首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The minichromosome maintenance (MCM) complex, a replicative helicase, is a heterohexamer essential for DNA duplication and genome stability. We identified Schizosaccharomyces pombe mcb1(+) (Mcm-binding protein 1), an apparent orthologue of the human MCM-binding protein that associates with a subset of MCM complex proteins. mcb1(+) is an essential gene. Deletion of mcb1(+) caused cell cycle arrest after several generations with a cdc phenotype and disrupted nuclear structure. Mcb1 is an abundant protein, constitutively present across the cell cycle. It is widely distributed in cytoplasm and nucleoplasm and bound to chromatin. Co-immunoprecipitation suggested that Mcb1 interacts robustly with Mcm3-7 but not Mcm2. Overproduction of Mcb1 disrupted the association of Mcm2 with other MCM proteins, resulting in inhibition of DNA replication, DNA damage, and activation of the checkpoint kinase Chk1. Thus, Mcb1 appears to antagonize the function of MCM helicase.  相似文献   

3.
MCM4 forms the pre-replication complex (MCM2-7) with five other minichromosome maintenance (MCM) proteins. This complex binds to replication origins at G1 stage in cell cycle process, playing a critical role in DNA replication initiation. Recently, MCM4 is reported to have a complex interaction with multiple cancer progression, including gastric, ovarian and cervical cancer. Here, this study mainly focused on the expression of MCM4 and its values in lung adenocarcinoma (LUAD). MCM4 was highly expressed in LUAD tumours and cells, and had an important effect on the overall survival. Overexpression of MCM4 promoted the proliferation, and suppressed the apoptosis in LUAD cells. However, MCM4 silence led to the opposite results. In vivo, knockdown of MCM4 inhibited tumour volume and weight in xenograft mouse model. As a member of DNA helicase, knockdown of MCM4 caused cell cycle arrest at G1 stage through inducing the expression of P21, a CDK inhibitor. These findings indicate that MCM4 may be a possible new therapeutic target for LUAD in the future.  相似文献   

4.
5.
Minocha N  Kumar D  Rajanala K  Saha S 《PloS one》2011,6(7):e23107
Events leading to origin firing and fork elongation in eukaryotes involve several proteins which are mostly conserved across the various eukaryotic species. Nuclear DNA replication in trypanosomatids has thus far remained a largely uninvestigated area. While several eukaryotic replication protein orthologs have been annotated, many are missing, suggesting that novel replication mechanisms may apply in this group of organisms. Here, we characterize the expression of Leishmania donovani MCM4, and find that while it broadly resembles other eukaryotes, noteworthy differences exist. MCM4 is constitutively nuclear, signifying that, unlike what is seen in S.cerevisiae, varying subcellular localization of MCM4 is not a mode of replication regulation in Leishmania. Overexpression of MCM4 in Leishmania promastigotes causes progress through S phase faster than usual, implicating a role for MCM4 in the modulation of cell cycle progression. We find for the first time in eukaryotes, an interaction between any of the proteins of the MCM2-7 (MCM4) and PCNA. MCM4 colocalizes with PCNA in S phase cells, in keeping with the MCM2-7 complex being involved not only in replication initiation, but fork elongation as well. Analysis of a LdMCM4 mutant indicates that MCM4 interacts with PCNA via the PIP box motif of MCM4--perhaps as an integral component of the MCM2-7 complex, although we have no direct evidence that MCM4 harboring a PIP box mutation can still functionally associate with the other members of the MCM2-7 complex- and the PIP box motif is important for cell survival and viability. In Leishmania, MCM4 may possibly help in recruiting PCNA to chromatin, a role assigned to MCM10 in other eukaryotes.  相似文献   

