共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The Catecholaminergic innervation of neurons containing growth hormone-releasing factor (GRF) was examined by use of a method which combined either 5-hydroxydopamine (5-OHDA) uptake or autoradiography after intraventricular injection of 3H-noradrenaline with immunocytochemistry for GRF in the same tissue sections at the electron-microscopic level. In the ventrolateral part of the arcuate nucleus of the rat hypothalamus a large number of immunonegative axon terminals were found to make synaptic contact with GRF-like immunoreactive (GRF-LI) cell bodies and processes. 3H-noradrenaline autoradiography or 5-OHDA-labeling combined with GRF immunocytochemistry revealed that axon terminals labeled with 3H-noradrenaline or 5-OHDA make synaptic contact with the GRF-LI nerve cell bodies and processes. These findings indicate that catecholamine-containing neurons innervate GRF neurons to regulate GRF secretion via synapses in the rat arcuate nucleus. 相似文献
2.
Summary The distribution of tyrosine hydroxylase (TH)- and neuropeptide Y (NPY)-immunoreactive(IR) nerve fibers in the pineal complex was investigated in untreated rats and rats following bilateral removal of the superior cervical ganglia. In normal animals, a large number of TH- and NPY-IR nerve fibers were present in the pineal capsule, the perivascular spaces, and intraparenchymally between the pinealocytes throughout the superficial pineal and deep pineal gland. A small number of TH-IR and NPY-IR nerve fibers were found in the posterior and habenular commissures, a few fibers penetrating from the commissures into the deep pineal gland. To elucidate the origin of these fibers, the superior cervical ganglion was removed bilaterally in 10 animals, and the pineal complex was examined immunohistochemically. Two weeks after the ganglionectomy, the TH-IR and NPY-IR nerve fibers in the superficial pineal gland had almost completely disappeared. On the other hand, in the deep pineal and the pineal stalk, the TH-IR and NPY-IR fibers were still present after ganglionectomy. These data show that the deep pineal gland and the pineal stalk possess an extrasympathetic innervation by TH-IR and NPY-IR fibers. It is suggested that the extrasympathetic TH-IR and NPY-IR nerve fibers innervating the deep pineal and the pineal stalk originate from the brain. 相似文献
3.
Tetsuo Nonaka Masasuke Araki Hiroshi Kimura Ikuko Nagatsu Fumiaki Satoh Toshio Masuzawa 《Cell and tissue research》1990,260(2):273-278
Summary The pineal organ of neonatal rats was transplanted to the frontal part of the cerebral cortex or the cerebral interhemispheric fissure of an isogenic adult rat to determine whether pineal differentiation and pinealopetal innervation are affected by aberrant neuronal influences. Transplants were fixed for immunohistochemistry at 1, 2 and 6 months after transplantation. When treated with an anti-serotonin antibody, cells in transplants from both locations showed intense immunoreactivity and a morphology comparable to intact pinealocytes, indicating that the transplanted pinealocytes had differentiated normally. Tyrosine hydroxylase immunohistochemistry revealed that new catecholamine fibers of central nervous origin extended only into the periphery and not into the core of transplants grafted within the cortex. However, numerous catecholamine fibers were found in transplants placed in the interhemispheric fissure. These fibers were often accompanied by blood vessels, suggesting that they derived from sympathetic ganglia. Serotonin fibers, which are densely distributed in the cerebral cortex, were seldom found to enter transplants from both locations. These observations indicate that pineal cells express their characteristic properties even when transferred to a foreign milieu and that they do not receive novel innervation from the central nerves that normally do not innervate the intact pineal body; the transplant thereby retains the property of selective pinealopetal innervation. 相似文献
4.
