首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate prediction under impact of anthropological greenhouse-gas emission is impossible to validate, but it can be inferred from past climate and modeling. In East Asia, a general warm–wet period at late Marine Isotope Stage 3, ca. 30–40 ky BP has been identified based upon extensive geological records; this provides an arid/humid reference for possible future warming caused by human activities. Based upon syntheses of geological evidence and the AGCM + SSiB modeling, this paper presents climate simulations focused on 35 ky BP, using forcing of insolation, glaciation and land surface conditions for East Asia. Results of the simulation can be compared with geological records and show that (1) the climate patterns of 35 ky BP were warm–wet conditions in northern China, but with warm–dry conditions in southern China compared to today; (2) mean annual temperatures were higher in most mid-low latitude areas, mainly contributed to by increased winter temperatures, suggesting that insolation has generated significant climate effects through the coupling in atmospheric circulation with land surface patterns; (3) Quaternary ice sheets in the Northern Hemisphere played an important role in temperature decrease at the mid-high-latitudes, and also enhanced the south–north temperature gradients, which in turn, increased moisture transport from low to high latitudes and increased monsoonal precipitation over the Tibetan Plateau; and (4) Vegetation changes in East Asia resulted from an increased temperature in the low latitudes, extended rain-belt northwards into China, and an enlarged area of increased precipitation inland.  相似文献   

2.
Dissolved organic matter (DOM) is a critical phase in terrestrial carbon and nutrient cycling forming the basis of many ecosystem functions, yet the primary drivers controlling its flux from organic horizons and resultant chemical composition remain only partially understood. We studied dissolved organic matter production and chemistry from organic soil horizons across a 4.1 My old well-constrained chronosequence in Hawaii. Controlled soil column irrigation and leaching experiments were conducted on field moist organic soil horizons to quantify microbial activity, DOM production and chemistry. Both microbial activity (defined as CO2 production per unit substrate C) and DOM production were found to be lowest in the youngest (0.3 ky) and oldest (4.1 My) sites of the chronosequence, where nutrients (N and P respectively) were most limiting. By contrast, DOM production and microbial activity was greatest at the intermediate-aged (20–350 ky) sites where nutrients were least limiting, unrelated to the mass of organic matter found in the organic horizons. While differences in production rates were found, 13C NMR spectroscopic results indicated that there was a convergence of chemistry from the solid to the dissolved phase at all sites. In particular, all DOM samples were found to have a high proportion of aromatic acids. With supporting data from a diverse range of ecosystems, we postulate that chemical homogenization of DOM relative to source material is a common feature of many ecosystems due to two microbially mediated processes: (1) similar extracellular enzymatic oxidation conferring solubility to a subset of degradation products; and (2) the rapid selective consumption of the more labile organic compounds in the soil solution.  相似文献   

3.
Growth response of subalpine fir (Abies lasiocarpa) to climate was studied across its local geographical and elevation range in the Olympic Mountains, Washington. A dendroecological analysis of subalpine fir across a range of elevations (1350-1850 m) and annual precipitation (125-350 cm y?1), was used to compare environmental factors affecting growth. Climate-growth relationships were explored using Pearson product-moment correlation coefficients; partial correlation analysis was used to assess relationships among site chronologies and climatic variables. Radial growth is negatively correlated with winter precipitation at high elevation and wet sites, but not at low and middle elevation dry sites. Growth is positively correlated with current growing season temperature at all sites; however, growth is negatively correlated with previous year August temperature, indicating that climate affects growth in subsequent years. Positive correlations between growth and summer precipitation during the growing season at low and middle elevation dry sites suggest that soil moisture is partially limiting to growth on these sites. If the climate of the Pacific Northwest becomes warmer and drier, then subalpine fir growth may increase at high elevation and wet sites, but may decrease at lower elevation dry sites in the Olympic Mountains. However, the growth response of subalpine fir to potentially rapid climate change will not be uniform because subalpine fir grows over a wide range of topographic features, habitats, and local climates at different geographical scales. A comparison of growth response to current growing season temperature suggests that the temperature-related growth response of subalpine fir is not adequately described by the parabolic curve used in JABOWA-based models.  相似文献   

4.