6.
Maiorano D  Cuvier O  Danis E  Méchali M 《Cell》2005,120(3):315-328
MCM2-7 proteins are replication factors required to initiate DNA synthesis and are currently the best candidates for replicative helicases. We show that the MCM2-7-related protein MCM8 is required to efficiently replicate chromosomal DNA in Xenopus egg extracts. MCM8 does not associate with the soluble MCM2-7 complex and binds chromatin upon initiation of DNA synthesis. MCM8 depletion does not affect replication licensing or MCM3 loading but slows down DNA synthesis and reduces chromatin recruitment of RPA34 and DNA polymerase-alpha. Recombinant MCM8 displays both DNA helicase and ATPase activities in vitro. Reconstitution experiments show that ATP binding in MCM8 is required to rescue DNA synthesis in MCM8-depleted extracts. MCM8 colocalizes with replication foci and RPA34 on chromatin. We suggest that MCM8 functions in the elongation step of DNA replication as a helicase that facilitates the recruitment of RPA34 and stimulates the processivity of DNA polymerases at replication foci.  相似文献   

7.
8.
MCM proteins and DNA replication   总被引:15,自引:0,他引:15  
The MCM proteins identify a group of ten conserved factors functioning in the replication of the genomes of archae and eukaryotic organisms. Among these, MCM2-7 proteins are related to each other and form a family of DNA helicases implicated at the initiation step of DNA synthesis. Recently this family expanded by the identification of two additional members that appear to be present only in multicellular organisms, MCM8 and MCM9. The function of MCM8 is distinct from that of MCM2-7 proteins, while the function of MCM9 is unknown. MCM1 and MCM10 are not related to this family, nor to each other, but also function in DNA synthesis.  相似文献   

9.
摘要 目的:筛选肺癌蛋白分子标志物,寻找可诊断及预测肺癌预后的蛋白标志物。方法:选择2014年8月~2019年7月于西安市第四医院确诊并进行肺部切除手术的非小细胞肺癌(non-small-cell lung Cancer,NSCLC)患者80例,采用免疫组织化学(immunohistochemistry,IHC)检测NSCLC患者肺癌组织标本和癌旁MCM2(Minichromosome maintenance protein2, 微小染色体维持蛋白2)、MCM5(Minichromosome maintenance protein5,微小染色体维持蛋白5)、MCM6(Minichromosome maintenance protein6,微小染色体维持蛋白6)、MCM7(Minichromosome maintenance protein7,微小染色体维持蛋白7)、KIAA1522和KIAA0317蛋白表达阳性率,探讨多蛋白联合检测对NSCLC诊断及预后预测的临床应用价值。结果:肺癌组织中MCM2、MCM5、MCM6、MCM7、KIAA1522和KIAA0317的阳性表达率均显著高于癌旁正常肺组织(P<0.05),其中MCM6、MCM7和KIAA1522在50 %以上;以MCM6、MCM7、KIAA15223蛋白联合检测肺癌组织,不同性别、不同年龄、类型和分期的NSCLC患者的联合蛋白阳性率无统计学差异(P>0.05),且蛋白阳性率均大于80 %;MCM7高表达较之低表达或不表达的病例,显著增加患者的死亡风险(P=0.000)。男性(P=0.031)、III~IV期患者(P<0.001)、以及低分化程度(P=0.012)也是患者的不良预后因素,多因素回归分析显示,MCM7是一个独立的预测指标(P=0.000), 与患者生存具有显著相关性,对预后有一定的预测作用。结论:NSCLC患者肺癌组织中MCM6、MCM7和KIAA1522呈高表达,三者联合检测对NSCLC的检测具有较高的准确性、敏感性和特异性,高水平的MCM7表达提示肺癌患者的不良预后。  相似文献   

10.
The MCM2-7 complex, a hexamer containing six distinct and essential subunits, is postulated to be the eukaryotic replicative DNA helicase. Although all six subunits function at the replication fork, only a specific subcomplex consisting of the MCM4, 6, and 7 subunits (MCM467) and not the MCM2-7 complex exhibits DNA helicase activity in vitro. To understand why MCM2-7 lacks helicase activity and to address the possible function of the MCM2, 3, and 5 subunits, we have compared the biochemical properties of the Saccharomyces cerevisiae MCM2-7 and MCM467 complexes. We demonstrate that both complexes are toroidal and possess a similar ATP-dependent single-stranded DNA (ssDNA) binding activity, indicating that the lack of helicase activity by MCM2-7 is not due to ineffective ssDNA binding. We identify two important differences between them. MCM467 binds dsDNA better than MCM2-7. In addition, we find that the rate of MCM2-7/ssDNA association is slow compared with MCM467; the association rate can be dramatically increased either by preincubation with ATP or by inclusion of mutations that ablate the MCM2/5 active site. We propose that the DNA binding differences between MCM2-7 and MCM467 correspond to a conformational change at the MCM2/5 active site with putative regulatory significance.  相似文献   

