首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Five new derivatives of the pentacyclic triterpenoid lantadene A (= 22beta-angeloyloxy-3-oxoolean-12-en-28-oic acid; 1) from the leaves of Lantana camara L. were synthesized, characterized, and screened for their cytotoxicities against four human cancer cell lines. The three most-potent compounds, i.e., 1, 4, and 6, with IC50 values in the range of ca. 20-29 microM, were further studied for their in vivo tumor-inhibitory potential upon oral administration in two-stage squamous cell carcinogenesis, using female Swiss albino mice, papilloma being induced by 7,12-dimethylbenz[a]anthracene (DMBA), and promoted by 12-O-tetradecanoylphorbol-13-acetate (TPA). The results are discussed in terms of structure-activity relationship.  相似文献   

2.
In search for novel small molecules with antitumor cytotoxicity via activating procaspase-3, we have designed and synthesized three series of novel (E)-N′-benzylidene-4-oxoquinazolin-3(4H)-yl)acetohydrazides (5a-j, 6a-h, and 7a-h). On the phenyl ring ò the benzylidene part, three different substituents, including 2-OH-4-OCH3, 4-OCH3, and 4-N(CH3)2, were introduced, respectively. Biological evaluation showed that the acetohydrazides in series 5a-j, in which the phenyl ring of the benzylidene part was substituted by 2-OH-4-OCH3 substituent, exhibited potent cytotoxicity against three human cancer cell lines (SW620, colon; PC-3, prostate; NCI-H23, lung). Most of the compounds, in this series, especially compounds 5c, 5b and 5h, also significantly activated caspase-3 activity. Among these, compound 5c displayed 1.61-fold more potent than PAC-1 as caspase-3 activator. Cell cycle analysis showed that compounds 5b, 5c, and 5h significantly arrested the cell cycle in G1 phase. Further apoptotic studies also demonstrated compounds 5b, 5c, and 5h as strong apoptotic cell death inducers. The docking simulation studies showed that these compounds could activate procaspase via chelating Zn2+ ion bound to the allosteric site of the zymogen.  相似文献   

3.
Homocamptothecins (hCPTs) represent a class of new emerging antitumor agents, which contains a seven-membered beta-hydroxylactone in place of the conventional six-membered alpha-hydroxylactone ring (E ring) of camptothecins. Some novel 7-substituted hCPTs were designed and synthesized based on a newly developed synthetic route which couples ring A with ring C, E and D. Most of the synthesized compounds exhibit very high cytotoxic activity on tumor cell line A549. Some compounds, such as 9b, 9l, and 9y, show broad in vitro antitumor spectrum and are more potent than topotecan. Three-dimensional quantitative structure-activity relationship (3D-QSAR) methods, CoMFA and CoMSIA, were applied to explain the structure-activity relationship (SAR) of the synthesized compounds. Furthermore, molecular docking was used to clarify the binding mode of the synthesized compounds to human DNA topoisomerase I. The important hydrophobic, base-pair stacking, and hydrogen-bonding interactions were observed between the hCPT derivatives and their receptor. The results from molecular modeling will guide the design of novel hCPTs with higher antitumor activity.  相似文献   

4.
Synthesis and evaluation of new combretastatin analogues with varied modifications on the bridge and the aromatic rings, have shown that the 2-naphthyl moiety is a good surrogate for the 3-hydroxy-4-methoxyphenyl (B-ring) of combretastatin A-4. Other bicyclic systems, such as 6(7)-quinolyl and 5-indolyl, can replace the B-ring, but they produce less potent analogues in the cytotoxicity and tubulin polymerization inhibition assays. Other modifications are detrimental for the potency of the studied analogues. The 2-naphthyl combretastatin 53 and the related 6-quinolyl combretastatin 106 analogues are the most potent among the derivatives of this type, whereas 92 and 95 are the most potent among the naphthalene derivatives with a heterocycle in the bridge. Previous and new results in this family of combretastatin analogues are discussed.  相似文献   

