首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The hypothesis tested was that increasing concentration of 17beta-estradiol (E(2)) subsequent to luteolysis stimulates the preovulatory surge of LH and that a decline in E(2) after the initial rise is not necessary to trigger the preovulatory surge of LH in the bovine female. Beef cows were synchronized to Day 16 of the estrous cycle. At Hour 0, all cows were ovariectomized and received one of four E(2) treatments: 1) luteal phase E(2) (LE; n=5), 2) increasing then decreasing E(2) (DE; n=5), 3) increasing and subsequent maintenance of high E(2) (IE; n=4), and 4) no E(2) (NE; n=3). Cows in the LE group received one E(2) implant at Hour 0 which provided low concentrations of E(2). Cows in the DE group received one E(2) implant at 0, 8, 16, 24, 32 and 40 hours; implants were subsequently removed at 8-hour intervals, thus mimicking the preovulatory rise and fall of E(2). Cows in the IE group were treated with the same regimen of E(2) implants as cows of the DE group, except that no E(2) implants were removed. Blood samples were collected at Hour 0 and at hourly intervals from Hour 2 through 80, for serum LH and E(2) quantification. The number of cows responding with a surge of LH was 0/3, 0/5, 4/5 and 3/4 for the NE, LE, DE and IE treatments, respectively. The proportion of cows responding with an LH surge was different (P<0.01) when data for cows in the NE and LE groups were pooled and compared with the pooled data of cows in the DE and IE groups. The mean time of the LH surge was not different (P>0.80) for cows responding with an LH surge (DE and IE treatments). Thus, increased levels of E(2) greater than luteal phase concentrations are needed to initiate preovulatory surges of LH, and it appears that concentrations of E(2) need to reach a certain level but do not need to decrease after this initial rise to stimulate a surge release of LH.  相似文献   

2.
Our working hypothesis was that the low concentrations of progesterone (P4) and synthetic progestins administered in hormonal regimens to control estrous cycles of cows would have similar effects on secretion of LH and 17 beta-estradiol (E2). In addition, we hypothesized that concentrations of exogenous P4 typical of the midluteal phase of the estrous cycle and the corpus luteum (CL) would have similar effects on LH and E2, and the effects would be different from those of synthetic progestins and low concentrations of P4. Cows (n = 29) were randomly assigned to one of five treatment groups: 1) one Progesterone Releasing Intravaginal Device (1PRID; n = 6); 2) two PRIDs (2PRID; n = 6); 3) norgestomet, as in Syncro-Mate-B regimen (SMB; n = 6); 4) melengestrol acetate (MGA; 0.5 mg/day; n = 5); and 5) control (CONT; n = 6). Treatments were administered for 9 days (Day 0 = initiation of treatment). All cows from 1PRID, 2PRID, SMB, and MGA groups were injected with prostaglandin F2 alpha (PGF2 alpha) on Days 2 and 5 of the treatment period to regress CL. Cows in the 1PRID and SMB groups were also administered exogenous estrogen according to the respective estrous synchronization protocol for these products. Daily blood samples were collected from Day 0 to 35 to determine concentrations of P4. On Day 8, blood samples were collected at 15-min intervals for 24 h to determine pattern of LH secretion. On Day 9, all treatments ceased and cows in the CONT group received injections of PGF2 alpha.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The objectives of this experiment were to determine if subnormal levels of progesterone (P4) indicative of luteal insufficiency influence (1) pulsatile release of luteinizing hormone (LH), (2) the interval to the preovulatory surge of LH after removal of P4, and (3) the secretion of P4 during the estrous cycle subsequent to administration of subnormal levels of P4. On Day 5 (Day = 0 day of estrus) of the estrous cycle, cows received P4-releasing intravaginal devices (PRID) to produce normal (2 PRIDs; n = 7) or subnormal (0.5 PRID; n = 6) concentrations of P4. Five cows served as controls. On Day 10, serial blood samples were collected from all cows. Collection of blood samples was again initiated on Day 17 in cows receiving PRIDs. The PRIDs were removed and blood collection continued for 78 h. Daily blood samples were collected