11.
The minichromosome maintenance (MCM) proteins MCM2-MCM7 are conserved eukaryotic replication factors that assemble in a heterohexameric complex. In fission yeast, these proteins are nuclear throughout the cell cycle. In studying the mechanism that regulates assembly of the MCM complex, we analyzed the cis and trans elements required for nuclear localization of a single subunit, Mcm2p. Mutation of any single mcm gene leads to redistribution of wild-type MCM subunits to the cytoplasm, and this redistribution depends on an active nuclear export system. We identified the nuclear localization signal sequences of Mcm2p and showed that these are required for nuclear targeting of other MCM subunits. In turn, Mcm2p must associate with other MCM proteins for its proper localization; nuclear localization of MCM proteins thus requires assembly of MCM proteins in a complex. We suggest that coupling complex assembly to nuclear targeting and retention ensures that only intact heterohexameric MCM complexes remain nuclear.  相似文献   

12.
It has been reported that a point mutation of minichromosome maintenance (MCM)4 causes mammary carcinoma, and it deregulates DNA replication to produce abnormal chromosome structures. To understand the effect of this mutation at level of MCM2-7 interaction, we examined the effect of the same mutation of human MCM4 on the complex formation with MCM6 and MCM7 in insect cells. Human MCM4/6/7 complexes containing the mutated MCM4 were formed, but the hexameric complex formation was not evident in comparison with those containing wild-type MCM4. In binary expression of MCM4 and MCM6, decreased levels of MCM6 were recovered with the mutated MCM4, compared with wild-type MCM4. These results suggest that this mutation of MCM4 perturbs proper interaction with MCM6 to affect complex formation of MCM4/6/7 that is a core structure of MCM2-7 complex. Consistent with this notion, nuclear localization and MCM complex formation of forcedly expressed MCM4 in human cells are affected by this mutation. Thus, the defect of this mutant MCM4 in interacting with MCM6 may generate a decreased level of chromatin binding of MCM2-7 complex.  相似文献   

13.
14.
Pairwise interactions of the six human MCM protein subunits   总被引:9,自引:0,他引:9  
The eukaryotic minichromosome maintenance (MCM) proteins have six subunits, Mcm2 to 7p. Together they play essential roles in the initiation and elongation of DNA replication, and the human MCM proteins present attractive targets for potential anticancer drugs. The six MCM subunits interact and form a ring-shaped heterohexameric complex containing one of each subunit in a variety of eukaryotes, and subcomplexes have also been observed. However, the architecture of the human MCM heterohexameric complex is still unknown. We systematically studied pairwise interactions of individual human MCM subunits by using the yeast two-hybrid system and in vivo protein-protein crosslinking with a non-cleavable crosslinker in human cells followed by co-immunoprecipitation. In the yeast two-hybrid assays, we revealed multiple binary interactions among the six human MCM proteins, and a subset of these interactions was also detected as direct interactions in human cells. Based on our results, we propose a model for the architecture of the human MCM protein heterohexameric complex. We also propose models for the structures of subcomplexes. Thus, this study may serve as a foundation for understanding the overall architecture and function of eukaryotic MCM protein complexes and as clues for developing anticancer drugs targeted to the human MCM proteins.  相似文献   