5.
Cycloalkanin was accessible by a practical and efficient asymmetric synthesis. The chiral center of the target is introduced via an asymmetric C-arylation of chiral aldehyde in high de. The synthesized cycloalkanin was shown to be significantly active against P388 cell line as assayed by in vitro MIT method.  相似文献   

6.
Lee H  Lee K  Park TG 《Bioconjugate chemistry》2008,19(6):1319-1325
Chemical conjugates of paclitaxel and hyaluronic acid (HA) were synthesized by utilizing a novel HA solubilization method in a single organic phase. Hydrophilic HA was completely dissolved in anhydrous DMSO with addition of poly(ethylene glycol) (PEG) by forming nanocomplexes. Paclitaxel was then chemically conjugated to HA in the DMSO phase via an ester linkage without modifying extremely hydrophilic HA. A series of HA-paclitaxel conjugates with different conjugation percentages were synthesized and characterized. HA-paclitaxel conjugates self-assembled in aqueous solution to form nanosized micellar aggregates, as characterized by dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). An intact form of paclitaxel was regenerated from HA-paclitaxel conjugate micelles at acidic pH conditions. HA-paclitaxel conjugate micelles exhibited more pronounced cytotoxic effect for HA receptor overexpressing cancer cells than for HA receptor deficient cells, suggesting that they can be potentially utilized as tumor-specific nanoparticulate therapeutic agents.  相似文献   

7.
Two series of new benzoxazepines substituted with different alkyl amino ethyl chains were synthesized comprising synthetic steps of inter and intramolecular Mitsunobu reaction, lithium aluminium hydride (LAH) reduction, debenzylation, bimolecular nucleophilic substitution (SN2) reaction. The present study investigates the effect of a tyrosine-based benzoxazepine derivative in human breast cancer cells MCF-7 and MDA-MB-231 and in breast cancer animal model. The anti-proliferative effect of 15a on MCF-7 cells was associated with G1 cell-cycle arrest. This G1 growth arrest was followed by apoptosis as 15a dose dependently increased phosphatidylserine exposure, PARP cleavage and DNA fragmentation that are hallmarks of apoptotic cell death. Interestingly, 15a activated components of both intrinsic and extrinsic pathways of apoptosis characterized by activation of caspase-8 and -9, mitochondrial membrane depolarization and increase in Bax/Bcl2 ratio. However, use of selective caspase inhibitors revealed that the caspase-8-dependent pathway is the major contributor to 15a-induced apoptosis. Compound 15a also significantly reduced the growth of MCF-7 xenograft tumors in athymic nude mice. Together, 15a could serve as a base for the development of a new group of effective breast cancer therapeutics.  相似文献   

8.
A new series of bis-aminomethylnaphthalenes were synthesized in satisfactory overall yield, through a simple synthetic strategy using reductive amination. The DNA binding properties of these compounds have been examined and compared to those of reference drugs using an UV spectroscopy method. The compounds were evaluated for their in vitro anticancer activity and some of them were studied in vivo. Compound 15 exhibited remarkable antitumor activity and represents a novel template for anticancer chemotherapy and can serve as a new lead compound.  相似文献   

