首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R A Gelman  J Blackwell 《Biopolymers》1973,12(9):1959-1974
Circular dichroism spectroscopy has been used to study the interactions of both dermatan sulfate and chondroitin 4-sulfate with the cationic polypeptides; poly(L -arginine), poly(L -lysine), and poly(L -ornithine). The results indicate that the mucopolysaccharides have a conformation directing effect on both poly(L -arginine) and poly-(L -lysine) such that these polypeptides adopt the α-helical conformation. The extent of interaction in each polypeptide-polysaccharide system can be judged by the degree of induced helicity and the “melting temperature” at which the interaction is disrupted On comparison of these results with those previously obtained for chondroitin 6-sulfate-polypeptide mixtures, the extent of interaction can be seen to depend on the length of the amino acid side chain and the positions of the anionic groups on the mucopolysaccharide chain. Such considerations place the three mucopolysaccharides in order of increasing interaction: chondroitin 4-sulfate < chondroitin 6-sulfate < dermatan sulfate. These results are correlated with observations that dermatan sulfate is bound more tightly to collagen in connective tissues than are the other two polysaccharides.  相似文献   

2.
The differences in the interaction in solution of poly(l-lysine) with chondroitin 6-sulfate (chondroitin sulfate C) and with chondroitin 4-sulfate (chondroitin sulfate A) have been studied by circular dichroism spectroscopy. Both mucopolysaccharides force the poly(l-lysine) to adopt the α-helix in solution rather than the charged coil form expected at neutral pH. The observed spectra indicates that the polypeptide is at least 80% helical when the 6-sulfate form is present, but only about 20% α-helical in the presence of chondroitin 4-sulfate. Thus chondroitin66-sulfate has a stronger conformation directing effect on poly(l-lysine) than does the 4-sulfate, which is probably due to the different positions of the sulfate group on the polysaccharide c chain.  相似文献   

3.
The interactions between chondroitin-6-sulfate (chondroitin sulfate C) and poly-L -lysine have been studied as models for investigation of possible complex formation between fibrous proteins and mucopolysaccharides. Results obtained using circular dichroism spectroscopy show that poly-L -lysine adopts the α-helical conformation in dilute aqueous salt solution at pH 7 when mixed with chondroitin-6-sulfate, rather than the “charged-coil” observed in the absence of this mucopolysaccharide. This conformation-directing interaction is at a maximum when the ratio of lysine to disaccharide residues is 1 : 1. Changes in the CD spectrum of a 1 : 1 mixture following increase in the salt concentration, or addition of non-polar solvents, indicate that the interaction is ionic in nature. No such effects are observed for non-sulfated mucopolysaccharides mixed with poly-L -lysine, suggesting that, for chondroitin-6-sulfate, it is the sulfate groups rather than the carboxyls which interact with the amine groups of the polypeptide. Elevation of the temperature leads to disruption of the interactions between the polypeptide and polysaccharide species. A sharp melting transition occurs at 47.0 ± 1.0°C, when the poly-L -lysine reverts to the “charged-coil” conformation. The sharp transition suggests that regular ionic bonds are formed between the polypeptide and polysaccharide. These results suggest that a conformation-directing interaction may occur between sulfated mucopolysaccharides and the polar regions of collagen and other fibrous proteins.  相似文献   

