首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Priyanga Amarasekare 《Oikos》2016,125(4):514-525
Much is known about the evolution of dispersal when species interact with their resources or natural enemies, but very little is known about dispersal evolution when species interact with both resources and natural enemies. Here I investigate how the dispersal of an intermediate consumer evolves in response to its interactions with a basal resource and top predator. I find that dispersal evolution is possible even when the consumer species is not directly affected by environmental variability, but rather experiences the consequences that such variability has on its resource and predator. Spatial variation in the consumer's fitness is driven by spatial heterogeneity in resource productivity, which determines whether a predator can colonize a resource‐consumer community. Temporal variation in the consumer's fitness is driven by random disturbances that cause periodic local extinctions of the predator, followed by recolonizations that lead to transient fluctuations in consumer abundance. When spatial variation in resource productivity is low and the predator can colonize all patches in the landscape, there is no spatial variation in consumer fitness but temporal variation in fitness favors the evolution of a dispersal monomorphism. When spatial variation in resource productivity is high and the predator cannot colonize many patches in the landscape, spatial variation in fitness selects against dispersal. In this case, temporal variation can promote the evolution of a dispersal polymorphism with sedentary and mobile phenotypes, but only for certain types of tri‐trophic interactions. This finding underscores the importance of indirect interactions in shaping the evolution of dispersal. While the ecological community can provide a strong selective environment for the evolution of dispersal, the nature of interactions between trophic levels can also impose constraints on evolution.  相似文献   

2.
Current applications of species distribution models (SDM) are typically static, in that they are based on correlations between where a species has been observed (ignoring the date of the observation) and environmental features, such as long‐term climate means, that are assumed to be constant for each site. Because of this SDMs do not account for temporal variation in the distribution of suitable habitat across the range of a species. Here, we demonstrate the temporal variability in the potential geographic distributions of an endangered marsupial, the northern bettong Bettongia tropica as a case study. Models of the species distribution using temporally matched observations of the species with weather data (including extreme weather events) at the time of species observations, were better able to define habitat suitability, identify range edges and uncover competitive interactions than models based on static long‐term climate means. Droughts and variable temperature are implicated in low densities and local extinctions of northern bettong populations close to range edges. Further, we show how variable weather can influence the results of competition with the common rufous bettong Aepyprymnus rufescens. Because traditional SDMs do not account for temporal variability of suitable habitat, static SDMs may underestimate the impacts of climate change particularly as the incidence of extreme weather events is likely to rise.  相似文献   

3.
Whether biotic interactions limit geographic ranges has long been controversial, and traditional analyses of static distribution patterns have made little progress towards resolving this debate. Here, we use a novel phylogenetic approach to test whether biotic interactions constrain the transition to secondary sympatry following speciation. Applying this temporal framework to a diverse clade of passerine birds (Furnariidae), we reject models of geographic range overlap limited purely by dispersal or environmental constraints, and instead show that rates of secondary sympatry are positively associated with both the phylogenetic and morphological distance between species. Thus, transition rates to sympatry increase with time since divergence and accelerate as the ecological differences between species accumulate. Taken together, these results provide strong empirical evidence that biotic interactions – and primarily ecological competition – limit species distributions across large spatial and temporal scales. They also offer phylogenetic and trait‐based metrics by which these interactions can be incorporated into ecological forecasting models.  相似文献   

4.
Dispersal—the movement of an individual from the site of birth to a different site for reproduction—is an ecological and evolutionary driver of species ranges that shapes patterns of colonization, connectivity, gene flow, and adaptation. In plants, the traits that influence dispersal often vary within and among species, are heritable, and evolve in response to the fitness consequences of moving through heterogeneous landscapes. Spatial and temporal variation in the quality and quantity of habitat are important sources of selection on dispersal strategies across species ranges. While recent reviews have evaluated the interactions between spatial variation in habitat and dispersal dynamics, the extent to which geographic variation in temporal variability can also shape range-wide patterns in dispersal traits has not been synthesized. In this paper, we summarize key predictions from metapopulation models that evaluate how dispersal evolves in response to spatial and temporal habitat variability. Next, we compile empirical data that quantify temporal variability in plant demography and patterns of dispersal trait variation across species ranges to evaluate the hypothesis that higher temporal variability favors increased dispersal at plant range limits. We found some suggestive evidence supporting this hypothesis while more generally identifying a major gap in empirical work evaluating plant metapopulation dynamics across species ranges and geographic variation in dispersal traits. To address this gap, we propose several future research directions that would advance our understanding of the interplay between spatiotemporal variability and dispersal trait variation in shaping the dynamics of current and future species ranges.  相似文献   