9.
A general strategy for the synthesis of 3'-prenylated chalcones was established and a series of prenylated hydroxychalcones, including the hop (Humulus lupulus L.) secondary metabolites xanthohumol (1), desmethylxanthohumol (2), xanthogalenol (3), and 4-methylxanthohumol (4) were synthesized. The influence of the A-ring hydroxylation pattern on the cytotoxic activity of the prenylated chalcones was investigated in a HeLa cell line and revealed that non-natural prenylated chalcones, like 2',3,4',5-tetrahydroxy-6'-methoxy-3'-prenylchalcone (9, IC(50) 3.2+/-0.4microM) as well as the phase 1 metabolite of xanthohumol (1), 3-hydroxyxanthohumol (8, IC(50) 2.5+/-0.5microM), were more active in comparison to 1 (IC(50) 9.4+/-1.4microM). A comparison of the cytotoxic activity of xanthohumol (1) and 3-hydroxyxanthohumol (8) with the non-prenylated analogs helichrysetin (12, IC(50) 5.2+/-0.8) and 3-hydroxyhelichrysetin (13, IC(50) 14.8+/-2.1) showed that the prenyl side chain at C-3' has an influence on the cytotoxicity against HeLa cells only for the dihydroxylated derivative. This offers interesting synthetic possibilities for the development of more potent compounds. The ORAC activity of the synthesized compounds was also investigated and revealed the highest activity for compounds 12, 4'-methylxanthohumol (4), and desmethylxanthohumol (2), with 4.4+/-0.6, 3.8+/-0.4, and 3.8+/-0.5 Trolox equivalents, respectively.  相似文献   

10.
A series of bile acid-polyamine amides conjugated with 3'-azido-3'-deoxythymidine (AZT) as potential antitumor prodrugs in the form of phosphoramidates were synthesized in good yields and their antitumor activities were assayed against two human cancer cells in vitro: cervix cancer HeLa cells and renal cancer 7860 cells. The improved antitumor activity probably derived from the enhanced delivery efficiency of AZT due to bile acid-polyamine conjugates.  相似文献   

11.
Parthenolide is an important sesquiterpene lactone with potent anticancer activities. In order to further improve its biological activity, a series of parthenolide semicarbazone or thiosemicarbazone derivatives was synthesized and evaluated for their anticancer activity. Derivatives were tested in vitro against 5 human tumor cell lines, and many of these showed higher cytotoxicity than parthenolide. Five compounds were further studied for their antitumor activity in mice. The in vivo result indicated that compound 4d showed both promising antitumor activity against mice colon tumor and small side effects on immune systems. The cell apoptosis and cell cycle distribution of compound 4d were also studied. Molecular docking studies revealed multiple interactions between 4d and NF-κB. Our findings demonstrate the potential of semicarbazones as a promising type of compounds with anticancer activity.  相似文献   

12.
Polymer-drug conjugates (polymer therapeutics) are finding increasing use as novel anticancer agents. Here a series of poly(ethylene glycol) PEG-doxorubicin (Dox) conjugates were synthesized using polymers of linear or branched architecture (molecular weight 5000-20000 g/mol) and with different peptidyl linkers (GFLG, GLFG, GLG, GGRR, and RGLG). The resultant conjugates had a drug loading of 2.7-8.0 wt % Dox and contained <2.0% free drug (% total drug). All conjugates containing a GFLG linker showed approximately 30% release of Dox at 5 h irrespective of PEG molecular weight or architecture. The GLFG linker was degraded more quickly (approximately 57% Dox release at 5 h), and the other linkers more slowly (<16% release at 5 h), by lysosomal enzymes in vitro. In vitro there was no clear relationship between cytotoxicity toward B16F10 cells and the observed Dox release rate. All PEG conjugates were more than 10-fold less toxic (IC50 values > 2 microg/mL) than free Dox (IC50 value = 0.24 microg/mL). Biodistribution in mice bearing sc B16F10 tumors was assessed after administration of PEGs (5000, 10000, or 20000 g/mol) radioiodinated using the Bolton and Hunter reagent or PEG-Dox conjugates by HPLC. The 125I-labeled PEGs showed a clear relationship between Mw and blood clearance and tumor accumulation. The highest Mw PEG had the longest plasma residence time and consequently the greatest tumor targeting. The PEG-Dox conjugates showed a markedly prolonged plasma clearance and greater tumor targeting compared to free Dox, but there was no clear molecular weight-dependence on biodistribution. This was consistent with the observation that the PEG-Dox conjugates formed micelles in aqueous solution comprising 2-20 PEG-Dox molecules depending on polymer Mw and architecture. Although PEG-Dox showed greater tumor targeting than free Dox, PEG conjugation led to significantly lower anthracycline levels in heart. Preliminary experiments to assess antitumor activity against sc B16F10 in vivo showed the PEG5000linear (L)-GFLG-Dox and PEG10000branched (B)-GLFG-Dox (both 5 mg/kg Dox-equiv) to be the most active with T/C values of 146 and 143%, respectively. Free Dox did not show significant activity in this model (T/C = 121%). Dose escalation of PEG5000(L)-GFLG-Dox to 10 mg/kg Dox-equiv prolonged further animal survival (T/C = 161%). Using the Dox-sensitive model ip L1210 (where Dox displayed a T/C = 150% after single ip dose), the PEG5000(L)-GFLG-Dox displayed a maximum T/C of 141% (10 mg/kg Dox-equiv) using a once a day (x3) schedule. Further studies are warranted with PEG5000(L)-GFLG-Dox to determine its spectrum of antitumor activity and also the optimum dosing schedule before clinical testing.  相似文献   