4.
Four constitutive enzymes, capable of degrading keratan sulfate, were isolated from Pseudomonas sp.: a particulate endoglycosidase, a soluble endoglycosidase, a soluble exo-beta-D-galactosidase and a soluble exo-beta-D-N-acetylglucosaminidase. The endoglycosidases were shown to act only upon keratan sulfate forming beta-D-2-acetamido-2-deoxy-6-O-sulfoglucosyl-(1----3)-D-galactose, as the main product. This results indicates that the enzyme catalyses the hydrolysis of beta-D-galactose-(1----4)-N-acetylglucosamine linkages. It was also shown that this monosulfated disaccharide inhibits the particulate keratan sulfate endoglycosidase. The bovine nucleus pulposus keratan sulfate is depolymerized at a lower rate and extent when compared to the corneal keratan sulfate. The soluble endoglycosidase is very labile, in contrast to the particulate enzyme, which has been stored at -20 degrees C or at 4 degrees C for at least 12 months with no loss in activity. The particulate endoglycosidase and the soluble exo-beta-D-galactosidase and exo-beta-D-N-acetylglucosaminidase are induced when the bacteria is grown in adaptative media containing either 0.1% keratan sulfate or 0.1% chondroitin sulfate. Furthermore, particulate forms of the exoenzymes were detected. The soluble endoglycosidase specific activity, in contrast, is approximately the same in extracts of cells grown in glucose, keratan sulfate or chondroitin sulfate. A chondroitin sulfate lyase was also identified in the soluble extracts of Pseudomonas sp. cells. This enzyme depolymerizes chondroitin 4-sulfate, chondroitin 6-sulfate and hyaluronic acid forming unsaturated disaccharides as main products. It is also active upon the glucuronic-acid-containing regions of the dermatan sulfate molecules. The properties of the soluble enzymes, further purified by ion-exchange chromatography, and of the particulate keratan sulfate endoglycosidase are presented.  相似文献   

5.
K P Schodt  R A Gelman  J Blackwell 《Biopolymers》1976,15(10):1965-1977
Circular dichroism (CD) spectroscopy has been used to investigate the effects of changes in salt concentration and pH on the interactions between basic polypeptides and connective tissue glycosaminoglycans in dilute aqueous solution. The polypeptides undergo conformation-directing interactions in the presence of glycosaminoglycans, which are subject to transitions as the ionic strength and pH are varied. For poly(L -lysine), the conformational change due to interaction breaks down as the ionic strength (monovalent ions) is increased. Based on the ionic strength at which disruption occurs, the glycosaminoglycans can be placed in order of increasing strength of interaction: chondroitin 6-sulfate, hyaluronic acid, chondroitin 4-sulfate, heparin, and dermatan sulfate. Prior to the conformational transition, scattering effects are observed, indicating the development of larger aggregates. Each glycosaminoglycan induces α-helicity for poly(L -arginine), which does not break down as the ionic strength is increased, indicating a stronger interaction for this polypeptide. The pH-induced transitions are in the pH range 2.5–3.8 and are probably related to deionization of carboxyl groups. For poly(L -lysine) the conformational effect is disrupted at low pH. For poly(L -arginine), the transitions are not complete, but appear to correspond to an increase in scattering.  相似文献   