Summary Immunoreactivity to the rate limiting enzyme of catecholamine synthesis, tyrosine hydroxylase, has been described in the inferior sensory (= nodose) ganglion of the vagal nerve in the rat. The aim of the present study was to characterize further this neuronal population. The neurons do not represent displaced autonomic efferent neurons, since they do not receive synaptic input, as indicated by the absence of synaptophysin-immunoreactive terminals. In addition to the immunoreactivity to tyrosine hydroxylase, a tyrosine hydroxylase cRNA probe hybridizes with nodose ganglion neurons as demonstrated by in situ hybridization and Northern blotting. Many but not all of the tyrosine hydroxylase-immunoreactive neurons are also immunoreactive to the dopamine synthesizing enzyme, aromatic-l-amino-acid-decarboxylase, but lack the noradrenaline-synthesizing enzyme, dopamine--hydroxylase, thus favoring synthesis of dopamine. Neuropeptide Y, which is often colocalized with catecholamines, is also present in a subset of nodose ganglion neurons, as indicated by immunohistochemistry, in situ hybridization and Northern blotting. However, double-labeling immunofluorescence has revealed that these two antigens are localized in different cell populations. Retrograde neuronal tracing utilizing fluorescent dyes (Fast blue, Fluoro-gold) combined with tyrosine hydroxylase immunohistochemistry has demonstrated that the esophagus and stomach are peripheral targets of tyrosine-hydroxylase-containing vagal visceroafferent neurons. 相似文献
5.
J. R. Keast 《Cell and tissue research》1991,266(2):405-415
Summary The pelvic ganglia supply cholinergic and noradrenergic nerve pathways to many organs. Other possible transmitters are also present in these nerves, including peptides. Multiple labelling immunofluorescence techniques were used in this study of the male rat major pelvic ganglion (MPG) to examine: (1) the peptides present in noradrenergic (tyrosine hydroxylase (TH)-positive) and non-noradrenergic (putative cholinergic) neurons, and (2) the types of peptide-containing nerve fibres closely associated with these two groups of neurons. The distribution of the peptide galanin (GAL) within the MPG was also investigated. All of the TH-neurons contained neuropeptide Y (NPY), but none of the other tested peptides. However, many NPY neurons did not contain TH and may have been cholinergic. TH-negative neurons also displayed vasoactive intestinal peptide (VIP), enkephalin (ENK) or GAL. VIP and NPY formed the most common types of putative cholinergic pelvic neurons, but few cells contained both peptides. Many ENK neurons exhibited VIP, NPY or GAL. Varicose nerve terminals surrounding ganglion cells contained ENK, GAL, somatostatin (SOM) and cholecystokinin (CCK). These peptide-immunoreactive fibres were more often associated with the non-noradrenergic (putative cholinergic) than the noradrenergic neurons; two types (SOM and CCK) were preferentially associated with the non-noradrenergic NPY neurons. GAL was distributed throughout the MPG, in small neurons, scattered small, intensely fluorescent (SIF) cells, and both varicose and non-varicose nerve fibres. The nerve fibres were concentrated near the pelvic and penile nerves; most of the varicose fibres formed baskets surrounding individual GAL-negative somata. 相似文献
6.
Summary Paravertebral (superior cervical and stellate), prevertebral (coeliac-superior mesenteric, inferior mesenteric) and pelvic (hypogastric) sympathetic ganglia of the rat were investigated by enzyme histochemistry to ascertain the distribution of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase) activity. In the paravertebral ganglia the majority of the sympathetic neuronal perikarya contained lightly and homogeneously distributed formazan reaction product but there was a range of staining intensities amongst the neuron population. In contrast, in the prevertebral ganglia, intense NADPH-diaphorase staining was present in certain neurons. Firstly, a population of neurons of the coeliac-superior mesenteric ganglion complex were surrounded by densely NADPH-diaphorase-positive baskets of fibres and other stained fibres were seen in interstitial nerve bundles and in nerve trunks connected to the ganglion complex. Secondly, in both the inferior mesenteric ganglion and hypogastric ganglion there were many very intensely NADPH-diaphorase positive neurons. Stained dendritic and axonal processes emerged from these cell bodies. In both ganglia this population of neurons was smaller in size than the lightly stained ganglionic neurons and commonly had only one long (presumably axonal) process. The similarity of these highly NADPH-diaphorase-positive neurons with previously described postganglionic parasympathetic neurons in the hypogastric ganglion is discussed. 相似文献
7.
