首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective of this study was to establish a rapid and reliable PCR method for the sexing of 8- to 16-cell stage bovine embryos. The BOV97M and bovine 1.715 satellite DNA sequences were selected for amplification of male- and bovine-specific DNA, respectively. But the unequal number of copies of these two repetitive sequences required some modification of the multiplex PCR method. In consecutive and multiplex PCR, the first 10 PCR cycles were done with male-specific primer followed by an additional 23 cycles with bovine-specific primer. In this PCR method, the appearance of male- and bovine-specific bands was independent of the DNA concentration. This PCR method was applied successfully using groups of 8, 4, 2, and 1 blastomeres dissociated from the embryos, and the sexing efficiency was 100.0, 96.3, 94.3 and 92.1%, respectively. The coincident rate of sex determination between biopsied single blastomere and matched blastocyst was 90.0%. Therefore the developmental potential from 8- to 16-cell stage embryos to the blastocyst stage was not significantly different (P>0.2) for intact embryo (42.3%) than for demi-embryos (53.8%), suggesting that trauma to the demi-embryo caused by single-blastomere aspiration using a bevelled micropipette was very small. In conclusion, we developed a rapid (within 2 hours) and effective PCR method for the sexing of 8- to 16-cell stage bovine embryos using a single blastomere.  相似文献   

2.
Lee JH  Park JH  Lee SH  Park CS  Jin DI 《Theriogenology》2004,62(8):1452-1458
Fluorescence in situ hybridization (FISH) is a sensitive technique for molecular diagnosis of chromosomes on single cells and can be applied to sex determination of embryos. The objective has been to develop an accurate and reliable bovine Y chromosome-specific DNA probe in order to sex biopsed blastomeres derived from IVF bovine embryos by FISH. Bovine Y chromosome-specific PCR product derived from BtY2 sequences was labeled with biotin-16-dUTP (BtY2-L1 probe), and FISH was performed on karyoplasts of biopsed blastomeres and matched demi-embryos. Our FISH signal was clearly detected in nuclei of blastomeres of male embryos. FISH analysis of bovine embryos gave high reliability (96%) between biopsied blastomeres and matched demi-embryos. These results indicated that the BtY2-L1 bovine Y chromosome-specific FISH probe was an effective probe for bovine embryo sexing, and the FISH technique of probe detection could improve the efficiency and reliability.  相似文献   

3.
Loop-mediated isothermal amplification (LAMP) is a novel DNA amplification method that amplifies a target sequence specifically under isothermal conditions. The product of LAMP is detected by the turbidity of the reaction mixture without electrophoresis. The objective of this study was to develop a rapid sexing method for bovine preimplantation embryos using LAMP. The first experiment was conducted to optimize the DNA extraction method for LAMP-based embryo sexing. The DNA of single blastomeres was extracted using three methods: heat, NaOH, and proteinase K-Tween 20 (PK-TW) treatments. Sexing was performed with two LAMP reactions, male-specific and male-female common reaction, after DNA extraction. The rates of correct determination of sex were 88.9-94.4%, with no difference among methods. The sensitivity and accuracy of LAMP-based embryo sexing were evaluated in the next experiment. The proportion of samples in which the sex was correctly determined was 75-100% for one to five biopsied cells. Lastly, in vivo-derived embryos were examined to verify the usefulness of LAMP-based embryo sexing, and some of these fresh, sexed embryos were transferred into recipient animals. The time needed for sexing was <1 h. The pregnancy rate was 57.4% and all calves born were of the predicted sex (12 male and 21 female). Therefore, LAMP-based embryo sexing accurately determined gender and is suitable for field application.  相似文献   

4.
Twenty-one in vitro-fertilized bovine blastocysts were quartered, lysed and subjected to primer elongation preamplification (PEP) procedure, allowing for the analysis of up to 40 genotypes per quarter embryo. The quarter-embryos were sexed by polymerase chain reaction (PCR) using BRY.1, Bov97M and ZFX/ZFY loci, and then genotyped for k-casein, bovine leukocyte adhesion deficiency (BLAD) and microsatellite D9S1. The mitochondrial cytochrome B locus was used as an internal control with a 95% success rate. The PEP procedure amplified genomic fragments in 93% of all cases. The embryos were identified to be 11 males and 10 females. Sexing accuracy was 87% for BRY.1, 97% for ZFX/ZFY and 100% for Bov97M. False genotyping was due mostly to amplification of BRY.1 in the female embryos and to the nonamplification of the ZFY locus in the male embryos. The results indicate that the combined use of Bov97M and ZFX/ZFY loci is a highly accurate procedure for sexing bovine embryos. Genotyping for kappa-casein, D9S1 and BLAD was successful in 94, 99 and 91% of assays, respectively. Sex ratios and allele frequencies of embryos for gk-casein, BLAD and D9S1 were all close to the observed frequencies in the Israeli Holstein population. These results support the conclusion that the genotyping of embryos is as accurate as that of mature animals. Thus, marker-assisted selection can be efficiently applied at the preimplantation embryo level for loci of economic importance.  相似文献   