from all animals for 42 days subsequent to estrus (estrous cycles 1 and 2, respectively). During estrous cycle 1, mean concentration of P4 was lower (p less than 0.05) and frequency of pulses of LH was higher (p less than 0.05) in cows receiving subnormal P4 than in cows receiving normal P4 and control cows. Plasma concentrations of estradiol (E2) were higher (p less than 0.05) on Days 9-16 of estrous cycle 1 in cows receiving subnormal P4 than in cows receiving normal P4 or in control cows. Concentrations of E2 were greater (p less than 0.05) at 6, 18, and 30 h following removal of PRIDs in cows receiving subnormal P4 than in cows receiving normal P4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A synthetic gonadotropin-releasing hormone (GnRH) agonist (fertirelin acetate, FA) was administered to beef cattle within 12 h after onset of estrus (Day = 0) to study effects on subsequent endocrine responses and fertility. In Study 1, 16 crossbred beef heifers were injected with either 100 mug FA (n = 8) or saline (n = 8) at 6 or 12 h (n = 7; n = 9) after onset of estrus. Concentrations of luteinizing hormone (LH) over time were affected (P<0.01) by the interaction of treatment and interval from onset of estrus to treatment. Heifers treated with FA at 6 h after onset of estrus exhibited the greatest increase in LH after treatment. There was no effect of treatment, interval from onset of estrus to treatment or treatment by interval interaction on duration of the estrous cycle, on concentrations of progesterone from Days 1 through 14 posttreatment, or on concentrations of progesterone prior to subsequent estrus (Day -10 through 0, posttreatment estrus). In summary, FA administered to beef cattle within 12 h after onset of estrus effectively increased peripheral plasma concentration of LH, but this increase had no effect on subsequent luteal function as measured by duration of the estrous cycle or concentrations of plasma progesterone. In Study 2, 86 parous beef cows were bred artificially to one of two bulls following natural or prostaglandin F(2)alpha induced estrus. Cows received either no treatment or 50 or 100 mug FA at the time of AI. There was no effect of treatment, breed, parity, technician, service sire or interactions on conception rate (mean = 76.7%). Although not significant, the numerical pattern of conception rate among experimental groups (control = 71.4%, 50 mug FA = 76.7%, 100 mug FA = 82.1%) supports further investigation of this GnRH agonist with larger numbers of cattle.  相似文献   

5.
Two trials involving 85 heifers and 67 cows were conducted to determine the effect of estrous cycle stage at the time of Syncro-Mate-B((R)) (SMB) treatment on interval to estrus following implant removal and on conception rate at the synchronized estrus. In Trial 1, 57 beef and 28 dairy heifers were treated with SMB on each representative day of a 22-d estrous cycle (estrus = Day 0). Beef heifers were artificially inseminated approximately 48 h after implant removal, whereas dairy heifers were inseminated 0 to 12 h after detection of estrus. Inseminations were scored by the inseminator according to their difficulty. Interval to the onset of estrus was not different between heifers treated early ( Day 11) in the cycle (35.2 +/- 7.2 h). Conception rate at the synchronized estrus was slightly higher in early-cycle heifers (22 47 = 47% ) compared to late-cycle heifers (14 38 = 37% , P = 0.2). Heifers that were difficult to inseminate had lower (P < 0.01) conception rates (2 11 = 18% ) at the synchronized estrus than heifers considered normal (21 51 = 41% ) or easier than normal to inseminate (13 23 = 57% ). In Trial 2, of the 131 beef cows synchronized, 67 that were estimated to be either early or late in the estrous cycle by progesterone analysis were utilized. Cows were treated with SMB and inseminated without regard to estrus 48-h after implant removal. Inseminations were scored as in Trial 1. Calves were separated from cows from the time of implant removal to insemination. Conception rate was higher (P < 0.05) in cows treated with SMB early ( Day 11, 16 35 = 46% ). Cows that were difficult to inseminate had a lower (P < 0.01) conception rate (0 8 = 0% ) than cows that were normal (43 94 = 46% ) or easier than normal to inseminate (13 29 = 45% ).  相似文献   

6.