6.
A panel of monoclonal antibodies prepared to the chondroitin sulfate proteoglycans of rat brain was used for their immunocytochemical localization and isolation of individual proteoglycan species by immunoaffinity chromatography. One of these proteoglycans (designated 1D1) consists of a major component with an average molecular size of 300 kDa in 7-day brain, containing a 245-kDa core glycoprotein and an average of three 22-kDa chondroitin sulfate chains. A 1D1 proteoglycan of approximately 180 kDa with a 150-kDa core glycoprotein is also present at 7 days, and by 2-3 weeks postnatal this becomes the major species, containing a single 32-kDa chondroitin 4-sulfate chain. The concentration of 1D1 decreases during development, from 20% of the total chondroitin sulfate proteoglycan protein (0.1 mg/g brain) at 7 days postnatal to 6% in adult brain. A 45-kDa protein which is recognized by the 8A4 monoclonal antibody to rat chondrosarcoma link protein copurifies with the 1D1 proteoglycan, which aggregates to a significant extent with hyaluronic acid. A chondroitin/keratan sulfate proteoglycan (designated 3H1) with a size of approximately 500 kDa was isolated from rat brain using monoclonal antibodies to the keratan sulfate chains. The core glycoprotein obtained after treatment of the 3H1 proteoglycan with chondroitinase ABC and endo-beta-galactosidase decreases in size from approximately 360 kDa at 7 days to approximately 280 kDa in adult brain. In 7-day brain, the proteoglycan contains three to five 25-kDa chondroitin 4-sulfate chains and three to six 8.4-kDa keratan sulfate chains, whereas the adult brain proteoglycan contains two to four chondroitin 4-sulfate chains and eight to nine keratan sulfate chains, with an average size of 10 kDa. The concentration of 3H1 increases during development from 3% of the total soluble proteoglycan protein at 7 days to 11% in adult brain, and there is a developmental decrease in the branching and/or sulfation of the keratan sulfate chains. A third monoclonal antibody (3F8) was used to isolate a approximately 500-kDa chondroitin sulfate proteoglycan comprising a 400-kDa core glycoprotein and an average of four 28-kDa chondroitin sulfate chains. In the 1D1 and 3F8 proteoglycans of 7-day brain, 20 and 33%, respectively, of the chondroitin sulfate is 6-sulfated, whereas chondroitin 4-sulfate accounts for greater than 96% of the glycosaminoglycan chains in the adult brain proteoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Circular dichroism spectroscopy has been used to study the interactions between heparin and cationic polypeptides in dilute aqueous solution at neutral pH. The results indicate that poly(l-lysine), poly(l-arginine), and poly(l-ornithine) adopt the α-helical conformation in the presence of heparin, rather than the “charged coil” form observed for the polypeptide alone under the same conditions. Maximum interaction for the poly(l-lysine) and poly(l-ornithine) systems occur at an amino acid: disaccharide residue ratio of 2.3 ± 0.1:1, which correlates with the analytical data of 2.3 sulfates per heparin disaccharide. For poly(l-arginine), maximum interaction occurs at a residue ratio of 3.3 ± 0.1:1, and indicates that all the anionic groups (sulfate and carboxyl) of the heparin are involved in this case.The interactions of heparin are analogous to those observed previously for six connective tissue mucopolysaccharides, except that none of the latter had any effect on the conformation of poly(l-ornithine). The poly(l-ornithine)-heparin system shows a thermal “melting” transition at Tm = 56.0 ± 1.0 °C, at which point the polypeptide reverts to the “charged coil” form; the interactions with poly(l-lysine) and poly(l-arginine) are stable up to temperatures > 90 °C. The high thermal stability of these conformation-directing effects indicate a stronger interaction for heparin than the other mucopolysaccharides, which is probably due to the high sulfate content.  相似文献   

8.
Surface and intracellular mucopolysaccharides of guinea-pig peritoneal macrophages maintained in suspension and monolayer culture were studied. At least five classes of compound (hyaluronic acid, heparan sulfate, dermatan sulfate, chondroitin 4-sulfate and chondroitin 6-sulfate) were resolved and characterized by electrophoresis and enzymatic degradation. The results reported here suggest that modulation of mucopolysaccharide exposure is involved in macrophage physiology. The possible biological role of surface mucopolysaccharides in macrophage activity is discussed.  相似文献   

9.
Connective tissue proteoglycans undergo interaction with poly(L -arginine) when mixed in dilute neutral aqueous solution. Circular dichroism spectroscopy indicates that the polypeptide adopts the α-helical conformation rather than the extended coil form normally observed at neutral pH. The interactions of a series of proteoglycans with different protein and glycosaminoglycan contents have been compared. The arginine/disaccharide residue ratio at maximum interaction appears to be constant with varying protein content of the proteoglycans that contain chondroitin 4-sulfate. The thermal stability of the proteoglycan interaction is the same as for the component polysaccharide. Thus in terms of the strength of interaction with homopolypeptides, the properties of proteoglycan and the component glycosaminoglycans are the same, and this is likely also to be the case for collagen–proteoglycan systems. The interactions of keratan sulfate-2 have also been investigated. These are similar but have much lower thermal stability than corneal keratan sulfate-1. The results are consistent with the weak interaction of the keratan sulfate-2 component of bovine nasal septum proteoglycan.  相似文献   