5.
Two to four blastomere size biopsies were obtained from each 6-day-old embryo of zebu and crossbred cattle for sex determination. The sex of the embryos was determined with a set of bovine Y-chromosome specific primer pairs by using polymerase chain reaction. Thirty two biopsied embryos after their sex was determined, when transferred fresh to synchronized recipients, resulted in 56.2% pregnancy rate. Sixteen healthy calves were born at full term, while 2 heifers aborted at mid-term from fresh embryo transfer. Simultaneously, 44 biopsied embryos which were kept frozen, were thawed at a later date and transferred to the previously synchronized recipients, thereby leading to 24 pregnancies (54.5%). Twenty-three healthy calves were born at full term, while 1 heifer aborted at mid-term from frozen-thawed embryo transfer. The pregnancy rates from both fresh and frozen-thawed biopsied embryos were comparable with that of controls (P > 0.05). Except for a single misidentification of a male calf as a female by our PCR assay (2.6%), the phenotypic sex of all the live born calves as well as the aborted fetuses was correctly matched with the PCR detection.  相似文献   

6.
The development rate of bovine chimeric embryos reconstituted at the 4-cell stage is relatively low. If chimerism is to be used as an approach in producing transgenic livestock, it is important to investigate whether this rate is affected by the sex of the blastomeres being combined and if all blastomeres survive equally well. In Experiment 1, blastomeres from 4-cell stage embryos were inserted into surrogate zonae pellucidae either in pairs to reconstitute 4-cell chimeras, or as the original sets of four to make handled controls. The development of chimeras with one pair of blastomeres labelled with PKH26-GL was also investigated. The rate of development into blastocysts was similar in chimeras with unlabelled blastomeres (23%) and in those in which one pair of blastomeres was labelled (26%) and was lower (P < 0.001) than in the handled and IVF control groups (43 and 58%, respectively). Labelled cells were distributed approximately evenly between ICM and trophoblast. In Experiment 2, the effect of sex differences between pairs of blastomeres in chimeras was investigated; chimeras were reconstituted from pairs of blastomeres taken from 4-cell embryos in which the remaining pair was sexed by PCR. No significant differences according to the sex of constituent blastomeres were detectable (mixed sex, 27%; males, 24%; females, 21%; P > 0.05). These results suggest that, in addition to the negative effects of micromanipulation, factors other than the sex of the blastomeres are involved in the reduced rate of development of chimeric bovine embryos. They also confirm the usefulness of PKH26-GL labelling for tracking the progeny of cleaving bovine blastomeres at least to the blastocyst stage.  相似文献   

7.
Single blastomeres were isolated from zona-free 8-cell mouse embryos and assayed for X-linked hypoxanthine phosphoribosyl transferase (HPRT) activity and autosome-linked adenine phosphoribosyl transferase (APRT) activity. At this stage of development both X chromosomes are active in female embryos. Hence, a bimodal distribution of HPRT: APRT ratios, corresponding to male (XY) and female (XX) biopsied samples, was observed due to the 2-fold difference in gene dosage for HPRT activity. Batches of putative male and female embryos identified in this way were transferred to pseudopregnant recipient females. Development of the seven-eighths embryos was equivalent to that of control zona-free intact embryos. Sex determination by measurement of X-linked gene dosage was accurate and rapid enough to allow transfer of embryos of known sex without the need for cryopreservation.  相似文献   