Whisnant CS  Burns PJ 《Theriogenology》2002,58(6):1229-1235
Two trials were designed to test whether a single treatment with a microsphere formulation of progesterone (P) could simulate the luteal phase of the estrous cycle and lead to estrus and subsequent luteal development. The first experiment was to characterize the pattern of serum P concentrations and estrus in cows treated with a microsphere formulation (P + E) that contained 625 mg P and 50 mg estradiol (E). Four cows with palpable corpora lutea were treated with 25 mg prostaglandin F2 m. Each cow was given P + E (i.m.) 12 h later. Tail vein blood samples were taken on Days 1 and 2 following P + E treatment and then three times weekly for 24 days. Serum P increased from 0.8 +/- 0.1 ng/ml at P + E treatment to 4.7 +/- 0.6 ng/ml on Day 1, declined gradually to 4.1 +/- 0.3 ng/ml on Day 7 and then declined more rapidly to 0.6 +/- 0.1 ng/ml on Day 13. Treated cows showed estrus 16.25 +/- 0.7 days after P + E treatment. Thereafter, serum P increased beginning on Day 20 after P + E treatment, as expected following estrus. In Experiment 2, Angus and Simmental heifers (10.5-11.5 months of age) were administered i.m. either the vehicle (controls), E (50 mg), P (625 mg) or P + E (n = 13 per group). While treatment with E resulted in behavioral estrus (1-2 days after treatment) in each treated heifer, it did not (P > 0.5) initiate estrous cycles as indicated by subsequent increased serum P. In contrast, the P and P + E treatments increased (P < 0.05) the proportion (11/13) of heifers that showed estrus by 21 days after treatment followed by elevated serum P. We conclude that the microsphere formulation of P simulated the pattern of serum P concentrations during the luteal phase of the estrous cycle and initiated estrous cycles in peripubertal heifers with or without E.  相似文献   

7.
In three experiments, we examined endogenous opioid inhibition of luteinizing hormone (LH) secretion during the bovine estrous cycle. An increase in serum LH in response to the opioid antagonist naloxone (Na; 1 mg/kg i.v.) was the criterion for opioid inhibition. Estrous cycles were synchronized via prostaglandin administration. In Experiment 1, mean serum LH was not different during the luteal phase in yearling heifers (n = 6/group) at Hour 1 after Nal (2.1 ng/ml) compared to controls (1.8 ng/ml). However, LH peak amplitude was increased (p less than 0.05) in the Nal compared to the control group. Serum LH was increased (p less than 0.01) during the follicular phase in heifers at Hour 1 post-Nal compared to controls (4.7 and 3.5 ng/ml, respectively). Again, Nal administration was followed by increased (p less than 0.05) LH pulse amplitude compared to control. In Experiment 2, no effect of Nal upon serum LH was detected in cows (n = 9) during proestrus, metestrus, midluteal and late luteal portions of the estrous cycle. In Experiment 3, the LH response to Nal was examined simultaneously in yearling heifers and cows (n = 5/group) during the luteal and follicular phases. Serum LH increased (p less than 0.001) during Hour 1 post-Nal in heifers compared to cows during the follicular (3.4 vs. 1.7 ng/ml) but not during the luteal phase. LH pulse amplitude also increased (p less than 0.05) during Hour 1 post-Nal in heifers compared to cows during the luteal (2.5 vs. 1.1 ng/nl and follicular (2.5 vs. 1.3 ng/ml) phases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Estrous response and pregnancy rates are decreased for cows given Syncro-Mate-B (SMB) during metestrus (Day 1 to 5 of an estrous cycle). Data indicate these decreases are due, in part, to retention of a functional corpus luteum (CL). Our objective was to determine whether PGF2alpha administered in conjunction with SMB would improve estrous response and pregnancy rates in metestrous cows with no detrimental effects to cows in other stages of the estrous cycle. Three hundred seventy-three suckled beef cows were observed for estrus for 21 d before SMB administration to determine stage of an estrous cycle. Blood samples were collected 14 and 7 d before treatment and at SMB administration. Serum was assayed for concentration of progesterone to verify stage of estrous cycle or noncyclicity. All cows received the standard SMB regime and were allotted by age and stage of cycle to one of two groups. Cows denoted SMB + L received 25 mg of PGF2alpha 8 d after implantation, whereas cows denoted SMB served as controls. On Day 10, SMB implants were removed and females were observed for subsequent estrus. At this time, calves were removed from their dams for 48 h. Artificial insemination was performed 12 hr after observation of a standing estrus. Timed insemination was performed at 48 hr after implant removal for cows not inseminated at 24 or 36 hr after implant removal. Interval to synchronized estrus (within 5 d of implant removal) was lengthened for metestrous cows compared to cows in other stages of the cycle irrespective of treatment (P < 0.001). Cows receiving PGF2alpha had a greater pregnancy rate at 5 d compared to controls (P = .0672). Interval to estrus, estrous response, and pregnancy rate to A1 at d 28 or end of breeding season were not affected by administration of PGF2alpha in conjunction with SMB when compared to the standard SMB protocol.  相似文献   

9.