5.
Resource selection function (RSF) models are commonly used to quantify species/habitat associations and predict species occurrence on the landscape. However, these models are sensitive to changes in resource availability and can result in a functional response to resource abundance, where preferences change as a function of availability. For generalist species, which utilize a wide range of habitats and resources, quantifying habitat selection is particularly challenging. Spatial and temporal changes in resource abundance can result in changes in selection preference affecting the robustness of habitat selection models. We examined selection preference across a wide range of ecological conditions for a generalist mega‐herbivore, the African savanna elephant Loxodonta africana, to quantify general patterns in selection and to illustrate the importance of functional responses in elephant habitat selection. We found a functional response in habitat selection across both space and time for tree cover, with tree cover being unimportant to habitat selection in the mesic, eastern populations during the wet season. A temporal functional response for water was also evident, with greater variability in selection during the wet season. Selection for low slopes, high tree cover, and far distance from people was consistent across populations; however, variability in selection coefficients changed as a function of the abundance of a given resource within the home range. This variability of selection coefficients could be used to improve confidence estimations for inferences drawn from habitat selection models. Quantifying functional responses in habitat selection is one way to better predict how wildlife will respond to an ever‐changing environment, and they provide promising insights into the habitat selection of generalist species.  相似文献   

6.
It is widely assumed that higher levels of intraspecific variability in one or more traits should allow species to persist under a wider range of environmental conditions. However, few studies have examined whether species that exhibit high variability are found in a wider range of environmental conditions, and whether variability increases the ability of a species to adapt to prevailing ecological gradients. We used four plant functional traits, specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon to nitrogen ratio (C:N) and maximum plant height in 49 species across a strong environmental gradient to answer three questions: 1) is there evidence for ‘high‐variability’ species (that is, species which show high variability in multiple traits, simultaneously)? 2) are species with more variable traits present across a wider range of environmental conditions than less variable species? And 3) whether more variable species show better trait–environment matching to the prevailing abiotic (soil moisture) gradient at the site? We found little evidence for a ‘high‐variability’ species. Variability was correlated for two leaf traits, SLA and LDMC, while variability in leaf traits and plant height were not correlated. We found little evidence that more variable species were present in more diverse conditions: only variation in SLA was correlated with a wider ecological niche breadth. For plant traits along the soil‐moisture gradient, higher variability led to better trait–environment matching in half of measured traits. Overall, we found little support for the existence of ‘high‐variability’ species, but that variability in SLA is correlated with a wider ecological breadth. We also found evidence that variation in traits can improve trait–environment matching, a relationship which may facilitate our understanding ecological breadth along prevailing gradients, and community assembly on the basis of traits.  相似文献   

7.
Competition in variable environments: experiments with planktonic rotifers   总被引:4,自引:0,他引:4  
1. In a constant environment, competition often tends to reduce species diversity. However, several theories predict that temporal variation in the environment can slow competitive exclusion and allow competing species to coexist. This study reports on laboratory competition experiments in which two pairs of planktonic rotifer species competed for a phytoplankton resource under different conditions of temporal variability in resource supply.
2. For both species pairs, Keratella cochlearis dominated under all conditions of temporal variability, and the other species ( Brachionus calyciflorus or Synchaeta sp.) almost always went extinct. Increasing temporal variation in resource supply slowed competitive exclusion but did not change competitive outcome or allow coexistence.
3. Rotifers show a gleaner–opportunist trade-off, because gleaner species have low threshold resource levels ( R *) and low maximum population growth rates, while opportunist species have the opposite characteristics. In the competition experiments, the gleaner always won and the opportunists always lost. Thus, a gleaner–opportunist trade-off was not sufficient to facilitate coexistence under conditions of resource variability. Instead, the winning species had both the lowest R * and the greatest ability to store resources and ration their use during times of extreme resource scarcity.  相似文献   