8.
The objective of this study was to develop a rapid and efficient means of sexing murine preimplantation embryos at the 4- to 8-cell stage of development. To achieve this goal, a nested, multiplex polymerase chain reaction (PCR) was optimized using DNA from male and female mice and primers specific for X- (DXNds3)- and Y- (Sry,Zfy) gene sequences. Sensitivity of the assay was measured using groups of 4, 2, or 1 blastomere from dissociated embryos. Efficiency was evaluated using single blastomeres obtained by embryo biopsy. Accuracy of sexing was determined by comparing single-cell results with those of matched blastocysts. Robust amplification of male (XY) and female (XX) gene sequences was obtained in less than 6 hours. The percentage of male (3 bands) and female (1 band) reactions for groups of 4, 2, or 1 blastomere was 100% (6/6), 100% (15/15), and 94.4% (17/18), respectively. Assay efficiency for single, biopsied blastomeres from 4 to 8 cell embryos was 95.8% (207/216). For male and female embryos, sexing of single blastomeres accurately predicted results of matched blastocysts, 100% (10/10) and 100% (13/13), respectively. Simultaneous amplification of one X- and two Y-gene sequences ensured correct interpretation of sexing reactions. Short thermal cycling times and minimal tube handling increased the assay speed and decreased the potential risk of contamination. Mol. Reprod. Dev. 49:261–267, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
The extent of chromosomal mosaicism in human preimplantation embryos was examined using an improved procedure for the preparation and spreading of interphase nuclei for use in fluorescence in situ hybridisation, allowing the analysis of every nucleus within an embryo. One cell showed no hybridisation signals in only three of the 38 embryos that were included in this study, i.e. the hybridisation efficiency per successfully spread nucleus was 99% (197/200). Double-target in situ hybridisation analyses with X- and Y-chromosome-specific probes was performed to analyse nine embryos resulting from normal fertilisation, 22 polypronucleate embryos and seven cleavage-stage embryos where no (apronucleate) or only one pronucleus (monopronucleate) was observed. We also analysed autosomes 1 and 7 by double-target in situ hybridisation in the nuclei of two apronucleate, one monopronucleate and four polypronucleate embryos. All nine embryos that resulted from normal fertilisation were uniformly XY or XX. None of the apronucleate or monopronucleate embryos was haploid: three were diploid, one was triploid and three were mosaic. Fertilisation was detected by the presence of a Y-specific signal in four of these embryos. Of the polypronucleate embryos, two were diploid, two were triploid and 18 were mosaic for the sex chromosomes and/or autosomes 1 and 7. These results demonstrate that fertilisation sometimes occurs in monopronucleate embryos and that chromosomal mosaicism can be detected with high efficiency in apronucleate, monopronucleate and polypronucleate human embryos using fluorescence in situ hybridisation.  相似文献   

10.
A two-step polymerase chain reaction (PCR) assay was used to determine the sex of mouse preimplantation embryos obtained from oocytes fertilized and cultured in vitro, to investigate the differences in the developmental rates of mouse embryos according to the sex. All the in vitro developed embryos could be analyzed by this method. When the embryos were classified according to the time of morula to blastocyst transition as fast-intermediate- and slow-growing embryos, a significantly high percentage (78.0%) of the fast-developing embryos were identified as males; while a significantly lower percentage (42.5%) of slow-developing embryos were identified as males. The intermediate-developing embryos presented a sex ratio not significantly different from the total (57.5%). The deviation of sex ratio was further confirmed by embryo transfer experiment, where fast- and slow-developing embryos gave 76.2% and 25.7% male fetuses, respectively. We concluded that male mouse embryos fertilized and cultured in vitro develop faster than female embryos. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Fetal sex can be determined by the polymerase chain reaction (PCR) using cells from fetal fluid collected by transvaginal ultrasound-guided amniocentesis. A total of 35 aspirates from 30 cows, 15 Holsteins and 15 Japanese Blacks at 59 to 250 d of pregnancy were used. Five cows were aspirated twice at a 10-d interval. A 5.0 MHz convex array transducer connected to a scanner was inserted into the vagina under caudal epidural anesthesia. The transducer was equipped with a 65-cm long, 21-g needle within the probe carrier. A bovine male-specific primer and a bovine gender-neutral primer were used. Fetal fluid was obtained from all except 2 cows in early pregnancy. Five animals aborted within 1 wk following aspiration. A total of 33 samples, 29 of amniotic fluid and 4 of allantoic fluid, was subjected to PCR analysis. Fetal gender was verified in 31 33 samples (18 females and 13 males). Gender was also determined by gross examination of external genitalia of offspring after calving or abortion. Fetal gender was correctly identified by PCR analysis of aspirated fetal fluid in 16 16 females and in 13 15 males. Transvaginal ultrasound-guided amniocentesis followed by PCR analysis of aspirated cell DNA can be used accurately to determine fetal sex in cows at 70 to 100 d of gestation. The procedure requires considerable skill and is not without some risk to fetal viability.  相似文献   