15.
The eukaryotic MCM2-7 complex is recruited onto origins of replication during the G1 phase of the cell cycle and acts as the main helicase at the replication fork during the S phase. Over the last few years a number of structural reports on MCM proteins using both electron microscopy and protein crystallography have been published. The crystal structures of two (almost) full-length archaeal homologs provide the first atomic pictures of a MCM helicase. However one of the structures is at low resolution and the other is of an inactive MCM. Moreover, both proteins are monomeric in the crystal, whereas the activity of the complex is critically dependent on oligomerization. Lower resolution structures derived from electron microscopy studies are therefore crucial to complement the crystallographic analysis and to assemble the multimeric complex that is active in the cell. A critical analysis of all the structural results elucidates the potential conformational changes and dynamic behavior of MCM helicase to provide a first insight into the gamut of molecular configurations adopted during the processes of DNA melting and unwinding.  相似文献   

16.
The MCM proteins are a group of six proteins whose action is vital for DNA replication in eukaryotes. It has been suggested that they constitute the replicative helicase, with a subset of the proteins forming the catalytic helicase (MCM4,6,7) while the others have a loading or control function. In this paper we show that all six MCM proteins are present in equivalent amounts in soluble extracts and on chromatin. We have also analysed soluble and chromatin-associated MCM protein complexes under different conditions. This suggests that all six MCM proteins are always found in a complex with each other, although the interaction between the individual MCM proteins is not equivalent as stringent salt conditions are able to break the intact complex into a number of stable subcomplexes. These data contribute to the ongoing debate about the nature of MCM complexes, supporting the hypothesis that they act as a heterohexamer rather than as a number of different subcomplexes. Finally, using protein–protein cross-linking we have shown that MCM2 interacts directly with MCM5 and MCM6; MCM5 with MCM3 and MCM2; and MCM6 with MCM2 and MCM4. This provides the first direct information about specific subunit contacts in the MCM complex.  相似文献   

17.
The capacity of the cyclin D-dependent kinase to promote G(1) progression through modulation of RB.E2F is well documented. We now demonstrate that the cyclin D1/CDK4 kinase binds to components of the MCM complex. MCM7 and MCM3 were identified as cyclin D1-binding proteins. Catalytically active cyclin D1/CDK4 complexes were incorporated into chromatin-bound protein complexes with the same kinetics as MCM7 and MCM3, where they associated specifically with MCM7. Although the cyclin D1-dependent kinase did not phosphorylate MCM7, active cyclin D1/CDK4, but not cyclin E/CDK2, did catalyze the dissociation of an RB.MCM7 complex. Finally, expression of an active D1/CDK4 kinase but not cyclin E/CDK2 promoted the removal of RB from chromatin-bound protein complexes. Our data suggest that D1/CDK4 complexes play a direct role in altering an inhibitory RB.MCM7 complex possibly allowing for setting of the origin in preparation for DNA replication.  相似文献   

18.
The MCM2-MCM7 complex is an essential component of the prereplication complex (pre-RC), which is recruited by the cdc6 and cdt1 proteins to origins of DNA replication during G(1) phase. Here, we report that the accumulation on chromatin of another member of the MCM protein family, human MCM8 (hMCM8), occurs during early G(1) phase, before the hMCM2-hMCM7 complex binds. hMCM8 interacts in vivo with two components of the pre-RC, namely, hcdc6 and hORC2. Depletion of endogenous hMCM8 protein by RNA interference leads to a delay of entry into S phase, suggesting a role for hMCM8 in G(1) progression. Furthermore, down-regulation of hMCM8 also leads to a reduced loading of hcdc6 and the hMCM2-hMCM7 complex on chromatin. These results suggest that hMCM8 is a crucial component of the pre-RC and that the interaction between hMCM8 and hcdc6 is required for pre-RC assembly.  相似文献   

19.

Background  

Yeast and animal cells require six mini-chromosome maintenance proteins (Mcm2-7) for pre-replication complex formation, DNA replication initiation and DNA synthesis. These six individual MCM proteins form distinct heterogeneous subunits within a hexamer which is believed to form the replicative helicase and which associates with the essential but non-homologous Mcm10 protein during DNA replication. In contrast Archaea generally only possess one MCM homologue which forms a homohexameric MCM helicase. In some eukaryotes Mcm8 and Mcm9 paralogues also appear to be involved in DNA replication although their exact roles are unclear.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号