Cardiac ganglia develop destructive ganglionitis in chronic Chagas disease and rheumatic heart disease. This ganglionitis is associated with periganglionic infiltrations and is suspected of developing secondary to epicardial inflammation. If so, it would be expected that cardiac ganglia (1) are equipped with an inventory of immune competent cells allowing the initiation of inflammatory processes, and (2) are not effectively protected from the milieu of the surrounding tissue by metabolically active diffusion barriers. These problems were addressed in specified pathogen-free rats by electron microscopy and immunohistochemistry with markers for dendritic cells, monocytes/macrophages, and perineurial barriers. In contrast to nerve fascicles, cardiac ganglia are only partially enveloped by perineurial cells. Inside the ganglia, ramified cells with major histocompatibility complex class II antigen (reacting with monoclonal antibody OX6) on their surface and exhibiting an ultrastructure typical of dendritic cells are numerous, comprising nearly 5% of all cells within ganglia. The ratio of the number of these cells to that of neurons is 1:2. Cells reacting with monoclonal antibodies ED1 and ED2, markers for monocytes/macrophages, constitute 1.8% and 1.6% of the ganglionic cell population, respectively. Such cells are less frequent in the cervical trunk of the vagus nerve. Thus, the inventory of immune competent cells in rat cardiac ganglia is consistent with the view that the abundance of antigen-presenting cells correlates with the permeability of the barriers providing protection from blood-borne and tissue-borne factors. 相似文献
8.
Summary A careful search for groups of nerve cell bodies enclosed within a common connective envelope was made in the spinal ganglia of the lizard and rat using a serial-section technique. Nerve cell bodies sharing a common connective envelope were found to be more common in the lizard (9.4%) than in the rat (5.6%). These nerve cell bodies were arranged in pairs, or, less frequently, in groups of three. At times, they appeared to be in immediate contact, with no intervening satellite cells; at other, they remained separated from one another by a satellite cell sheet. The clusters of nerve cell bodies enclosed within a common connective envelope probably result from the arrest of developmental processes in the spinal ganglion. It is possible that, as a result of the cell arrangement here described, certain neurons electrically influence other sensory neurons at the level of the ganglion. 相似文献
9.
Sasaki H Hozumi Y Hasegawa H Ito T Takagi M Ogino T Watanabe M Goto K 《Cell and tissue research》2006,326(1):35-42
The dorsal root ganglion (DRG) and dorsal horn of the spinal cord are areas through which primary afferent information passes enroute to the brain. Previous studies have reported that, during normal neuronal activity, the regional distribution of a second messenger, diacylglycerol (DG), which is derived from phosphoinositide turnover, is diverse in these areas. However, the way that DG is regulated in these organs remains unknown. The present study was performed to investigate mRNA expression and protein localization of DG kinase (DGK) isozymes, which play a central role in DG metabolism. Gene expression for DGK isozymes was detected with variable regional distributions and intensities in the spinal cord. Among the isozymes, most intense signals were found for DGKζ and DGKι in the DRG. By immunohistochemical analysis, DGKζ immunoreactivity was detected heterogeneously in the nucleus and cytoplasm of small DRG neurons with variable levels of distribution, whereas it was detected exclusively in the cytoplasm of large neurons. On the other hand, DGKι immunoreactivity was distributed solely in the cytoplasm of most of the DRG neurons. Double-immunofluorescent imaging of these isozymes showed that they coexisted in a large population of DRG neurons at distinct subcellular sites, i.e., DGKζ in the nucleus and DGKι in the cytoplasm. Thus, DGK isozymes may have different functional roles at distinct subcellular sites. Furthermore, the heterogeneous subcellular localization of DGKζ between the nucleus and cytoplasm implies the possible translocation of this isozyme in small DRG neurons under various conditions.The work was supported by grants-in-aid from the Ministry of Education, Science, Culture, and Sports of Japan (M.T., K.G.) and from the Ono Medical Research Foundation, Kato Memorial Bioscience Foundation, and Janssen Pharmaceutical (K.G.) and by the 21st Century Center of Excellence Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan. 相似文献
10.