12.
The present study was undertaken to find suitable conditions for blastomere fusion of mouse two- and four-cell embryos using the electrofusion method to simplify the nuclear transfer procedure. Single blastomeres of ICR and F1 (C57BL/6J x CBA/N) two-cell embryos or ICR four-cell embryos and F1 two-cell embryos were paired and treated with electric stimulus under different fusion conditions. Two hours after electrofusion treatment, the fused blastomere pairs were encapsulated in alginate gel and cultured for 96 hours to observe their developmental potential. When the single blastomere pairs of two-cell embryos were exposed to electric pulses of 1.0, 1.5 and 2.0 kV/cm for 30, 60 and 90 mu sec, high fusion rates were obtained (84.6 to 100%). However, when two-cell blastomere were paired with four-cell blastomere and then treated under the same conditions, the fusion rates (27.5 to 87.5%) were lower than that of single blastomere pairs of two-cell embryos regardless of the duration and strength of the d.c. pulses. The blastocyst developmental rate after in vitro culture of the fused blastomere pairs of two-cell embryos using the above electrofusion conditions was high (81.8 to 100%). Lower blastocyst developmental rates were obtained on the fused blastomere pairs of two- and four-cell embryos (46.4 to 76.2%). Based on the results of this study, a pulse duration of 60 mu sec and a pulse strength of 1.0kV/cm were the most suitable conditions for single blastomere pair fusion of two-cell or two- and four-cell embryos. The study further showed that alginate gel is a good substitute for zonae pellucidae for encapsulating zona-free embryos.  相似文献   

13.
Avery B  Bak A  Schmidt M 《Theriogenology》1989,32(1):139-147
The purpose of this study was to determine whether a correlation between embryonic cleavage rates and sex ratios in dairy cattle could be substantiated. Embryos were collected at Day 7 after estrus following superovulation and artificial insemination. Embryos from flushings where at least two different developmental stages within the same flushing could be identified were examined. A total of 476 such embryos was transferred to recipients and 110 calves were born. The sex effect was only demonstrable in flushings yielding embryos of at least three different developmental stages. The sex ratios from this group were 32%, 58% and 62% in the slow, intermediate and fast developing groups of embryos, respectively. The deviations were not significant (P = 0.084). Only 23% of the flushings provided embryos that fell into this cathegory, which limits the use of differential cleavage rates as a sexing method, unless additional embryo culture is introduced to the technique.  相似文献   

14.
Chromosomal mosaicism has been reported in in vitro-cultured embryos at early cleavage stages, as well as in morulae and blastocysts. We have assessed the incidence and pattern of mosaicism during in vitro development of human embryos from early-cleavage stages to morula and blastocyst. Fifty spare embryos were fixed for fluorescence in situ hybridization (FISH) analysis for chromosomes X, Y, 13, 18, and 21 on days 2 or 3 (4- to 10-cell stage) (n = 16), on day 4 (morula stage) (n = 14), on day 5 (pre-expanded blastocyst) (n = 5), and the expanded blastocyst stages (n = 15). Blocked embryos (no cleavage observed within the last 24 hr) were not included. A total of 2367 cells were analyzed. Four early-cleavage stage embryos were found uniformly diploid; all of the others were mosaic for the chromosomes analyzed (mean diploid nuclei 48.3% +/- 28.7). All of the embryos at more advanced developmental stages, except one fully normal morula, had mosaic chromosome constitutions, with an increase in the percentage of diploid cells in morulae, pre-expanded, and expanded blastocysts, respectively (mean diploid nuclei 78.6% +/- 11.7, 66.0% +/- 20.8, 79.6% +/- 12.8), in comparison with earlier stages. Hypotheses about the origin of mosaicism and embryo regulation mechanisms will be discussed.  相似文献   

15.
Bovine spermatozoa were fractionated on Percoll density gradients into two major subpopulations of motile spermatozoa and a minor fraction containing mostly nonmotile spermatozoa with abnormal morphology. Fractionation required the addition of bovine serum albumin and a continuous Percoll gradient buffered with sodium bicarbonate. It is postulated that, under suitable ionic conditions, the binding of bovine serum albumin to spermatozoa amplifies subtle differences between subpopulations. These studies were directed toward separating Y- and X-bearing spermatozoa. However, when the subpopulations were evaluated by flow cytometry, their Y:X ratios were similar to that of an unfractionated control.  相似文献   