Aim

Climate change impacts on biota are variable across sites, among species and throughout individual species' ranges. Niche theory predicts that population performance should decline as site climate becomes increasingly different from the species' climate niche centre, though studies find significant variation from these predictions. Here, we propose that predictions about climate responses can be improved by incorporating species' trait information.

Location

Europe.

Methods

We used observations of plant species abundance change over time to assess variation in climate difference sensitivity (CDS), defined as how species performance (colonization, extinction and abundance change) relates to the difference of site climate from the mean temperature and precipitation of each species' range. We then investigated if leaf economics, plant size and seed mass traits were associated with the species' CDS.

Results

Species that performed better (e.g. increased in abundance) towards sites progressively cooler than their niche centre were shorter and had more resource-acquisitive leaves (i.e. lower leaf dry matter content or LDMC) relative to species with zero or the opposite pattern of temperature difference sensitivity. This result supports the hypothesis that if sites cooler than niche centres are more stressful for a species, then shorter stature is advantageous compared with taller species. The LDMC result suggests the environment selects for more resource-acquisitive leaf strategies towards relatively cooler climates with shorter growing seasons, counter to expectations that conservative strategies would be favoured in such environments. We found few consistent relationships between precipitation difference sensitivities and traits.

Main Conclusions

The results supported key a priori foundations on how trait-based plant strategies dictate species responses to climate variation away from their niche centre. Furthermore, plant height emerged as the most consistent trait that varied with species CDS, suggesting height will be key for theory development around species response to climate change.  相似文献   

5.
Widely documented for temperate and cold forests in both hemispheres, variations in tree growth responses to climate along environmental gradients have rarely been investigated in the tropics. Seven tree‐ring chronologies of Centrolobium microchaete (Fabaceae) in the Cerrado tropical forests of Bolivia are used to determine the growth responses to climate along a precipitation gradient. Chronologies are distributed from the humid Guarayos forests (annual precipitation > 1600 mm) in the transition to the Amazonia to the dry‐mesic Chiquitos forests (annual precipitation < 1200 mm) in the proximity to the dry Chaco. On a large spatial scale, radial growth is positively influenced by rainfall and negatively by temperature at the end of the dry season. However, this regional pattern in climate‐tree growth relationship shows differences along the precipitation gradient. Relationships with climate are highly significant and extend over longer periods of the year in sites with low rainfall and extremely severe dry seasons. At wet sites, larger water soil capacity and endogenous forest dynamics partially mask the direct influence of climate on tree growth. Stronger similarities in tree‐growth responses to climate occur between sites in the dry Central Chiquitos and in the transition to the Guarayos forests. In contrast, the relationships show fewer similarities between sites in the humid Guarayos. We conclude that growth responses to climate in the tropics are more similar between sites with limited rainfall and severe and prolonged dry seasons. Our study points to a convergence in the patterns of growth responses of tropical trees to climate, modulated by scarce rainfall and marked seasonality. The negative impact of water deficits on tree physiological processes induces not only the documented reduction in forest species richness, but also a convergence in tree‐growth responses to climate in dry tropical forests.  相似文献   