Summary Serial cryostat and paraffin-embedded sections through the atrioventricular junction of the rat heart were studied at the light-microscopic level after indirect immunohistochemical staining (tyrosine hydroxylase, neuropeptide Y, C-terminal flanking peptide of neuropeptide Y immunoreactivities) or silver impregnation. The distribution of these immunoreactivities in the Hissian ganglion (Moravec and Moravec 1984) as well as the relationships of the Hissian ganglion cells with the surrounding structures have been studied to assess its function. The results suggest that the Hissian ganglion is composed of large multipolar neurons displaying both tyrosine hydroxylase (TH) and related peptide (neuropeptide Y, C-terminal flanking peptide of neuropeptide Y) immunoreactivities. The dendritic projections of these adrenergic cells penetrate the reticular portion of the atrioventricular node and the upper segments of the interventricular septum where they constitute sensory-like corpuscles. The hypothesis that the adrenergic neurons of the atrioventricular junction are involved in short proprioceptive feedback loops necessary for beat-to-beat modulation of cardiac excitability and intracardiac conduction can thus be suggested. 相似文献
11.
12.
Stefan Lindskog Bo Ahren Beth Elaine Dunning Frank Sundler 《Cell and tissue research》1991,264(2):363-368
Summary Galanin-containing nerve fibers have previously been observed in the human, dog, and pig pancreas. Whether the mouse and rat pancreas also contain galanin nerve fibers has been a matter of debate. Therefore, we examined the distribution of galanin in the mouse and the rat pancreas. Further, the possible localization of galanin to adrenergic nerves was studied using sequential immunostaining for galanin and tyrosine hydroxylase (TH). In the mouse pancreas, numerous galanin-immunoreactive (GIR) nerve fibers occurred around blood vessels. They were less numerous in the exocrine parenchyma and in association with the islets. In contrast, in the rat pancreas, only a few GIR nerves were found. They were located around blood vessels and scattered in the exocrine parenchyma. Occasionally, GIR nerves were also observed in the islets. There was a dense distribution of TH-immunoreactive fibers in both the mouse and the rat pancreas. Sequential immunostaining revealed co-localization of galanin and TH immunoreactivity in nerve fibers in both the mouse and the rat pancreas. Following chemical sympathectomy using 6-hydroxydopamine (6-OHDA), not all GIR nerves disappeared. In the mouse pancreas a remaining population of galanin nerves was found around blood vessels, and occasionally in the islets. In the rat pancreas, a few GIR nerves were seen also after chemical sympathectomy. We conclude that intrapancreatic GIR nerves also occur in the mouse and the rat. These findings suggest that many of the GIR nerves are adrenergic but that non-adrenergic, possibly intrinsic or sensory GIR nerves exist as well in both the mouse and the rat pancreas. 相似文献
13.
Dr. Jean-Marie Peyronnard Louise Charron Jean-Pierre Messier Jeanne Lavoie Christian Leger Feliciana Faraco-Cantin 《Cell and tissue research》1989,257(2):379-388
Summary The effects of chronic lesions of rat lumbar spinal or sciatic nerves on the binding of Glycine max (soybean) agglutinin to galacto-conjugates, in small-and medium-size primary sensory neurons of the L4 and L5 dorsal root ganglia, were examined over a 580-day period. Spinal nerve section resulted in a marked decrease in the population of stained neurons within 7 days. However, despite some retrograde morphological changes triggered by axonal injury, the proportion of stained nerve cells was normalized 180 days postoperatively. This temporary decrease in perikaryal lectin reactivity was initially associated with a marked accumulation of stained material in the nerve, proximal and distal to the site of section, with similar accumulations also being noticeable at each level of injury in sciatic nerves subjected to double ligature. This may reflect the presence of glycocompounds linked to the autolysis of nerve fibers during the phase of retrograde dying-back and Wallerian degeneration. At later stages, stained deposits could be seen scattered along central and peripheral axonal processes of the dorsal root ganglion neurons in the vicinity of the cell body. They may indicate a disturbance in the peripheral turnover of glycoproteins in chronically-transected nerves, with piling up of neuronal products. Sciatic nerve injury caused similar but less severe effects which, except for the L4 ganglion cells, were rapidly reversible. 相似文献
14.