16.
Morphological development and sex of bovine in vitro-fertilized embryos.   总被引:6,自引:0,他引:6  
Bovine in vitro-fertilized embryos at the blastocyst stage were collected at days 7, 8, and 10 postinsemination and sex was determined via the polymerase chain reaction (PCR) to compare the embryonic development with the sex of the embryos. The percentages of males (sex ratio) after division of the embryos into three developmental groups were 68%, 48%, and 35% in the fast, intermediate, and slow groups, respectively (P = 0.014). The percentages of males on days 7, 8, and 10 were 60%, 40% and 33%, respectively (P = 0.043). The average sex ratio for the whole material was 50%. It is thus concluded that male bovine preimplantation embryos develop faster than female embryos.  相似文献   

17.
Chromosomal analysis was carried out on 48 Day 2-7 embryos collected from superovulated Merino ewes. Three embryos had abnormal chromosome complements (1 X 1N, 1 X 1N/2N, 1 X 3N), yielding an incidence of 6.25% abnormal embryos. It is concluded that superovulation does not cause an increase in the incidence of chromosomal abnormalities in embryos of Merino sheep.  相似文献   

18.
A method for determining the sex and milk protein genotypes (RFLPs) of preimplantation stage bovine embryos using multiplex polymerase chain reaction (PCR) is described. Day 6 to 7 embryos were micromanipulated to isolate 5 to 6 cells. These cells were then dried in reaction tubes for transport to the laboratory. Subsequently, two sets of PCRs were performed using Y chromosome, k-casein and beta-lactoglobulin gene specific primers, followed by electrophoretic analysis of the PCR products. The presence or absence of the Y chromosome was ascertained in 90 of 92 embryos. Moreover, the k-casein specific fragment was amplified and detected in all these embryos. The PCR products were digested in order to genotype the k-casein gene. In 70% of the embryos, the beta-lactoglobulin specific fragment was amplified, although together with some unspecific fragments.  相似文献   

19.
The yield and quality of (a) parthenogenetic blastocysts produced by two activation treatments (cycloheximide [CHX] or 6-dimethylaminopurine [DMAP]) and (b) nuclear transfer blastocysts generated using these two activation treatments and three different ages of karyoplast derived from day 3, 4, or 5 in vitro produced donor embryos, were examined in order to define an optimal nuclear transfer protocol. The two activation protocols comprised calcium ionophore followed by either CHX or DMAP. Parthenogenetic blastocyst yields were greater (P < 0.001) following activation with DMAP than CHX (59.7 +/- 5.1 vs. 31.4 +/- 4.5 [mean +/- SEM]). In contrast, nuclear transfer blastocyst rates per fused embryo were lower (P < 0.0001) using cytoplasts activated with DMAP. The individual rates using day 3, 4, and 5 donors and using CHX and DMAP activation treatments were 31.9 +/- 5.0, 31.7 +/- 6.2, 20.4 +/- 7.3 and 27.8 +/- 4.7, 20.1 +/- 7.5, 12.7 +/- 8.3, respectively. Blastocyst rate per fused embryo was negatively correlated (P = 0.0091) with the total number of blastomeres per donor embryo. Despite this inverse relationship, the calculated potential blastocyst yield per donor embryo was positively correlated (P < 0.0048) to karyoplast age. The individual potential yields on days 3, 4, and 5 and for the two activation protocols (CHX and DMAP) were 4.7 +/- 0.8, 7.2 +/- 1.2, 10.1 +/- 2.1 and 3.8 +/- 0.8, 5.5 +/- 2.1, 7.3 +/- 4.1, respectively. One possible explanation for the observed inverse relationship is that differentiation events during early cleavage are able to reduce the ability of the cytoplast to reprogram the transferred karyoplast and hence reduce blastocyst yields. The mechanism that mediates the differential effect of the CHX and DMAP on blastocysts yields between parthenogenetic and nuclear transfer embryos remains to be elucidated. In conclusion, the results indicate that although activation of oocytes with DMAP can produce a higher percentage of blastocysts, CHX activation is superior for use in nuclear transfer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号