6.
Leaf chemical, biophysical, and optical properties were measured in 13 populations of Metrosideros polymorpha across gradients of soil fertility and climate in Hawaii. Climate (predominantly temperature) caused large changes in specific leaf area (SLA) and SLA-linked traits, including nitrogen (N) and pigment contents, as did conditions of highest soil fertility on 20 ky old substrates. When averaged by site, chemical constituent ratios containing chlorophyll (Car/Chl, Chl/N) varied more across climate than substrate gradients, while the Chl a/b ratio was similarly influenced by climate and substrate. Variations in Chl a/b ratios and SLA were similar to those found previously in a common garden of M. polymorpha taken from our climate gradient, suggesting strong genetic control over these traits. Optical reflectance indices related to photosynthetic function were closely correlated to pigment changes, varying three times more in response to climate than across substrate ages. Combined, our results suggest that variation in leaf structure, composition, and function of M. polymorpha is a result of genetic and phenotypic adaptation to environmental differences, and that these variations are greater in response to climate (especially temperature) than to soil fertility.  相似文献   

7.
Abstract. The strong environmental gradients and ‘natural experimental design’ of Mauna Loa volcano, Hawaii, provide an outstanding opportunity to study controls on ecosystem development. We measured above-ground vascular plant biomass and species composition on 42 sites on which precipitation, temperature, substrate texture, and substrate age varied substantially and largely independently. Biomass and species richness of live plants were strongly correlated with precipitation and lava flow age, but not with temperature or lava flow texture. Species composition, as measured by correspondence analysis, was likewise correlated with precipitation and flow age, but composition was also strongly influenced by temperature. Lava texture had a complex effect on vegetation, with ‘a’ a lava favoring vegetation development on wet sites and pāhoehoe favoring development on dry sites. Many locations remain virtually free of invasion by alien species; aliens appear where disturbance has facilitated invasion, either from stand-level dieback in rainforest or a grass-fire cycle on the dry, leeward side of the mountain. All four of the environmental factors studied here (precipitation, temperature, substrate texture, and substrate age) exert significant and independent control over vegetation biomass and/or species composition on Mauna Loa.  相似文献   

8.
内蒙古大青山调角海子地区全新世气候与环境重建研究   总被引:8,自引:1,他引:7  
杨志荣 《生态学报》2001,21(4):538-543
以全封闭湖泊调角海子湖相沉积的高分辨率采样为基本分析材料,采用孢粉分析、沉积地球化学分析、  相似文献   

9.
The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.  相似文献   

10.
Community re‐assembly following future disturbances will often occur under warmer and more moisture‐limited conditions than when current communities assembled. Because the establishment stage is regularly the most sensitive to climate and competition, the trajectory of recovery from disturbance in a changing environment is uncertain, but has important consequences for future ecosystem functioning. To better understand how ongoing warming and rising moisture limitation may affect recovery, we studied native and exotic plant composition 11 years following complete stand‐replacing wildfire in a dry coniferous forest spanning a large gradient in climatic moisture deficit (CMD) from warm and dry low elevation sites to relatively cool and moist higher elevations sites. We then projected future precipitation, temperature and CMD at our study locations for four scenarios selected to encompass a broad range of possible future conditions for the region. Native perennials dominated relatively cool and moist sites 11 years after wildfire, but were very sparse at the warmest and driest (high CMD) sites, particularly when combined with high topographic sun exposure. In contrast, exotic species (primarily annual grasses) were dominant or co‐dominant at the warmest and driest sites, especially with high topographic sun exposure. All future scenarios projected increasing temperature and CMD in coming decades (e.g., from 4.5% to 29.5% higher CMD by the 2080's compared to the 1971–2000 average), even in scenarios where growing season (May‐September) precipitation increased. These results suggest increasing temperatures and moisture limitation could facilitate longer term (over a decade) transitions toward exotic‐dominated communities after severe wildfire when a suitable exotic seed source is present.  相似文献   

11.
The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800–1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years.  相似文献   