10.
Five components of the acid mucopolysaccharides were isolated from rabbit aorta; these were hyaluronic acid, heparitin sulphate, chondroitin sulphate A, C and B. Prolonged administration of hydrocortisone increased the hyaluronic acid concentrations and decreased the level of heparitin sulphate. Fifteen days after the cessation of the hormone administration the aortic tissue proved to contain a lower percentage of chondroitin sulphate A, C anc B.  相似文献   

11.
Platelet heparin neutralizing activity (platelet factor 4) is released from human blood platelets by thrombin in the form of a high molecular weight proteoglycan-platelet factor 4 complex. This complex was partially purified by isoelectric precipitation and gel filtration. At high ionic strength (I = 0.75) the complex dissociates into the active component (mol. wt 29000) and the proteoglycan carrier. The components were separated by gel filtration and the proteoglycan further purified by Na2SO4 treatment. The molecular weight of the purified carrier was 59000. The carbohydrate moieties of the proteoglycan isolated after papain digestion and ion-echange chromatography were shown to consist of chondroitin 4-sulfate by chemical, physical and electrophoretic analysis. The multichain proteoglycan consists of four chondroitin 4-sulfate chains (mol. wt 12000) in covalent linkage to a single polypeptide. The molecular weight (350000) of the fully saturated proteoglycan carrier suggests that 4 moles of platelet factor 4 are bound per mole of proteoglycan and that the carrier occurs in the form of a dimer consisting of 8 moles of platelet factor 4 and 2 moles of proteoglycan. The isolated chondroitin 4-sulfate moieties combine with platelet factor 4 at a binding ratio of one mole of platelet factor 4 per carbohydrate chain. Heparin completely displaces platelet factor 4 from both the saturated proteoglycan and chondroitin 4-sulfate complexes. Heparitin sulfate, dermatan sulfate and chondroitin 6-sulfate also combine stoichiometrically with platelet factor 4 and are displaced by equimolar amounts of heparin. Hyaluronic acid did not combine with platelet factor 4. The relative binding capacities of glycosaminoglycans for platelet factor 4 were shown to be: heparin (100), heparitin sulfate (75), chondroitin 4-sulfate (50), dermatan sulfate (50), chondroitin 6-sulfate (50), and hyaluronic acid (o). Chondroitin 4-sulfate was identified as the major glycosaminoglycan in all platelet subcellular fractions; in addition, the soluble fraction contains a minor amount of hyaluronic acid. Subcellular distribution studies revealed that 55% of both the proteoglycan carrier and platelet factor 4 activity were localized in the “granule rich” fraction. This data together with the low recovery of both these components in the membrane fraction, suggest that they occur together as a complex within specific granules and are released in this form under physiologic conditions.  相似文献   

12.
Human serum amyloid P component (SAP) was found to agglutinate erythrocytes in the presence of calcium ion. The hemagglutination was strongly inhibited by hyaluronic acid as well as by heparan sulfate and dermatan sulfate, but not by chondroitin 4-sulfate and keratan sulfate. A specific binding of SAP to hyaluronic acid, heparan sulfate, and dermatan sulfate was also confirmed by the fact that these glycosaminoglycans blocked the binding of SAP to agarose, a specific ligand of SAP.  相似文献   