8.
The study of forest landscape change requires an understanding of the complex interactions of both spatial and temporal factors. Traditionally, forest gap models have been used to simulate change on small and independent plots. While gap models are useful in examining forest ecological dynamics across temporal scales, large, spatial processes, such as seed dispersal, cannot be realistically simulated across large landscapes. To simulate seed dispersal, spatially explicit landscape models that track individual species distribution are needed. We used such a model, LANDIS, to illustrate the implications of seed dispersal for simulating forest landscape change. On an artificial open landscape with a uniform environment, circular-shaped tree species establishment patterns resulted from the simulations, with areas near seed sources more densely covered than areas further from seed sources. Because LANDIS simulates at 10-y time steps, this pattern reflects an integration of various possible dispersal shapes and establishment that are caused by the annual variations in climate and other environmental variables. On real landscapes, these patterns driven only by species dispersal radii are obscured by other factors, such as species competition, disturbance, and landscape structure. To further demonstrate the effects of seed dispersal, we chose a fairly disturbed and fragmented forest landscape (approximately 500,000 ha) in northern Wisconsin. We compared the simulation results of a map with tree species (seed source locations) realistically parameterized (the real scenario) against a randomly parameterized species map (the random scenario). Differences in the initial seed source distribution lead to different simulation results of species abundance with species abundance starting at identical levels under the two scenarios. This is particularly true for the first half of the model run (0–250 y). Under the random scenario, infrequently occurring and shade tolerant species tend to be overestimated, while midabundant and midshade tolerant species tend to be underestimated. The over- and underestimation of species abundance diminish when examining long-term (500 y) landscape dynamics, because stochastic factors, such as fire, tend to make the landscapes under both scenarios converge. However, differences in spatial patterns, and especially species age-cohort distributions, can persist under the two scenarios for several hundred years. Received 24 November 1998; accepted 17 March 1999.  相似文献   

9.
Linking hydrologic interactions with global carbon cycling will reduce the uncertainty associated with scaling-up empirical studies and facilitate the incorporation of terrestrial–aquatic linkages within global and regional change models. Much of the uncertainty in estimates of carbon fluxes associated with precipitation and hydrologic transport results from the extensive spatial and temporal heterogeneity in both intrinsic functioning and anthropogenic modification of hydrological cycles. To better understand this variation we developed a landscape ecological approach to coupled hydrologic–carbon cycling that merges local mechanisms with multiple-scale spatial heterogeneity. This spatially explicit framework is applied to examine variability in hydrologic influences on carbon cycling along a continental scale water availability gradient with an explicit consideration of human sources of variability. Hydrologic variation is an important component of the uncertainty in carbon cycling; accounting for this variation will improve understanding of current conditions and projections of future ecosystem responses to global change.  相似文献   

10.
Rivers provide an excellent system to study interactions between patterns of biodiversity structure and ecological processes. In these environments, gene flow is restricted by the spatial hierarchy and temporal variation of connectivity within the drainage network. In the Australian arid zone, this variability is high and rivers often exist as isolated waterholes connected during unpredictable floods. These conditions cause boom/bust cycles in the population dynamics of taxa, but their influence on spatial genetic diversity is largely unknown. We used a landscape genetics approach to assess the effect of hydrological variability on gene flow, spatial population structure and genetic diversity in an Australian freshwater fish, Macquaria ambigua. Our analysis is based on microsatellite data of 590 samples from 26 locations across the species range. Despite temporal isolation of populations, the species showed surprisingly high rates of dispersal, with population genetic structure only evident among major drainage basins. Within drainages, hydrological variability was a strong predictor of genetic diversity, being positively correlated with spring-time flow volume. We propose that increases in flow volume during spring stimulate recruitment booms and dispersal, boosting population size and genetic diversity. Although it is uncertain how the hydrological regime in arid Australia may change under future climate scenarios, management strategies for arid-zone fishes should mitigate barriers to dispersal and alterations to the natural flow regime to maintain connectivity and the species' evolutionary potential. This study contributes to our understanding of the influence of spatial and temporal heterogeneity on population and landscape processes.  相似文献   

