable endpoint than progesterone and norethindrone acetate, which may translate into fewer mood-related side effects. The results indicate that TMG is a potent and selective progestin with a preclinical profile well suited for hormone replacement therapy.  相似文献   

15.
Almost all modifications of the steroid binding domain of glucocorticoid receptors are known to cause a reduction or loss of steroid binding activity. Nonetheless, we now report that mutations of cysteine 656 of the rat receptor, which was previously suspected to be a crucial amino acid for the binding process, have produced "super" receptors. These receptors displayed an increased affinity for glucocorticoid steroids and a decreased relative affinity for cross-reacting steroids such as progesterone and aldosterone. The increased in vitro affinity of the super receptors was maintained in a whole cell bioassay. These results indicate that additional modifications of the glucocorticoid receptor, and probably the other steroid receptors, may further increase the binding affinity and/or specificity.  相似文献   

16.
This investigation examined the effects of Streptozotocin diabetes in pregnancy on several parameters of glucocorticoid action in the rat placenta. Pregnant diabetic rats showed reduced body weight, increased adrenal weight and serum corticosterone concentrations. Glucocorticoid receptors in placental cytosol of labyrinthine zone, measured in the absence of MoO4Na2 were similar in control and diabetic rats, but after addition of MoO4Na2 receptor number were moderately, but significantly reduced in diabetic placentas (P less than 0.01). No changes in affinity were detected in saturation analysis. Furthermore, transformation of the receptor assessed by its capacity for binding to DNA-cellulose, was enhanced in diabetic animals, suggesting increased efficiency of the receptor-bound hormone. Since the function of the glucocorticoid receptor of rat placenta may be the inhibition of local progesterone production (Heller and De Nicola, J. steroid Biochem. 19 (1983) 1339-1343), we determined progesterone synthesis in vitro and found that diabetic placentas synthesized significantly less progesterone than control tissue (P less than 0.05). Lastly, we found that the metabolism of corticosterone to 11-dehydrocorticosterone, while declining in control placentas as pregnancy advanced, it was sustained in diabetic pregnancy. It is suggested that diabetic rat placentas showed increased activity towards the glucocorticoid receptor, resulting in reduction in progesterone synthesis and sustained catabolism of corticosterone. The latter may possibly constitute a compensatory mechanism to protect the fetal compartment from high levels of maternal glucocorticoids.  相似文献   

17.
Win 49596 is an orally active antiandrogen in the rat. This report describes a series of in vitro and in vivo studies which were performed to characterize the mechanism of action of this compound. In vitro competition and Lineweaver-Burk analyses indicate that Win 49596 binds competitively to the rat ventral prostate androgen receptor with a Ki of 2.2 +/- 0.4 microM. Similar to other androgen antagonists, the relative binding affinity (RBA) of Win 49596 was greater after 1 h of incubation with androgen receptor than after an 18 h incubation (RBA of 2.2 versus 0.05, respectively). Win 49596 did not bind to rat cytosolic uterine estrogen or progesterone receptors or thymus glucocorticoid receptors. Furthermore, Win 49596 did not inhibit rat ventral prostate 5 alpha-reductase or 3 alpha-oxidoreductase, rat adrenal 3 beta-hydroxysteroid dehydrogenase or human placental aromatase activity in vitro at concentrations as high as 10 microM. A series of in vivo studies demonstrated that Win 49596 inhibited the uptake of [3H]testosterone as well as testosterone-induced nuclear accumulation of androgen receptor in the rat ventral prostate. Collectively, these results support direct androgen receptor antagonism as the mechanism for the antiandrogenic effects of Win 49596.  相似文献   