13.
After chondroitinase digestion of bovine nasal and tracheal cartilage proteoglycans, subsequent treatment with trypsin or trypsin followed by chymotrypsin yielded two major types of polypeptide-glycosaminoglycan fragments which could be separated by Sepharose 6B chromatography. One fragment, located close to the hyaluronic acid-binding region of the protein core, had a high relative keratan sulfate content. This fragment contained about 60% of the total keratan sulfate, but less than 10% of the total chondroitin sulfate present in the original proteoglycan preparation. The weight average molecular weight of the keratan sulfate-enriched fragment was 122,000, as determined by sedimentation equilibrium centrifugation. The chemical and physical data indicate that this fragment contains an average of 10 to 15 keratan sulfate chains, if the average molecular weight of individual chains is assumed to be about 8,000, and about 5 chondroitin sulfate chains attached to a peptide of about 20,000 daltons. The other population of fragments was derived from the other end of the proteoglycan molecule, the chondroitin sulfate-enriched region, and contained mainly chondroitin sulfate chains. About 90% of the total chondroitin sulfate, but only 20 to 30% of the total keratan sulfate was recovered in these fragments. On the average, approximately 5 chondroitin sulfate chains and 1 keratan sulfate chain could be linked to the same peptide. Another 10 to 20% of the total keratan sulfate, originally found in or near the hyaluronic acid-binding region, was not separated from the chondroitin sulfate-enriched fragments. Hydroxylamine could be used to liberate a large molecular size, chondroitin sulfate-enriched fragment (Kav 0.54 on Sepharose 2B) from the proteoglycan aggregates. The remainder of the protein core, containing the keratan sulfate-enriched region, was bound to hyaluronic acid with the link proteins and recovered in the void volume on the Sepharose 2B column.  相似文献   

14.
A simple procedure for the isolation of heparan sulfates from pig lung using a poly-L-lysine-Sepharose column is described. Glycosaminoglycans are absorbed on poly-L-lysine-Sepharose at pH 7.5 and eluted with an NaCl linear gradient in the following order: hyaluronic acid (0.32 M NaCl), chondroitin (0.36 M NaCl), keratan sulfate (0.80 M NaCl), chondroitin 4-sulfate (0.86 M NaCl), chondroitin 6-sulfate (0.95 M NaCl), dermatan sulfate (0.91 M NaCl), heparan sulfate (1.2 M NaCl), and heparin (1.35 M NaCl). Based on these observations, isolation of heparan sulfate from pig lung crude heparan sulfate fractions which contain chondroitin sulfates and dermatan sulfate was attempted, using this chromatographic technique.  相似文献   

15.
Several commerical batches of heparitin sulfate extracted from beef lung tissue were fractionated into at least four distinct mucopolysaccharides by a combination of polyacrylamide and agarose gel electrophoresis. The four heparitin sulfates (A, B, C and D) were distinguished from each other and from heparin by several physical and chemical properties such as electrophoretic migration, molecular weight, presence of N-acetyl, N- and )-sulfate residues, optical rotation and enzymatic degradation. Of particular significance was the isolation of a heparitin sulfate (heparitin sulfate C) with a homogeneous molecular weight.  相似文献   

16.
The sulfated mucopolysaccharide composition of the mammalian cell lines: HeLa, H.Ep.2, AV3, WI-38, BHK and a cell culture of rabbit lung tissue is reported. It is shown that chondroitin sulfate AC and heparitin sulfate are the main mucopolysaccharides of the permanent cell lines whereas chondroitin sulfate B and heparitin sulfate are the major ones in the primary cultures, with no significant change in their relative concentrations up to seven generations. It is also shown that besides heparitin sulfate, chondroitin sulfate AC and chondroitin sulfate B are located at the surface of the cells. These results are in agreement with the earlier proposals that heparitin sulfate and chondroitin sulfate B might play a role in cell recognition and adhesiveness and that chondroitin sulfate AC might act as a stimulant of cell division.  相似文献   

17.
The Morquio syndrome is a spondyloepiphyseal dysplasia characterized by excretion in urine of excessive amounts of keratan sulfate and chondroitin sulfate. To investigate the enzymic basis of this disease, assays for sulfatase were performed using chick embryo chondroitin sulfate and rat chondrosarcoma chondroitin 4-sulfate as substrates. The data obtained, using skin fibroblasts as an enzyme source, indicate that Morquio's syndrome is a deficiency of chondroitin sulfate N-acetylhexosamine sulfate sulfatase.  相似文献   