11.
Stochastic variability of key abiotic factors including temperature, precipitation and the availability of light and nutrients greatly influences species’ ecological function and evolutionary fate. Despite such influence, ecologists have typically ignored the effect of abiotic stochasticity on the structure and dynamics of ecological networks. Here we help to fill that gap by advancing the theory of how abiotic stochasticity, in the form of environmental noise, affects the population dynamics of species within food webs. We do this by analysing an allometric trophic network model of Lake Constance subjected to positive (red), negative (blue), and non‐autocorrelated (white) abiotic temporal variability (noise) introduced into the carrying capacity of basal species. We found that, irrespective of the colour of the introduced noise, the temporal variability of the species biomass within the network both reddens (i.e. its positive autocorrelation increases) and dampens (i.e. the magnitude of variation decreases) as the environmental noise is propagated through the food web by its feeding interactions from the bottom to the top. The reddening reflects a buffering of the noise‐induced population variability by complex food web dynamics such that non‐autocorrelated oscillations of noise‐free deterministic dynamics become positively autocorrelated. Our research helps explain frequently observed red variability of natural populations by suggesting that ecological processing of environmental noise through food webs with a range of species’ body sizes reddens population variability in nature.  相似文献   

12.
Aim A better understanding of the processes driving local species richness and of the scales at which they operate is crucial for conserving biodiversity in cultivated landscapes. Local species richness may be controlled by ecological processes acting at larger spatial scales. Very little is known about the effect of landscape variables on soil biota. The aim of our study was to partly fill this gap by relating the local variation of surface‐dwelling macroarthropod species richness to factors operating at the habitat scale (i.e. land use and habitat characteristics) and the landscape scale (i.e. composition of the surrounding matrix). Location An agricultural landscape with a low‐input farming system in Central Hesse, Germany. Methods We focused on five taxa significantly differing in mobility and ecological requirements: ants, ground beetles, rove beetles, woodlice, and millipedes. Animals were caught with pitfall traps in fields of different land use (arable land, grassland, fallow land) and different habitat conditions (insolation, soil humidity). Composition of the surrounding landscape was analysed within a radius of 250 m around the fields. Results Factors from both scales together explained a large amount of the local variation in species richness, but the explanatory strength of the factors differed significantly among taxa. Land use particularly affected ground beetles and woodlice, whereas ants and rove beetles were more strongly affected by habitat characteristics, namely by insolation and soil characteristics. Local species richness of diplopods depended almost entirely on the surrounding landscape. In general, the composition of the neighbouring landscape had a lower impact on the species richness of most soil macroarthropod taxa than did land use and habitat characteristics. Main conclusions We conclude that agri‐environment schemes for the conservation of biodiversity in cultivated landscapes have to secure management for both habitat quality and heterogeneous landscape mosaics.  相似文献   

13.
Investigating the effect of biodiversity on the stability of ecological communities is complicated by the numerous ways in which models of community interactions can be formulated. This has led to differences in conclusions and interpretations of how the number of species in a community affects its stability. Here, we derive a simple, general relationship between the coefficient of variation (CV) of combined species densities and the environmentally driven variability in species' per capita population growth rates. For a given level of environmentally driven variability in per capita population growth rates, increasing the number of species in a community decreases the CV of combined species densities, provided that species do not respond to environmental fluctuations in a perfectly correlated way. Thus, a community with more species of competitors will be more stable (have lower CV in combined species densities for a given level of environmental variability) than a species-poor community, provided that the species in both communities show equal variability in per capita population growth rates and provided that species within each community do not show strongly correlated responses to environmental fluctuations. This conclusion also applies to "noninteractive" models in which there is no competition between species.  相似文献   