Assoc. Prof. Ping-Lung Chang 《Cell and tissue research》1977,179(1):111-120
Summary By employing biochemical assay and histochemical enzyme techniques the effect of preganglionic sympathectomy on the cholinesterase (ChE) activity in the superior cervical ganglia of rats and hamsters was investigated. Biochemical assays indicate that the ChE activity in the superior cervical ganglia of adult rats and hamsters is 57.19 and 28.63 respectively (expressed in u moles acetylcholine hydrolyzed per min per g of tissue); two weeks after preganglionic denervation, about 50% and 60% of ChE activity are lost respectively. Histochemical enzyme examination reveals that in the rat superior cervical ganglion, the majority of the neurons are adrenergic with weak to moderate acetylcholinesterase (AChE) reaction and the minority of the neurons are cholinergic with strong AChE activity, while only one type of adrenergic neurons exhibits a weak AChE activity in the hamster superior cervical ganglion. The AChE activity is localized in the perinuclear area, in the cisternae of the rough surfaced endoplasmic reticulum, in the Golgi complex and on the plasma membrane of the hamster's neurons; it is mainly localized in the cisternae of the rough surfaced endoplasmic reticulum of the rat's neurons. AChE reaction product is also detected on the axolemmal membranes of the preganglionic nerve fibers in the sympathetic ganglia of rats and hamsters.After preganglionic sympathectomy, the AChE activity in the adrenergic neurons and in the preganglionic unmyelinated nerve fibers is markedly reduced, whereas the cholinergic neurons and preganglionic myelinated nerve fibers remain unchanged. On the basis of these results two conclusions have been reached: (1) The fact that strong AChE activity localized in the cholinergic neurons and preganglionic myelinated fibers is not influenced by denervation, suggests that these structures are able to produce AChE. (2) The reduction of AChE activity in the rat and hamster superior cervical ganglia two weeks after preganglionic denervation, observed by histochemical examination, can be correlated with a concomitant measurable reduction determined by biochemical assays.Supported in part by a grant from the National Science Council, Republic of China. The author wishes to express his gratitude to the Department of Pharmacology, College of Medicine, National Taiwan University, for the use of its equipment for biochemical assays 相似文献
15.
Colin A. Nurse 《Cell and tissue research》1990,261(1):65-71
Summary The cellular localization of carbonic anhydrase (CAH) in the carotid body of the rat was investigated by means of Hansson's cobalt-precipitation technique in cultures of dissociated cells. In both young (2-day-old) and old (77-day-old) cultures, the parenchymal glomus (type-I) cells were selectively stained by this technique, and in addition expressed tyrosine hydroxylase and neuron-specific enolase as revealed by immunofluorescence. Enzymic reaction product of CAH appeared to be predominantly intracellular since staining was more intense and occurred more rapidly following permeabilization of the cell membranes with Triton X-100; its formation was inhibited by the CAH-inhibitor acetazolamide (1–10 M) or by increasing the pH from 5.8 to 7.5. Cryostat sections of the carotid bifurcation revealed intense CAH-reaction product in cell clusters of the carotid body, in a few cells of the nodose ganglion, and in red blood cells. Neuronal cell bodies of the petrosal ganglion and superior cervical ganglion (SCG) were largely non-reactive. The SCG is known to contain clusters of small intensely fluorescent (SIF) cells, which were also non-reactive when grown in dissociated cell culture. Thus, although glomus and SIF cells are often considered to be similar cell types, functional CAH-activity appears unique to glomus cells, and this may be important for the physiological response of the carotid body to certain chemosensory stimuli. 相似文献
16.