12.
Using dendroclimatical methods, we compared the growth response to climate fluctuations of three of the main Romanian Carpathian Mountains coniferous species, Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies Karst.) and silver fir (Abies alba Mill.), growing intermixed in a unique stand. Climate and soil conditions were therefore the same for all the trees studied. The experimental site was chosen to be representative of the south-exposed sites in the Romanian Carpathian Mountains, where pine occurs naturally. In order to investigate the consequences of fluctuations in climate at different temporal scales, we examined both inter-annual and decadal time-steps. An index of soil water deficit was computed to investigate the consequences of drought. Our study reveals that species exhibited different responses to precipitation, temperature or drought. Overall, pine was the most sensitive to precipitation, while spruce showed a higher response to temperature at high frequency for both the current and the previous growing seasons, and to soil water deficit. Fir was the least sensitive species of the comparison. However, for all species, decadal modulations of growth show precipitation as a common and strong driver on the dry south-facing slopes. The results show that Scots pine would be affected more than fir by increased drought frequency and could in the future be replaced on the xeric sites.  相似文献   

13.
Climate change is expected to increase climate variability and the occurrence of extreme climatic events, with potentially devastating effects on aquatic ecosystems. However, little is known about the role of climate extremes in structuring aquatic communities or the interplay between climate and local abiotic and biotic factors. Here, we examine the relative influence of climate and local abiotic and biotic conditions on biodiversity and community structure in lake invertebrates. We sampled aquatic invertebrates and measured environmental variables in 19 lakes throughout California, USA, to test hypotheses of the relationship between climate, local biotic and environmental conditions, and the taxonomic and functional structure of aquatic invertebrate communities. We found that, while local biotic and abiotic factors such as habitat availability and conductivity were the most consistent predictors of alpha diversity, extreme climate conditions such as maximum summer temperature and dry‐season precipitation were most often associated with multivariate taxonomic and functional composition. Specifically, sites with high maximum temperatures and low dry‐season precipitation housed communities containing high abundances of large predatory taxa. Furthermore, both climate dissimilarity and abiotic dissimilarity determined taxonomic turnover among sites (beta diversity). These findings suggest that while local‐scale environmental variables may predict alpha diversity, climatic variability is important to consider when projecting broad‐scale aquatic community responses to the extreme temperature and precipitation events that are expected for much of the world during the next century.  相似文献   

14.
? Premise of the study: Climate change that increases mortality of plants and pollinators can create mate-finding Allee effects and thus act as a strong selective force on floral morphology. Milkweeds (Secamonoideae and Asclepiadoideae; Apocynaceae) are typically small plants of seasonally dry habitats, with pollinia and high pollen-transfer efficiency. Their sister group (tribe Baisseeae and Dewevrella) is mostly comprised of giant lianas of African rainforests, with pollen in monads. Comparison of the two groups motivated a new hypothesis: milkweeds evolved in the context of African aridification and the shifting of rainforest to dry forest. Pollinia and high pollen-transfer efficiency may have been adaptations that alleviated mate-finding Allee effects generated by high mortality during droughts. We formally tested whether milkweeds have a drier climate niche by comparing milkweeds with plesiomorphic traits (Secamonoideae) and the milkweed sister group in continental Africa. ? Methods: We georeferenced specimens of the milkweed sister group and Secamonoideae in continental Africa, extracted 19 climatic variables from the Worldclim model, conducted factor analysis to identify correlated suites of variables, and compared the frequency distributions of the two lineages relative to each factor. ? Key results: The distributions of Secamonoideae and the milkweed sister group differed significantly relative to four factors, each correlated with a distinct suite of climate parameters: (1) air temperature (Secamonoideae: cooler), (2) total and (3) summer precipitation (Secamonoideae: drier), and (4) temperature seasonality and isothermality (Secamonoideae: more seasonal and less isothermal). ? Conclusions: Secamonoideae in continental Africa inhabit drier, cooler sites than do the milkweed sister group, consistent with a shift from rainforests to dry forests in a cooling climate.  相似文献   