13.
A series of pyrazolone-fused combretastatins and precursors were synthesized and their cytotoxicity as well as antitubulin potential was evaluated. The hydrazide 9f and the pyrazolone-fused combretastatins 12a, 12b and 12c were highly cytotoxic against various tumor cell lines including cisplatin resistant cells. The same compounds were also the best inhibitors of tubulin polymerization. Molecular modeling results showed that they bind the colchicine binding site at the tubulin heterodimer. The hydrazide 9f arrested HeLa cells in the G2/M phase of the cell cycle and strongly affected cell shape and microtubule network.  相似文献   

14.
The trans-(+/-)-1,2-diaminocyclohexaneplatinum(II) complexes of multidentate L-glutamate (Glu) and L-aspartate (Asp) were prepared and their antitumor activity was examined in relation with their coordination modes. All these complexes were obtained as a mixture of (O,O')- and (O,N)-chelate isomers due to rapid isomerization of the initially formed (O,O')-isomer to the thermodynamically more stable (O,N)-isomer. The (O,O')/(O,N)-isomeric mixture with the mole ratio of 80/20 exhibited excellent antitumor activity while the pure (O,N)-isomer was only marginally active. Therefore, in order to prevent the linkage isomerization of the active (O,O')-isomer to the inactive (O,N)-isomer, we have designed N-substituted amino dicarboxylic acids as a leaving group and prepared a new series of complexes, [Pt(dach)(RGlu)] and [Pt(dach)(RAsp)] (dach=trans-(+/-)-1,2-diaminocyclohexane; R=acetyl (Ac), propionyl (Pro), pivaloyl (Piv), carbobenzyloxy (Cbz) or phthaloyl (Phth)) and characterized by means of elemental analyses, and 1H NMR, 195Pt NMR and IR spectroscopies. The N-substituted amino dicarboxylate ligands were found to coordinate to platinum(II) ion through only the (O,O')-chelation mode, and their Pt(II) complexes were chemically stable in aqueous solution. The present Pt(II) complexes of N-substituted amino dicarboxylic acids showed excellent antitumor activity against both murine leukemia L1210 and human tumor cells. Especially, the highly hydrophobic N-phthaloylglutamate complex, [Pt(dach)(PhthGlu)], exhibited an outstanding in vitro activity (IC50=2.22 microM) on the human stomach cancer cells which are not responsive to cisplatin and carboplatin.  相似文献   