Dr. Shuichi Ueda Toshikuni Tanabe Norihiko Ihara Yutaka Sano 《Cell and tissue research》1989,256(3):457-463
Summary Pieces of fetal midbrain raphe containing serotonergic and dopaminergic neurons were transplanted into the leptomeningeal tissue (see Fig. 3) of adult host rats that had previously been denervated by treatment with 5,6-dihydroxytryptamine. One, 2 and 5 months after transplantation, the rate of neuronal survival in the grafted tissue and the extent of axonal outgrowth into the host brain were studied by use of serotonin and tyrosine hydroxylase (TH) immunohistochemistry. The survival rate of the grafts in the 1-month group was approximately 70%. Neurons containing either serotonin or catecholamine were demonstrated by means of immunocytochemical procedures in the grafts. Two and 5 months after transplantation, serotonin-immunoreactive nerve fibers were densely distributed throughout the graft tissue, while TH-immunoreactive fiber elements were restricted to an area near the somata of TH-positive neurons. Numerous serotonin-immunoreactive fibers derived from the transplant were found in the leptomeningeal tissue surrounding the graft, on the wall of neighboring blood vessels, and also in the adjacent parenchyma of the host brain. Outgrowing TH-immunoreactive nerve fibers were not observed in the host brain, although such elements occurred in the leptomeningeal tissue and the wall of the larger blood vessels. These results suggest that the serotonergic and catecholaminergic (dopaminergic) neurons located in transplants of the raphe nuclei show different patterns when reinnervating the host tissue. 相似文献
17.
The pelvic ganglia are mixed ganglia containing both sympathetic and parasympathetic neurons that receive spinal input via the hypogastric (lumbar cord) and pelvic nerves (sacral cord), respectively. A recent study has utilised immunohistochemistry against synaptophysin (a protein associated with small vesicles) to visualise the preganglionic terminals in these ganglia. By selectively cutting the hypogastric or pelvic nerves and allowing subsequent terminal degeneration, the populations of parasympathetic and sympathetic preganglionic terminals, respectively, can be visualised. The present study has used this method in conjunction with retrograde labelling of pelvic neurons from the distal colon and double label immunofluorescence against tyrosine hydroxylase and vasoactive intestinal polypeptide (VIP) to identify and characterise the sympathetic and parasympathetic neurons projecting to the distal colon from the major pelvic ganglia of the male rat. Approximately equal numbers of distal colonic-projecting pelvic neurons are sympathetic and parasympathetic. Almost all noradrenergic neurons are sympathetic. Of the VIP neurons that project to the distal colon approximately one third are sympathetic, one third parasympathetic and the remaining third are possibly innervated by both the lumbar and sacral cord. Extrapolation from our results also suggests that the majority of non-noradrenergic neuropeptide Y neurons (which are known to comprise the remainder of the neurons) are parasympathetic. These studies have demonstrated that the pelvic ganglia are a major source of sympathetic innervation to the distal bowel and have further shown that the distal colon is another target for the non-noradrenergic sympathetic neurons of the pelvic ganglia. 相似文献
18.