Forty-five nonpregnant, nonlactating, Angus and Brangus cows were utilized to determine how long a Norgestomet ear implant would inhibit estrus when administered at various stages of an estrous cycle. All cows completed a nontreated estrous cycle to ensure normal cyclicity. At the second observed estrus (estrus = Day 1), cows were randomly allotted to be treated at metestrus (Day 3 or Day 4, n = 15); at diestrus (Day 9 or Day 10, n = 14); or at proestrus (Day 15 or Day 16, n = 16). All cows received a 2-ml intramuscular injection of 3 mg of Norgestomet accompanied by a 6-mg Norgestomet ear implant, which remained in situ for 21 days, or until individual cows were observed in estrus. Estrus was inhibited for a mean (+/- SEM) of 18.7 +/- 0.7, 19.9 +/- 0.8, and 17.0 +/- 0.8 days, respectively, when cows were treated at metestrus, diestrus, and proestrus (metestrus and diestrus vs proestrus; P < 0.05). Estrus was inhibited for an entire 21-day implantation period in 27, 50, and 38% of cows treated at metestrus, diestrus, and proestrus, respectively (P > 0.10). Norgestomet inhibited estrus in all cows for 11, 17, and 11 days after implantation when treatment was initiated at metestrus, diestrus, and proestrus, respectively (P > 0.10). These data indicate that a 6-mg Norgestomet ear implant effectively inhibits estrus in all cows for a maximum of 11 days, with some cows exhibiting estrus by Day 12 with the Norgestomet implant in situ.  相似文献   

10.
Concentrations of LH, cortisol, estradiol-17beta (E(2)), prolactin and 13,14-dihydro-15-keto-prostaglandin F(2alpha) (PGFM) were determined in cows with experimentally induced clinical mastitis during early lactation. Cows free of intramammary infection (IMI) and in the luteal phase of the estrous cycle were balanced by lactation number and days in milk and assigned to either control (n=5) or treatment (n=5) groups. Treated cows were infected experimentally (day 0), in two mammary quarters, with Streptococcus uberis and developed clinical mastitis within 60 h after inoculation as evidenced by increased mastitis scores, elevated rectal temperatures, mammary swelling and isolation of S. uberis pathogen. Four days following bacterial challenge, blood samples were collected every 20 min for 8 h for determination of PGFM and LH following administration of oxytocin and GnRH, respectively. Blood samples were also collected on days 0, 4 and 7 of the experiment to determine concentrations of E(2), prolactin and cortisol. Four days after bacterial challenge, concentrations of cortisol were higher (P=0.04) in experimentally infected cows than controls. Experimentally challenged cows had increased (P=0.02) concentrations of cortisol on days 4 and 7 compared with day 0. Control cows had no significant increase in blood cortisol during the experimental period. Baseline concentrations of PGFM did not differ between groups; however, peak concentrations of PGFM following oxytocin challenge were elevated (P=0.006) in cows with clinical mastitis compared with control animals. Prolactin, E(2) and LH did not differ between cows with clinical mastitis or controls. Experimentally induced mastitis during early lactation elevated concentrations of cortisol during the luteal phase of the estrous cycle. Furthermore, mastitic cows demonstrated an increased PGFM response following oxytocin administration. Altered reproductive efficiency in cows with clinical mastitis caused by Gram-positive pathogens may be the result of increased uterine sensitivity to prostaglandin F(2alpha) (PGF(2alpha)).  相似文献   

11.