18.
The effect of bound sulfate groups and uronic acid residues of glycosaminoglycans on their behavior in chromatography on hydrophobic gel was examined by the use of several pairs of depolymerized chondroitin, chondroitin 4- or 6-sulfate, and dermatan sulfate having comparable degree of polymerization. Chromatography on Phenyl-Sepharose CL-4B in 4.0-2.0 ammonium sulfate containing 10m hydrochloric acid showed that: (a) The retention of depolymerized chondroitin 4- or 6-sulfate on the gel varies with the temperature, whereas the depolymerized samples of chondroitin and dermatan sulfate does not show a temperature dependence (this is not the case for hyaluronic acid or dextrans). (b) Among depolymerized samples of chondroitin and chondroitin 4- and 6-sulfate that have a similar degree of polymerization, chondroitin 4- and 6-sulfate showed the highest retention. (c) The retention on the gel of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate decreased in this order. The solubility in ammonium sulfate solution of the polysaccharides agreed well with the chromatographic behavior, suggesting that the fractionation by the hydrophobic gel largely depends on the ability to precipitate on the gel rather than on the hydrophobic interaction between gel and polysaccharide.  相似文献   

19.
Summary Monoclonal antibodies directed against specific carbohydrate epitopes on chondroitin 4-/dermatan sulfate, chondroitin 6-sulfate, keratan sulfate, and a monoclonal antibody directed against the hyaluronate binding region were used to characterize proteoglycans extracted from embryonic chick bone marrow. About half of the proteoglycans separate into the high density fraction on a CsCl gradient. Glycosaminoglycan-specific antibodies recognize proteoglycans from all fractions; this includes an antibody directed against keratan sulfate. Some proteoglycans, principally in the high buoyant density fraction, contain sites recognized by the antibody specific for the hyaluronate binding region. Within limits of detection, all core proteins belong to the high-molecular-weight category, with weights in excess of 212 kD. Antibodies directed against chondroitin 4-/dermatan sulfate and against keratan sulfate primarily bind to extracellular matrix material located in the extracellular spaces and to matrix elements in the pericellular regions of fibroblastic stromal cells. The antibody that recognizes chondroitin 6-sulfate binds to sites on surfaces of fibroblastic stromal cells and also to extracellular matrix material. Little or no antibody binding is detected on surfaces of granulocytic cells. These studies indicate that chondroitin sulfate and keratan sulfate chains are both present in the proteoglycan extract.  相似文献   

20.
We have previously found that the purified chondroitin 6-sulfotransferase(C6ST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate(PAPS) to position 6 of N-acetylgalactosamine in chondroitin,catalyzed the sulfation of keratan sulfate, and that both theC6ST activity and the keratan sulfate sulfotransferase (KSST)activity were expressed in COS-7 cells when C6ST cDNA was transfected.In this report we describe some properties of the KSST activitycontained in the purified C6ST, and characterize the sulfatedproducts formed from keratan sulfate and partially desulfatedkeratan sulfate. Optimal pH, requirement for cationic activators,and Km value for PAPS of the KSST activity were very similarto those of the C6ST activity. 35S-Labeled glycosaminoglycansformed from keratan sulfate and partially desulfated keratansulfate were N-deacetylated by treatment with hydrazine/hydrazinesulfate and then cleaved with HNO2 at pH 4, and the resultingproducts were reduced with NaB3H4. Analysis of the degradationproducts with paper chromatography and high performance liquidchromatography provided evidence that C6ST transferred sulfateto position 6 of galactose residue which was glycosidicallylinked to N-acetylglucosamine 6-sulfate residue or to N-acetylglucosamineresidue. Northern blot analysis using poly (A)+ RNA from 12-d-oldchick embryos indicated that the message of C6ST was expressednot only in the cartilage but also in the cornea in which keratansulfate is actively synthesized. chondroitin sulfate keratan sulfate glycosaminoglycan sulfotransferase hydrazinolysis deaminative cleavage  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号