M. C. Mione J. F. R. Cavanagh K. A. Kirkpatrick G. Burnstock 《Cell and tissue research》1992,268(3):491-504
Summary This study was designed to investigate the effects of multiple denervation procedures on calcitonin gene-related peptide- and substance P-immunoreactive neurons in sympathetic and sensory cranial ganglia and in selected targets. Sympathectomy by long-term guanethidine treatment induced a pronounced increase in calcitonin gene-related peptide-immunoreactive and substance P-immunoreactive nerve fibres in all the tissues investigated, in contrast to a significant reduction of immunoreactive cell bodies. Neonatal capasaicin treatment abolished substance P immunoreactivity in many targets and caused a dramatic reduction of substance P-immunoreactive sensory nerve cell bodies; calcitonin gene-related peptide-immunoreactive nerve density was decreased, but the number of immunoreactive nerve cell bodies was unchanged. Guanethidine treatment of capsaicin-injected rats reversed the loss of calcitonin gene-related peptide-immunoreactive nerves, but not that of substance P-immunoreactive neurons. In the iris, capsaicin treatment had little effect on calcitonin gene-related peptide- and substance P-immunoreactive nerves, suggesting that in rats the majority of these fibres originate from capsaicin-insensitive neurons. The results suggest that the denervation procedures used in this study alter the synthesis and transport of neuropeptides in sensory neurons in conjunction with changes in the number of nerve fibres. 相似文献
19.
To identify neurochemical phenotypes of esophageal myenteric neurons synaptically activated by vagal preganglionic efferents, we immunohistochemically detected the expression of Fos, an immediate early gene product, in whole-mount preparations of the entire esophagus of rats following electrical stimulation of the vagus nerves. When electrical stimulation was applied to either the cervical left (LVN) or right vagus nerve (RVN), neurons with nuclei showing Fos immunoreactivity (IR) were found to comprise approximately 10% of the total myenteric neurons in the entire esophagus. These neurons increased from the oral toward the gastric end of the esophagus, with the highest frequency in the abdominal portion of the esophagus. A significant difference was not found in the number of Fos neurons between the LVN-stimulated and RVN-stimulated esophagus. Double-immunolabeling showed that nitric oxide synthase (NOS)-IR occurred in most (86% and 84% in the LVN-stimulated and RVN-stimulated esophagus, respectively) of the Fos neurons in the entire esophagus. Furthermore, the stimulation of either of the vagus nerves resulted in high proportions (71%-90%) of Fos neurons with NOS-IR, with respect to the total Fos neurons in each segment, in the entire esophagus. However, a small proportion (8% and 7% in the LVN-stimulated and RVN-stimulated esophagus, respectively) of the Fos neurons in the esophagus exhibited choline acetyltransferase (ChAT)-IR. The occurrence-frequency of Fos neurons with ChAT-IR was less than 4% of the total Fos neurons in any segment of the LVN-stimulated and RVN-stimulated esophagus. Some of the Fos neurons with ChAT-IR appeared to be innervated by numerous varicose ChAT-positive nerve terminals. The present results showing that electrical stimulation of the vagus nerves induces a high proportion of Fos neurons with NOS-IR suggests the preferential activation of NOS neurons in the esophagus by vagal preganglionic efferents. This connectivity between the vagal efferents and intrinsic nitrergic neurons might be involved in inhibitory actions on esophageal motility.This study was supported by Grant-in Aids for Scientific Research from Ministry of Education, Sports, and Culture of Japan to H.K. (no. 15500236) and to M.K. (no. 14570065). 相似文献
20.
Hirotaka Toshimori Kiyotaka Toshimori Chikayoshi Ōura Hisayuki Matsuo 《Cell and tissue research》1987,248(3):627-633
Summary An immunohistochemical study of atrial natriuretic polypeptides was carried out on embryonic, fetal and neonatal rat hearts, using an antiserum raised against -human atrial natriuretic polypeptide (-hANP). Weakly immunoreactive cells were seen in both atrial and ventricular walls at 11 days post coitum (pc). After this stage, the immunoreactive cells became more intensely stained in both atrial and ventricular walls. The immunoreactivity during the prenatal period was stronger in the superficial cell layer beneath the endocardium, than in the deep cell layer of the atrial wall. The cells in the trabecular meshwork also had an apparent, but weak, immunoreactivity, which showed a greater intensity in the left ventricle than in the right one. It is suggested that these immunoreactive cells in the ventricle may differentiate, in situ, into the cells of the impulse-conducting system during the further development of the heart.This research was supported in part by Grants-in-Aid for Scientific research to C. ura from the Ministry of Education of Japan (Nos. 5957009, 59570010) 相似文献