15.
To understand the Neogene climatic changes in eastern Asia and evaluate the intercontinental climatic differences, we have quantitatively reconstructed the vegetation successions and climatic changes in the late Pliocene Zhangcun area based on the palynological data and explored the regional climatic differences between central Europe and eastern Asia. The late Pliocene palynological assemblage of Zhangcun, Shanxi was composed of 63 palynomorphs, belonging to 50 families, covering angiosperms (90.2%), gymnosperms (9.7%), ferns (0.09%), and other elements (0.02%). Four periods of vegetation succession over time were recognized. In period 1, a needle‐ and broad‐leaved mixed forest prevailed with a cool and dry climate. Period 2 was characterized by an expansion of forest with a warmer and wetter climate. The number of conifers increased and that of herbs decreased in period 3, and the climate became cool and dry. In period 4, the forest was dominated by conifers and reflecting a cooler climate. The data of seven climatic parameters in general and four periods estimated by the Coexistence Approach suggested that (1) The late Pliocene temperatures and precipitations were higher than today. (2) The Neogene climate of both Central Europe and North China exhibited a general cooling and drying trend although the mean annual temperature dropped by ca. 1 °C in North China, vs. ca. 7 °C in Central Europe from the middle Miocene to the late Pliocene. (3) The decline of the mean maximum monthly precipitation might signal a weakening of the summer monsoon. (4) The decline of both the mean coldest monthly temperature and the mean minimum monthly precipitation might be linked to the strengthening of the winter monsoon in eastern Asia. (5) The rapid uplift of the Tibetan Plateau strengthened the climatic cooling and drying during the late Pliocene of the Zhangcun region.  相似文献   

16.
Precipitation is one of the most important climate factors controlling tree growth, yet it is not fully understood how changes in precipitation affect the relationship between growth and temperature. On the northeastern edge of the Tibetan Plateau, nine tree-ring chronologies of Picea crassifolia were developed along a precipitation gradient from semi-arid (mean annual precipitation, 255 mm) to semi-humid (710 mm). We analyze the growth-climate relationships along this precipitation gradient and assess whether these associations are regulated by local precipitation. From 1960 to 2014, temperature increased significantly while precipitation remained stable at the nine sampling sites. The radial growth of P. crassifolia decreased at the semi-arid sites but increased at the semi-humid sites. Growth-temperature relationships gradually changed from negative to positive along the precipitation gradient (from dry to wet sites), particularly during summer. The moist P. crassifolia sites are also characterized by positive correlations with the Palmer Drought Severity Index. The temporal growth-temperature relationships varied significantly among the different spruce sites over the last five decades. Although temperature remains the main factor controlling the growth of P. crassifolia, local precipitation variability is becoming increasingly important. Our findings indicate that considering species distribution areas supports the analyses of the impact of climate change on tree growth.  相似文献   

17.
Forests modify their productivity, composition, and distribution in response to global change. We studied the radial growth trends of the Western Mediterranean oak Quercus pyrenaica over the last two centuries to analyze whether trees exhibited instability in productivity in response to climatic changes. Trees were sampled to build annual growth chronologies following climatic gradients of increasing moisture availability and decreasing temperature with altitude and latitude. The species’ response to climate showed high variability linked to local climatic conditions. The strength in the positive response of trees to moisture availability was inversely related to precipitation (that is, enhanced by higher water stress) whereas high temperature in the growing season was positive for tree-growth only at cold sites. The oldest ages of trees expanded back to the late 1500 s. These old-growth trees were located at the coldest sites and exhibited a long-term increase in productivity starting 150 years ago which could express a dominant positive effect of warming temperatures since the mid 1800 s at cold-humid sites. Conversely, trees at dry sites exhibited negative growth trends. Particularly low elevation stands located at latitudes below 40° displayed enhanced growth constraints with the increase in water stress around 1970, which suggests vulnerability of Quercus pyrenaica at the sampled altitudinal dry edge. The response of trees to future changes in climate should be monitored, particularly in threatened transitional zones.  相似文献   