It was hypothesized that prolonged elevation in 17beta-estradiol (E(2)) preceding ovulation as a result of a persistent ovarian follicle would have a detrimental effect on pregnancy rate after Day 7 (behavioral estrus = Day 0) of the estrous cycle. Cows were either treated with exogenous progesterone (P(4)) for 10 d or remained untreated (CON; n = 76). Cows were treated with 1 of 2 doses of P(4) from Day 6 to 16 which was intended to result in either elevated E(2) (EE(2); n = 76) or normal E(2) (NE(2); n = 76) concentration in the circulation. At the initiation of P(4) treatment, cows received prostaglandin F(2alpha) (PGF(2alpha)) to eliminate the endogenous source of P(4). On Day 16, the exogenous source of P(4) was removed from treated cows, while cows in the CON group received PGF(2alpha). A single embryo was transferred into each cow 7 days after observation of behavioral estrus. Blood samples were taken on alternating days during the treatment period to determine concentrations of P(4) and E(2). The pregnancy rate was determined by ultrasonographic examination 25 to 32 d after embryo transfer. There was a treatment-by-day interaction (P < 0.0001) on E(2) concentrations in the plasma during the 10-d treatment period. Cows in the EE(2) group had a higher concentration of E(2) by Day 8 (6.1 +/- 0.5 pg/ml) and this concentration remained elevated until PRID removal compared with that of cows in the NE(2) (2 +/- 0.2 pg/ml) and CON (2.0 +/- 0.3 pg/ml) groups, which had concentrations of E(2) similar to those at the initiation of treatment. Pregnancy rates after embryo transfer did not differ (P = 0.56; X(2) = 1.1) among cows in the EE(2) (30.7%), NE(2) (36.2%) and CON (32.9%) groups. Prolonged elevation of E(2) concentrations associated with the development of a persistent ovarian follicle preceding ovulation did not affect the pregnancy rate to embryo transfer after Day 7 of the estrous cycle in cows.  相似文献   

12.
Multiparous lactating beef cows were observed for estrus and randomly assigned to one of four Luprostiol (13, thia-PG-F(2)alpha analog) treatment groups receiving 3.8 (LI), 7.5 (LII), 15 (LIII) or 30 (LIV) mg Luprostiol, respectively, or to an untreated control group (C), or to a positive control group (E) receiving 500 mcg Estrumate. Cows received their respective treatments in a single dosage on Day 7, 8 or 9 of the estrous cycle (estrus = Day 0) and were artificially inseminated 12 h following the subsequent estrus. Blood samples were collected from all groups immediately prior to treatment and at 12-h intervals to 48 h post treatment and analyzed for progesterone (P(4)). Blood samples were collected at 3-h intervals from 24 to 72 h post treatment for animals in Group LIII and for 48 h (or observed estrus) starting on Day 19 of the estrous cycle for animals in Group C. These samples were analyzed for estradiol-17beta(E(2)), follicle stimulating hormone (FSH) and luteinizing hormone (LH). Treatment with Luprostiol at doses >/= 7.5 mg resulted in a synchronous estrous response during the first 5 d post treatment in 75 to 95% of cows treated. Luteal function, as evaluated by systemic P(4) concentration, paralleled results observed for estrous response. Treatment with a 15 or 30 mg dose of Luprostiol resulted in greater overall pregnancy rate at synchronized estrus. No biologically significant differences were found in blood levels of E(2), FSH or LH around the time of estrus between cows in Groups C and LIII. Results from these studies indicate treatment with Luprostiol at doses >/= 7.5 mg resulted in a synchronous estrus during the first 5 d after treatment. Pregnancy rates and endocrine changes were similar to those observed in control and Estrumate-treated cows.  相似文献   

13.
The objective of the present study was to investigate if plasma progesterone (pP(4)) concentrations are dependent on luteal size, blood flow, or gene expression in luteal tissue. To induce cycles with high and low pP(4) concentrations, respectively, 20 lactating dairy cows received either a single treatment with 25 mg prostaglandin F(2α) (PGF(2α)) on Day 4 Hour 12 (PG1; n=8), or two treatments (25 mg PGF(2α) each) on Day 4 Hours 0 and 12 (PG2; n=12) of the estrous cycle (Day 1, Hour 0=ovulation). In four cows, ovulation occurred between 4 and 6d after the second PGF(2α) treatment; these cows and one lame cow were excluded from the study. In the 15 remaining cows with physiological interovulatory intervals, pP(4), area (LTA) and volume (LTV) of luteal tissue, as well as absolute (LBF) and relative (rLBF) luteal blood flow were determined on Day 9, and relative luteal P(4) (rLP(4)) as well as luteal mRNA expression of important receptors, angiogenic, vasoactive, and steroidogenic factors were quantified on Day 11 (±1) during two successive estrous cycles. Furthermore, rLP(4) was multiplied by LTV to produce a semiquantitative assessment of absolute luteal P(4) (LP(4)). There was no effect (P>0.05) of treatment (one or two PGF(2α) treatments), neither on pP(4) concentrations nor on any other parameter in the present study. Nevertheless, there was a lower LP(4) (P=0.01), LTA (P=0.03), and LTV (P=0.02), as well as tendencies of lower pP(4) (P=0.06) and LBF (P=0.09) at first compared with second diestrus. Plasma P(4) was related with LP(4) (r=0.43, P=0.04), LTA (r=0.65, P=0.0001), and LTV (r=0.43, P=0.02), but not with rLBF (r=-0.18, P=0.34). Furthermore, there was no significant correlation between gene expression of important steroidogenic factors and P(4) concentrations in luteal tissue. Results indicate that plasma P(4) concentrations in the mid-luteal phase were dependent on luteal size, but independent of blood flow and gene expression per luteal tissue unit.  相似文献   

14.