14.
《Acta Oecologica》2002,23(3):155-163
Frequent dispersal events are expected to elevate local species richness in island-like habitats such as lakes. However, the importance of dispersal can be hard to evaluate if other factors cause large background variability in species composition and richness. In this paper, we review empirical studies on ecological factors known or expected to influence species richness in zooplankton communities of inland lakes. We then present summaries of two recent case studies. Our objectives are twofold: we first look for effects of biotic interactions on species richness and species composition, and then evaluate whether the expected effects of dispersal are likely to be detected on a background of large variability caused by other ecological factors and interactions. Species richness within lakes appears to be primarily controlled by factors related to lake size, lake productivity, water quality, and fish predation levels. One case study indicated a slight, but significant, positive effect of lake density and lake area in the surrounding landscape on species richness, suggesting that frequent dispersal events may enhance species richness. This local variation in species richness is superimposed on regional variation in species pools.  相似文献   

15.
The elements of metacommunity structure (EMS) framework gives rise to important ecological insights through the distinction of metacommunities into several different idealised structures. We examined the EMS in assemblages occupying a low-mountain river system in central Germany, sampled over three consecutive years. We compared the idealised distributions of assemblages in both the riparian floodplain zone (carabid beetles and spiders) and the benthic instream environment (benthic invertebrates). We further deconstructed instream organisms into taxonomic and trait groups to examine whether greater signal emerges in more similar species groups. We found little evidence of strong competition, even for trait-modality groups, and nestedness was almost non-existent. In addition to random distributions, Gleasonian distributions (indicating clear, but individualistic turnover between sites) were the most commonly identified structure. Clear differences were apparent between different trait groups, particularly between within-trait modalities. These were most evident for different dispersal modes and life cycle durations, with strong dispersers showing possible signs of mass effects. While random distributions may have partly reflected small sample sizes, clearly coherent patterns were evident for many groups, indicating a sufficient gradient in environmental conditions. The prevalence of random distributions suggests many species are responding to a variety of environmental filters in these river-floodplain metacommunities in an anthropogenically-dominated landscape, whereas Gleasonian distributions indicate species are responding idiosyncratically to a primary environmental gradient. Our findings further emphasise the prevalence of context dependency (spatio-temporal variability) in metacommunity studies, thus we stress the need to further disentangle the causes of such variation.  相似文献   

16.
Sensitivity analysis was conducted, based on the canopy photosynthesisand continuity equation models which were developed in a previouspaper (Yokozawa and Hara, 1992), to investigate effects of variationin physiological parameters (maximal photosynthetic rate perunit leaf area, respiration rate per unit leaf area, maintenancerespiration rate per unit weight, growth respiration rate perunit weight, light extinction coefficient of the canopy, etc.)on the size-structure dynamics in plant populations. As thedegree of asymmetry in competition between individuals increased,effects of variation in physiological parameters diminished.Therefore, a population undergoing one-sided competition (mostasymmetric competition) is a stable system, little affectedby temporal and spatial variations in the environmental conditionswhich lead to variation in physiological parameters, whereasa population undergoing symmetric two-sided competition is sensitiveto these fluctuations. It was also shown by simulation thatthe degree of asymmetry in competition decreases (through effectson canopy photosynthesis) as nutrient level in the soil is reduced.It is suggested that symmetric two-sided competition is associatedwith non-transitivity of competition between species (i.e. frequentreversals of rank order of species), and hence with speciesdiversity. Several other ecological phenomena are discussedin relation to allometry (i.e. allocation-growth pattern) andthe degree of asymmetry in competition.Copyright 1994, 1999Academic Press Allometry, canopy photosynthesis, competition mode, continuity equation, parameter sensitivity, stability of stand structure  相似文献   

17.
景观遗传学:概念与方法   总被引:2,自引:0,他引:2  
薛亚东  李丽 《生态学报》2011,31(6):1756-1762
全球变化下的物种栖息地丧失和破碎化给生物多样性保护带来了新的问题和挑战,生物多样性保护必须由单纯的物种保护上升到栖息地景观的保护。景观遗传学是定量确定栖息地景观特征对种群遗传结构影响的一门交叉学科,在生物保护及自然保护区管理方面有巨大的潜力。从生物多样性保护的角度评述了景观结构与遗传多样性的关系,介绍了景观遗传学的基本概念,研究尺度和方法,并对景观遗传学当前的研究焦点及面临的挑战做了总结。  相似文献   