15.
A novel thermosensitive macromolecular prodrug of 5-fluorouracil (5-FU) was synthesized using cyclotriphosphazene, and its thermosensitivity, degradability, and in vitro antitumor activity were studied. A series of alpha-substituted glycine derivatives of 5-FU containing carboxylic groups were prepared, and cyclotriphosphazenes with amino groups were synthesized via the stepwise substitution of hexachlorocyclotriphosphazene (NPCl(2))(3) with methoxy-poly(ethylene glycol) (MPEG) or alkoxy ethylene oxide and lysine ethyl ester (LysOEt). The coupling reaction of the two derivatives, and their subsequent deprotection, yielded a thermosenstive 5-FU-cyclotriphosphazene conjugate, which exhibited a unique octopus-shaped molecular structure, in which the three hydrophilic PEG groups (or alkoxy ethylene oxides) were oriented in one direction, opposing the other three hydrophobic groups containing 5-FU, with respect to the trimer ring plane. This conjugate exhibited a reversible and thermosensitive phase transition in an aqueous medium, from soluble to insoluble states. The lower critical solution temperature (LCST) of the conjugate was controlled by substitution with different hydrophilic/hydrophobic side groups, and a few of the conjugates displayed LCSTs which were just below body temperature. This, of course, implies possible applications for local drug delivery by direct intratumoral injection. The conjugate exhibited gradual degradation at 37 degrees C in both neutral and acidic buffer solutions, and high temperature significantly facilitated its hydrolytic degradation. All of the conjugates displayed dose-dependent cytotoxicity against the leukemia L1210 cell line and exhibited more pronounced cytotoxic effects than did 5-FU.  相似文献   

16.
A new cytotoxic copper(II) complex with Schiff base ligand [CuII(5-Cl-pap)(OAc)(H2O)]·2H2O (1) (5-Cl-pap = N-2-pyridiylmethylidene-2-hydroxy-5-chloro-phenylamine), was synthesized and structurally characterized by X-ray diffraction. Single-crystal analysis revealed that the copper atom shows a 4 + 1 pyramidal coordination, a water oxygen appears in the apical position, and three of the basal positions are occupied by the NNO tridentate ligand and the fourth by an acetate oxygen. The interaction of Schiff base copper(II) complex 1 with DNA was investigated by UV-visible spectra, fluorescence spectra and agarose gel electrophoresis. The apparent binding constant (Kapp) value of 6.40 × 105 M− 1 for 1 with DNA suggests moderate intercalative binding mode. This copper(II) complex displayed efficient oxidative cleavage of supercoiled DNA, which might indicate that the underlying mechanism involve hydroxyl radical, singlet oxygen-like species, and hydrogen peroxide as reactive oxygen species. In addition, our present work showed the antitumor effect of 1 on cell cycle and apoptosis. Flow cytometric analysis revealed that HeLa cells were arrested in the S phase after treatment with 1. Fluorescence microscopic observation indicated that complex 1 can induce apoptosis of HeLa cells, whose process was mediated by intrinsic mitochondrial apoptotic pathway owing to the activation of caspase-9 and caspase-3.  相似文献   

17.
New platinum(II) complexes of cyclopentanecarboxylic acid hydrazide (cpcah) were prepared, characterized by elemental analysis, IR and 1H NMR spectra, and evaluated for in vitro cytotoxicity in Friend leukemia (FL) and A2780 ovarian tumor cells, induction of apoptosis in FL cells, as well as for in vivo antitumor activity toward murine L1210 leukemia and Lewis lung carcinoma. The spectral analyses indicated a cis-square planar structure of the complexes with hydrazide ligand coordinated via the NH2 group. The compounds exerted significantly lower in vitro and in vivo toxicities as compared with those of cisplatin (cis-diamminedichloroplatinum(II), DDP). On the other hand, the complex [Pt(NH3)(cpcah)Cl2] exhibited antitumor activity against L1210 leukemia in mice comparable to that of cisplatin, resulting at a dose of 42 mg/kg (administered 3 times) in a T/C (mean survival time) of 280%. This compound displayed an in vitro macromolecular synthesis inhibition pattern similar to that of DDP. At concentrations close to the cytostatic ones (10-20 microM) this complex, as well as DDP, was able to induce apoptosis in FL cells as shown by neutral comet assay and morphological analysis. We concluded that there is a correlation between the ability of platinum complexes to induce apoptosis and their antitumor activity.  相似文献   