Simultaneous injections of prostaglandin F2alpha (PGF) and gonadotropin releasing hormone (GnRH) or saline were given to 32 diestrous dairy cows to test the ability of GnRH to improve estrous and ovulation synchrony beyond that of PGF alone. Cows were randomly assigned to receive PGF on Day 8 or Day 10 of the estrous cycle (estrus = Day 0), and all cows were further assigned to simultaneous injection of GnRH or saline. Corpus luteum (CL) regression, return to estrus and follicular activity were monitored by plasma progesterone assay, twice-daily estrous detection and ultrasonographic examination, respectively. Plasma progesterone concentrations declined to <1.0 ng/ml at 24 hours after PGF in all cows and were not affected by GnRH. Gonadotropin releasing hormone inducted premature ovulation or delayed return to estrus in 7 of 8 cows treated with PGF/GnRH on Day 8 and 3 of 8 cows treated with PGF/GnRH on Day 10. Further, cows with premature GnRH-induced ovulations failed to develop and maintain a fully functional CL, and all returned to estrus 7 to 13 days after the induced ovulation. These data indicate that GnRH administered simultaneously with a luteolytic dose of PGF disrupts follicular dynamics and induces premature ovulation or delays normal return to estrus and, therefore, does not improve the synchrony of estrus and ovulation achieved with PGF alone.  相似文献   

15.
Two experiments were conducted to study the in vitro effects of prostaglandins F2 alpha (PGF2 alpha), E2 (PGE2), and luteinizing hormone (LH) on oxytocin (OT) release from bovine luteal tissue. Luteal concentration of OT at different stages of the estrous cycle was also determined. In Experiment 1, sixteen beef heifers were assigned randomly in equal numbers (N = 4) to be killed on Days 4, 8, 12, and 16 of the estrous cycle (Day 0 = day of estrus). Corpora lutea were collected, an aliquot of each was removed for determination of initial OT concentration, and the remainder was sliced and incubated with vehicle (control) or with PGF2 alpha (10 ng/ml), PGE2 (10 ng/ml), or LH (5 ng/ml). Luteal tissue from heifers on Day 4 was sufficient only for determination of initial OT levels. Luteal OT concentrations (ng/g) increased from 414 +/- 84 on Day 4 to 2019 +/- 330 on Day 8 and then declined to 589 +/- 101 on Day 12 and 81 +/- 5 on Day 16. Prostaglandin F2 alpha induced a significant in vitro release of luteal OT (ng.g-1.2h-1) on Day 8 (2257 +/- 167 vs. control 1702 +/- 126) but not on Days 12 or 16 of the cycle. Prostaglandin E2 and LH did not affect OT release at any stage of the cycle studied. In Experiment 2, six heifers were used to investigate the in vitro dose-response relationship of 10, 20, and 40 ng PGF2 alpha/ml of medium on OT release from Day 8 luteal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The objective of this study was to compare the effects of administration of a single injection of progesterone (P4) and follicle aspiration on Day 7 of the estrous cycle on the timing and synchrony of follicular wave emergence, time of ovulation, and concentrations of P4, estradiol and FSH in Holstein cows. Twenty cows were assigned to 4 groups (n=5 cows per group) in a 2 by 2 factorial arrangement. Cows were treated on Day 7 (Day 0 = estrus) of the estrous cycle with either sham follicular aspiration and an oil vehicle administered intramuscularly (control), aspiration of ovarian follicles (aspiration), 200 mg of P4 im, or aspiration and 200 mg of P4 im (aspiration + P4). On Day 11, PGF(2alpha)(25mg) was administered to all groups. Synchrony of ovulation was less variable in each of the treatment groups compared with the control group (P<0.05), whereas ovulation was delayed in cows in the P4 group (P<0.05). Day of follicular wave emergence was delayed in the cows of the P4 group compared with cows in the aspiration and aspiration + P4 groups (P<0.01), whereas variability in wave emergence was less among both groups of aspirated cows compared with the cows in the control group (P<0.01). More follicles 4 to 7 mm in diameter were detected in the 2 aspiration groups compared with the cows in the control and P4 group (P<0.05). No difference was detected among groups in the maximum concentration of FSH associated with follicular wave emergence. We conclude that both the administration of P4 and the aspiration of follicles on Day 7 of the estrous cycle improves the synchrony of ovulation when luteolysis is induced on Day 11 and results in similar concentrations of FSH at the time of follicular wave emergence, but the timing of wave emergence and the number of follicles post-emergence differ.  相似文献   

17.