18.
We analysed the degree to which spatial, ecological and phylogenetic factors influenced geographic gradients in range size for all trees native to North America. We compared observed range sizes, measured in either one (latitudinal or longitudinal extent) or two dimensions (range area), with three null models that respected constraints imposed by the geometry of the continent; we tested whether climatic gradients could account for increasing range size with latitude – a Rapoport effect – in North American trees; and whether variation in range size was associated with phylogeny or ecological characteristics of species. We documented an excess of species with small ranges and a lack of widely distributed species compared with null expectations both with and without environmental constraints. We found evidence for a Rapoport effect in North American trees, at different taxonomic levels and for different groups defined by ecological characteristics. This pattern is not an outcome constrained by continental shape and does not depend on the metric for range size, but it is consistent with the climatic variability hypothesis proposed to explain the Rapoport pattern. Finally we showed that trees east of the Rocky Mountains have larger ranges on average than trees to the west or in Mexico and that the proportion of deciduous compared to evergreen species increases with range size. Variation in range size among North American trees is not spatially random, and has a phylogenetic and ecological signal. Consistent with the climatic variability hypothesis, range size of North American trees increases with increasing variability in annual temperature range at higher latitudes.  相似文献   

19.
Predictive species’ distribution models may answer ecological questions about habitat selection, co-occurrence of species and competition between them. We studied the habitat preferences and segregation of two sympatric species of declining sandgrouse, the black-bellied sandgrouse (Pterocles orientalis) and the pin-tailed sandgrouse (Pterocles alchata), during the breeding season. We developed predictive models that related sandgrouse presence to environmental variables at three different spatial levels: large geographical, landscape and microhabitat scales. At the large geographical scale, differences between sandgrouse distributions, in the Iberian Peninsula, seem to be explained mainly in terms of bioclimatology: pin-tailed sandgrouse appear to be a more thermophilous species and occupy warmer sites usually located in flatter areas. At the landscape spatial level, in those areas that exhibit environmental conditions allowing for both species’ co-existence at a large geographical scale, black-bellied sandgrouse appear to be more tolerant to environmental variation than pin-tailed sandgrouse. At the microhabitat level, however, differences between species could be related to different flocking behaviour as a consequence of different sensitivities to vegetation structure and predators. Thus, the observed spatial distribution patterns are the result of different ecological factors that operate at different spatial levels. Conservation guidelines for these species should therefore consider their habitat preferences at large geographical, landscape and microhabitat scales.  相似文献   

20.
Understanding the patterns of spatial and temporal variations in animal abundance is a fundamental question in ecology. Here, we propose a method to quantify temporal variations in animal spatial patterns and to determine the spatial scale at which such temporal variability is expressed. The methodology extends from the approach proposed by Taylor (Taylor, L. R. 1961. Aggregation, variance and the mean. Nature 189: 732–735) and relies on models of the relationship between temporal mean and variance in animal abundance. Repeated observations of the spatial distribution of populations are used to construct spatially explicit models of Taylor's power law. The resulting slope parameters of the Taylor power law provide local measures of the temporal variability in animal abundance. We investigate if the value of the slope varies significantly with spatial location and with spatial scale. The method is applied to seabirds distribution in the Bay of Biscay. We study four taxa (northern gannets, large gulls, auks and kittiwakes) that display distinct geographical distribution, spatial structure and foraging strategy. Our results show that the temporal variability associated to the spatial distribution of northern gannets is high and spatially homogeneous. By contrast, kittiwakes present large geographical areas associated with high and low variability. The temporal variability of auk's spatial distribution is strongly scale-dependent: at fine scale high variability is associated to high abundance, but at large scale high variability is associated to the external border of their distribution range. The method provides satisfactory results and useful information on species spatio-temporal distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号