18.
In vitro binding affinities of various progestins to cytosol and nuclear progesterone receptors of rabbit uterus were determined and correlated with the biological potency of these steroids. In addition, cytosol and nuclear progesterone receptor levels were measured after a 5-day administration of different progestins (0.5 mg/kg daily) with variable biologic activites. The receptor levels were compared with the bilological response; the induction of uteroglobin synthesis. Cytosol and nuclear progesterone receptors had identical steroid binding properties (r = 0.98). The correlation between the in vitro binding affinity (cytosol or nuclear) and the in vivo biologic activity of the steroids was good (r = 0.73). After a 5-day treatment with progestins, the nuclear receptor concentration correlated in an inverse manner (r = ?0.84) with the uterine fluid unteroglobin concentration. A similar, but slightly weaker correlation (r = ?0.81) was also found for the cytosol receptor content and uteroglobin secretion. These data indicate that not only nuclear, but also cytosol progesterone receptor levels decrease in the rabbit uterus during chronic hormone action. Decline in the nuclear progesterone receptor content seemed to occur during treatment with all progestational steroids, while onlyi progestins with high biological potency were capable of decreasing the cytosol receptor content.  相似文献   

19.
Allan GF  Palmer E  Musto A  Lai MT  Clancy J  Palmer S 《Steroids》2006,71(7):578-584
Progesterone receptor modulators have diverse potential therapeutic uses, including the treatment of endometriosis, uterine fibroids and breast cancer. Here we describe the molecular properties and preclinical pharmacology of a new steroidal progestin antagonist, JNJ-1250132. The compound is a high affinity ligand for the progesterone receptor, possessing cross-reactivity with other steroid receptors comparable to that of steroidal antagonists such as mifepristone. It inhibits progestin-inducible alkaline phosphatase gene expression in T47D human breast cancer cells, and also inhibits their in vitro proliferation. It inhibits gestation in rats and progesterone-dependent endometrial transformation in rabbits with efficacies comparable to mifepristone. Like mifepristone, it is a glucocorticoid antagonist in vivo. In cell-free DNA binding assays, the compound inhibits binding of the human progesterone receptor to a progesterone response element, and thus is similar to onapristone in this regard. In contrast, as judged by proteolytic analysis, JNJ-1250132 induces a receptor conformation more similar to that induced by mifepristone, which promotes receptor binding to DNA. Therefore, JNJ-1250132 has unique effects on the progesterone receptor that may translate into a novel clinical profile.  相似文献   

20.
Using Chromosorb chromatography and HPLC, we measured the plasma concentrations of RU 486, and its monodemethylated (RU 42633), didemethylated (RU 42848) and alcoholic nondemethylated (RU 42698) metabolites up to 72 h following oral ingestion of 100 mg of RU 486 by five female volunteers. The peak plasma level of RU 486 (4.5 mumol/l) occurred within 1 h after ingestion of the compound; at this point significant amounts of the metabolites were also present in the plasma. After the initial redistribution within 6 h the plasma concentrations of RU 486 and three of its metabolites measured remained stable for 24 h. Concentrations of the monodomethylated metabolite exceeded those of the parent steroid during the time period measured, whereas the concentrations of the didemethylated and alcoholic metabolites were lower than those of RU 486, but still notable. At 72 h the concentrations of all the four steroids were still in the micromolar range. The relative binding affinities of these metabolites to human endometrial and myometrial progesterone receptors as well as to human placental glucocorticoid receptors were determined in vitro. The affinity of RU 486 for the human uterine progesterone receptor (Kd = 1.3 X 10(-9) M for RU 486) was higher than that of progesterone but lower than that of ORG-2058, a potent synthetic progestin. The relative binding affinities of the monodemethylated, alcoholic and didemethylated metabolites to the progesterone receptor were 21, 15 and 9%, respectively, compared with the parent compound RU 486; each was lower than that of progesterone (43%). RU 486 had an approx. 4-fold higher relative binding affinity to the glucocorticoid receptor than dexamethasone. Interestingly, the relative binding affinities of the metabolites studied to the human glucocorticoid receptor exceeded those of dexamethasone or cortisol. Compared with the parent compound RU 486, they were 61, 48 and 45% for the monodemethylated, alcoholic and didemethylated metabolites, respectively; each was higher than that of dexamethasone (23%). The affinity of dexamethasone to the human glucocorticoid receptor was 1.6 X 10(-9) M. These data indicate that the pool of certain metabolites of RU 486 may contribute to a significant extent to the antiprogestagenic (23-33%) and even greater extent to the antiglucocorticoid (47-61%) effects of RU 486.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号