The induction of optimal synchrony of estrus in cows requires synchronization of luteolysis and of the waves of follicular growth (follicular waves). The aim of this study was to determine whether hormonal treatments aimed at synchronizing follicular waves improved the synchrony of prostaglandin (PG)-induced estrus. In Experiment 1, cows were treated on Day 5 of the estrous cycle with saline in Group 1 (n = 25; 16 ml, i.v., 12 h apart), with hCG in Group 2 (n = 27; 3000 IU, i.v.), or with hCG and bovine follicular fluid (bFF) in Group 3 (n = 21; 16 ml, i.v., 12 h apart). On Day 12, all cows were treated with prostaglandin (PG; 500 micrograms cloprostenol, i.m.). In Experiment 2, cows were treated on Day 5 of the estrous cycle with saline (3 ml, i.m.) in Group 1 (n = 22) or with hCG (3000 IU, i.v.) in Group 2 (n = 20) and Group 3 (n = 22). On Day 12, the cows were treated with PG (500 micrograms in Groups 1 and 2; 1000 micrograms in Group 3). Blood samples for progesterone (P4) determination were collected on Day 12 (Experiment 1) or on Days 12 and 14 (Experiment 2). Cows were fitted with heat mount detectors and observed twice a day for signs of estrus. Four cows in Experiment 1 (1 cow each from Groups 1 and 2; 2 cows from Group 3) had plasma P4 concentrations below 1 ng/ml on Day 12 and were excluded from the analyses. In Experiment 1, cows treated with hCG or hCG + bFF had a more variable (P = 0.0007, P = 0.0005) day of occurrence of and a longer interval to estrus (5.9 +/- 0.7 d, P = 0.003 and 6.2 +/- 0.8 d, P = 0.005) than saline-treated cows (3.4 +/- 0.4 d). The plasma P4 concentrations on Day 12 were higher (P < 0.0001) in hCG- and in hCG + bFF-treated cows than in saline-treated cows (9.4 +/- 0.75 and 8.5 +/- 0.75 vs 4.1 +/- 0.27 ng/ml), but there was no correlation (P > 0.05) between plasma P4 concentrations and the interval to estrus. In Experiment 2, cows treated with hCG/500PG and hCG/1000PG had a more variable (P = 0.0007, P = 0.002) day of occurrence of and a longer interval to estrus (4.2 +/- 0.4 d, P = 0.04; 4.1 +/- 0.4 d, P = 0.03) than saline/500PG-treated cows (3.2 +/- 0.1 d). The concentrations of plasma P4 on Days 12 and 14 of both hCG/500PG- and hCG/1000PG-treated cows were higher (P < 0.05) than in saline/500PG-treated cows (7.3 +/- 0.64, 0.7 +/- 0.08 and 7.7 +/- 0.49, 0.7 +/- 0.06 vs 5.3 +/- 0.37, 0.5 +/- 0.03 ng/ml). The concentrations of plasma P4 on Days 12 or 14 and the interval to estrus were not correlated (P > 0.05) in any treatment group. The concentrations of plasma P4 on Days 12 and 14 of hCG/500PG- or hCG/1000PG-treated cows were correlated (r = 0.65, P < 0.05; r = 0.50, P < 0.05). This study indicated that treatment of cows with hCG on Day 5 of the estrous cycle reduced the synchrony of PG-induced estrus and that this reduction was not due to the failure of luteal regression.  相似文献   

18.