18.
Species distribution models (SDMs) across past, present, and future timelines provide insights into the current distribution of these species and their reaction to climate change. Specifically, if a species is threatened or not well‐known, the information may be critical to understand that species. In this study, we computed SDMs for Orientocoluber spinalis, a monotypic snake genus found in central and northeast Asia, across the past (last interglacial, last glacial maximum, and mid‐Holocene), present, and future (2070s). The goal of the study was to understand the shifts in distribution across time, and the climatic factors primarily affecting the distribution of the species. We found the suitable habitat of O. spinalis to be persistently located in cold‐dry winter and hot summer climatic areas where annual mean temperature, isothermality, and annual mean precipitation were important for suitable habitat conditions. Since the last glacial maximum, the suitable habitat of the species has consistently shifted northward. Despite the increase in suitable habitat, the rapid alterations in weather regimes because of climate change in the near future are likely to greatly threaten the southern populations of O. spinalis, especially in South Korea and China. To cope with such potential future threats, understanding the ecological requirements of the species and developing conservation plans are urgently needed.  相似文献   

19.
We synthesize African paleoclimate from 150 to 30 ka (thousand years ago) using 85 diverse datasets at a regional scale, testing for coherence with North Atlantic glacial/interglacial phases and northern and southern hemisphere insolation cycles. Two major determinants of circum-African climate variability over this time period are supported by principal components analysis: North Atlantic sea surface temperature (SST) variations and local insolation maxima. North Atlantic SSTs correlated with the variability found in most circum-African SST records, whereas the variability of the majority of terrestrial temperature and precipitation records is explained by local insolation maxima, particularly at times when solar radiation was intense and highly variable (e.g., 150-75 ka). We demonstrate that climates varied with latitude, such that periods of relatively increased aridity or humidity were asynchronous across the northern, eastern, tropical and southern portions of Africa. Comparisons of the archaeological, fossil, or genetic records with generalized patterns of environmental change based solely on northern hemisphere glacial/interglacial cycles are therefore imprecise.We compare our refined climatic framework to a database of 64 radiometrically-dated paleoanthropological sites to test hypotheses of demographic response to climatic change among African hominin populations during the 150-30 ka interval. We argue that at a continental scale, population and climate changes were asynchronous and likely occurred under different regimes of climate forcing, creating alternating opportunities for migration into adjacent regions. Our results suggest little relation between large scale demographic and climate change in southern Africa during this time span, but strongly support the hypothesis of hominin occupation of the Sahara during discrete humid intervals ∼135-115 ka and 105-75 ka. Hominin populations in equatorial and eastern Africa may have been buffered from the extremes of climate change by locally steep altitudinal and rainfall gradients and the complex and variable effects of increased aridity on human habitat suitability in the tropics. Our data are consistent with hominin migrations out of Africa through varying exit points from ∼140-80 ka.  相似文献   

20.
We present evidence that land use practices in the plains of Colorado influence regional climate and vegetation in adjacent natural areas in the Rocky Mountains in predictable ways. Mesoscale climate model simulations using the Colorado State University Regional Atmospheric Modelling System (RAMS) projected that modifications to natural vegetation in the plains, primarily due to agriculture and urbanization, could produce lower summer temperatures in the mountains. We corroborate the RAMS simulations with three independent sets of data: (i) climate records from 16 weather stations, which showed significant trends of decreasing July temperatures in recent decades; (ii) the distribution of seedlings of five dominant conifer species in Rocky Mountain National Park, Colorado, which suggested that cooler, wetter conditions occurred over roughly the same time period; and (iii) increased stream flow, normalized for changes in precipitation, during the summer months in four river basins, which also indicates cooler summer temperatures and lower transpiration at landscape scales. Combined, the mesoscale atmospheric/land-surface model, short-term trends in regional temperatures, forest distribution changes, and hydrology data indicate that the effects of land use practices on regional climate may overshadow larger-scale temperature changes commonly associated with observed increases in CO2 and other greenhouse gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号