18.
Three types of palladium(II) halide complexes of quinolinylaminophosphonates have been synthesized and studied. Diethyl and dibutyl [α-anilino-(quinolin-2-ylmethyl)]phosphonates (L1, L2) act as N,N-chelate ligands through the quinoline and aniline nitrogens giving complexes cis-[Pd(L1/L2)X2] (X═Cl, Br) (1-4). Their 3-substituted analogues [α-anilino-(quinolin-3-ylmethyl)]phosphonates (L3, L4) form dihalidopalladium complexes trans-[Pd(L3/L4)2X2] (5-8), with trans N-bonded ligand molecules only through the quinoline nitrogen. Dialkyl [α-(quinolin-3-ylamino)-N-benzyl]phosphonates (L5, L6) give tetrahalidodipalladium complexes [Pd2(L5/L6)3X4] (9-12), containing one bridging and two terminal ligand molecules. The bridging molecule is bonded to the both palladium atoms, one through the quinoline and the other through the aminoquinoline nitrogen, whereas terminal ligand molecules are coordinated each only to one palladium via the quinoline nitrogen. Each palladium ion is also bonded to two halide ions in a trans square-planar fashion. The new complexes were identified and characterized by elemental analyses and by IR, UV-visible, 1H, 13C and 31P nuclear magnetic resonance and ESI-mass spectroscopic studies. The crystal structures of complexes 1-4 and 6 were determined by X-ray structure analysis. The antitumor activity of complexes in vitro was investigated on several human tumor cell lines and the highest activity with cell growth inhibitory effects in the low micromolar range was observed for dipalladium complexes 11 and 12 derived from dibutyl ester L6. The antimicrobial properties in vitro of ligands and their complexes were studied using a wide spectrum of bacterial and fungal strains. No specific activity was noted. Only ligands L3 and L4 and tetrahalidodipalladium complexes 9 and 11 show poor activities against some Gram positive bacteria.  相似文献   

19.
Novel series of 1-(arenesulfonyl)imidazolidin-2-one (3a-i) and 1,3-bis(arenesulfonyl)imidazolidin-2-one (5a-i) have been synthesized and tested for their antitumor activity against 60 tumor cell lines taken from nine different organs. A significant inhibition for cancer cells was observed with series 5a-i compounds compared with the series 3a-i which showed a weak inhibition. Compounds 5a-i showed good inhibitory effect at the lung cancer HOP-92 and renal cancer CAKI-1 and UO-31 cell lines. Compound 5e showed remarkable broad-spectrum antitumor activity.  相似文献   

20.
New carbohydrate-conjugated heterobimetallic complexes [C(32)H(62)N(10)O(8)NiSn(2)Cl(4)]Cl(2)(1) and [C(32)H(62)N(10)O(8)CuSn(2)Cl(4)]Cl(2) (2) were synthesized and characterized by spectroscopic (IR, (1)H, (13)C, and (119)Sn NMR, EPR, UV-vis, ESI-MS) and analytical methods. The interaction studies of 2 with CT DNA were studied by using various biophysical techniques, which showed high binding affinity of 2 toward CT DNA. The extent of interaction was further confirmed by the interaction of 2 with the nucleotides viz.; 5'-AMP, 5'-CMP, 5'-GMP, and 5'-TMP, by absorption titration. (1)H, (31)P, (119)Sn NMR spectroscopy further validated the interaction mode of 2 with 5'-GMP. The electrophoresis pattern observed for 2 with supercoiled pBR322 DNA, exhibited significantly good nuclease activity following oxidative pathway. The preferential selectivity of 2 toward the major groove was observed on interaction of 2 with pBR322 DNA, in the presence of standard groove binders viz.; DAPI and methyl green. Additionally, in vitro antitumor activity of 2 was evaluated on a panel of human cancer cell lines, exhibiting remarkable cytotoxicity activity against Colo205 (colon) and MCF7 (breast) cell lines with GI(50) values <10 μg/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号