Twenty pluriparous, spring-calving Brahman cows were used to determine luteal competency, as measured by serum progesterone concentrations, during the first and the second postpartum estrous cycles. Prior to and after calving, all cows were maintained in good body condition on Coastal bermudagrass pasture (IFN 1-00-703). The calves were allowed to suckle ad libitum, and sterile marker bulls were maintained with the cow herd as an aid in estrus detection throughout the trial. Cow weight and body condition score were recorded within 24 hours after calving and again at the first behavioral estrus observed. From day 1 through day 14 (day 0 = estrus) of both the first and the second postpartum estrous cycles, blood samples were collected from each cow, processed to yield serum and analyzed by radioimmunoassay for progesterone concentrations. There was a higher incidence of abnormal estrous cycles following the first postpartum estrus (35%) than following the second (5%) postpartum estrus (P<0.05). The abnormal first estrous cycles were characterized by either a short luteal phase (four cows) or by standing estrus behavior without luteal tissue formation (three cows). When serum progesterone concentrations were compared for all cows during the first estrous cycle with those during the second estrous cycle, there was less progesterone released during the cycle (P<0.05) and lower peak progesterone concentrations (P<0.10) during the first estrous cycle. However, if the abnormal cows were excluded from the analyses, there was no difference (P>0.10) in either progesterone concentrations through the 14 days measured or in peak progesterone concentrations between the first and the second postpartum estrous cycles. It can be concluded from this study that the higher incidence of abnormal luteal function following the first postpartum estrus may contribute to the decreased conception rates observed when cows are bred at their first postpartum estrus.  相似文献   

19.
The first postpartum ovulation after early weaning of calves (30 35 days of age) from cows is normally followed by a short luteal phase (6 10 days) unless the animals are pretreated with a progestogen (e.g. norgestomet). Reduced luteal lifespan in cattle is reportedly due to the premature release of a luteolysin (presumably prostaglandin F2 alpha [PGF2 alpha]). Therefore, the objective was to determine if oxytocin-induced release of PGF2 alpha (measured by the stable PGF2 alpha metabolite, 15-keto-13,14-dihydro PGF2 alpha [PGFM]) was greater for cows having a short compared to a normal luteal phase on Day 5 following the first postpartum estrus (Day 0). Thirty postpartum beef cows were randomly assigned into three groups (n = 10 per group) expected to have short (Short d 5) or normal (Norgestomet d 5 and Norgestomet d 16) luteal phases. Cows in Norgestomet d 5 and d 16 groups received Norgestomet (progestogen) implants for 9 days beginning 21 23 days postpartum. On Day 5 (Short d 5 and Norgestomet d 5) or Day 16 (Norgestomet d 16) following first postpartum estrus, each animal was injected (i.v.) with 100 IU oxytocin. In addition, cows in the Short d 5 group were subdivided into two groups following second estrus (normal luteal phase, n = 5 per group) to receive 100 IU oxytocin on Day 5 (Normal d 5) or 16 (Normal d 16), respectively. Estrous cycle length (means +/- SE) for cows in the Short d 5 group (8.7 +/- 0.4 days) was shorter (p less than 0.01) than for cows in all other groups (21.1 +/- 0.3 days).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The present study investigated the peripheral plasma inhibin levels in relation to 1) the stage of estrous cycle and the effect of climatic variations. Blood samples were collected from cyclic buffalo (n=5) once daily for 32 consecutive days during the tropical hot humid (summer) and cold (winter) seasons. Estrus was recorded by parading a vasectomized bull as well as by plasma progesterone determination. In the winter season, peripheral inhibin concentrations which were lowest (0.35 +/- 0.02 ng/ml) during the mid-luteal phase of estrous cycle (Day 6 to Day 14, Day 0 = day of estrus) increased significantly (P < 0.02) to 0.47 +/- 0.04 ng/ml during the late luteal phase (Day -4 to Day -2) and then further to 0.52 +/- 0.03 ng/ml (P< 0.02) during the periestrus phase (Day -1 to Day 1). Inhibin concentrations then decreased significantly (P < 0.02) to 0.40 +/- 0.03 ng/ml during the early luteal phase (Day 2 to Day 5). In the summer season the differences in peripheral inhibin concentrations among different phases of estrous cycle were found to be nonsignificant. A comparison of the circulating inhibin concentrations between the two seasons indicated that inhibin concentrations were significantly higher in the late luteal phase (P < 0.01) and periestrus phase (P < 0.05) during the winter season compared with corresponding periods during the summer season. The present study suggests that peripheral inhibin concentrations change in the estrous cycle during cooler breeding season and that environmental heat stress can cause a reduction in peripheral inhibin concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号