首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three different molecular forms of angiotensin converting enzyme (ACE) (approximately Mr 150,000, 80,000 and 40,000, respectively), have been recovered from human cerebrospinal fluid. All three enzymes were inhibited by captopril and enalapril and their activity was potentiated by chloride ions. They were capable of degrading Leu-enkephalin-Arg6 and substance -P, but gave no conversion of neurokinin A. In all these aspects, the CSF enzymes were identical with the human pulmonary enzyme. The Mr 40,000 form of ACE is the smallest active form of the enzyme hitherto reported and is likely to represent a fragment of the C-terminal part of native ACE, where its active center is located.  相似文献   

2.
S R Feldman  S V Pizzo 《Biochemistry》1985,24(10):2569-2575
Frog alpha-macroglobulin was purified to apparent homogeneity by Ni2+ chelate affinity chromatography. Frog alpha-macroglobulin migrated as an alpha 1-globulin in cellulose acetate electrophoresis. A molecular weight of 730 000 was obtained by equilibrium sedimentation, and in sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE), the protein migrated as a single band of Mr approximately 360 000 before reduction and Mr approximately 180 000 after reduction. Treatment with trypsin resulted in subunit cleavage to yield a fragment of Mr approximately 90 000. After being heated, the protein fragmented, migrating in SDS-PAGE as two bands of Mr approximately 120 000 and 60 000. This fragmentation was inhibited by prior reaction of the protein with methylamine. In native pore-limit electrophoresis the protein exhibited the characteristic "slow" to "fast" conformational change of protease-treated alpha-macroglobulins. In contrast, typical "slow" to "fast" conformational change was not observed in native PAGE with this preparation. Moreover, the protein incorporated approximately 2 mol of [14C]methylamine/mol of inhibitor without demonstrating a change in mobility in native PAGE. In circular dichroism studies, the protein exhibited a spectrum similar to that of human alpha 2M. Reaction with trypsin resulted in a broadening and decrease in the magnitude of the spectrum. Reaction with methylamine resulted in similar changes, but of smaller magnitude. The inhibitor bound approximately 0.7 mol of trypsin in both radiolabeled protease binding and amidolytic titration studies. 125I-Labeled native frog alpha 1M was removed slowly from the circulation of mice with a t1/2 greater than 2h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Iduronate sulfatase from human placenta   总被引:1,自引:0,他引:1  
The major enzyme component of iduronate sulfatase from human placenta was purified 30 000-fold by a five-step procedure. Sucrose gradient centrifugation of the native enzyme gave a molecular weight estimate of 80 000 +/- 10 000. Electrophoresis in sodium dodecyl sulfate of the enzyme reduced with mercaptoethanol showed a protein band of Mr 82 000. We suggest that the enzyme is composed of a single polypeptide chain of Mr 80 000-90 000.  相似文献   

4.
The dimeric bifunctional enzyme aspartokinase II-homoserine dehydrogenase II (Mr = 2 X 88,000) of Escherichia coli K12 can be cleaved into two nonoverlapping fragments by limited proteolysis with subtilisin. These two fragments can be separated under nondenaturing conditions as dimeric species, which indicates that each fragment has retained some of the association areas involved in the conformation of the native protein. The smaller fragment (Mr = 2 X 24,000) is devoid of aspartokinase and homoserine dehydrogenase activity. The larger fragment (Mr = 2 X 37,000) is endowed with full homoserine dehydrogenase activity. These results show that the polypeptide chains of the native enzyme are organized in two different domains, that both domains participate in building up the native dimeric structure, and that one of these domains only is responsible for homoserine dehydrogenase activity. A model of aspartokinase II-homoserine dehydrogenase II is proposed, which accounts for the present results.  相似文献   

5.
Seven patients with essential hypertension and seven patients with hypertension associated with renal artery stenosis received captopril (SQ 14225), an inhibitor of angiotensin I converting enzyme. There was a significant reduction in mean blood pressure, from 176/113 +/- 4/3 mm Hg during the control period to 140/90 +/- 5/3 mm Hg during captopril administration. Five patients received captopril alone and nine patients needed hydrochlorothiazide in addition to control their blood pressure. Captopril produced a significant increase in peripheral plasma renin activity. When measured 12 hours after the administration of captopril the angiotensin I converting enzyme activity was found to be similar to that during the control period even though the blood pressure was at or near normal. These findings indicate that although captopril is an effective antihypertensive agent, its action does not depend only on inhibition of plasma angiotensin I converting enzyme activity.  相似文献   

6.
A low molecular weight angiotensin I converting enzyme (light angiotensin enzyme) was isolated from a homogenate of rat lung subjected to dialysis against sodium acetate at pH 4.8. This enzyme has a molecular weight of 84 000 on Sephadex G-200 and a molecular weight of 91 000 on SDS-poly-acrylamide gel as compared with a molecular weight of 139 000 for angiotensin I converting enzyme on SDS-polyacrylamide. Light angiotensin enzyme was activated by NaCl and inhibited by EDTA, angiotensin II, and bradykinin potentiating factor nonapeptide. Light angiotensin enzyme cross-reacted with antibody prepared against angiotensin I converting enzyme and stained with periodic acid-Schiff reagent as a glycoprotein. The evidence suggests that light angiotensin enzyme is a fragment of the higher molecular weight enzyme.  相似文献   

7.
1. Angiotensin I hydrolases, Mr 140,000 and Mr 70,000 were separated by gel filtration from Tris-HCl buffer extract of hepatic granulomas developed in mice with schistosomiasis. Two enzymes had different substrate specificity. 2. Mr 140,000 hydrolase activity was inhibited by captopril as reported for angiotensin converting enzyme (ACE), while that of Mr 70,000 hydrolase activity was inhibited by potato carboxypeptidase inhibitor. 3. An intermediary, des-Leu10-angiotensin I and then angiotensin II were formed from angiotensin I by Mr 70,000 hydrolase. 4. The findings suggest that Mr 70,000 enzyme is tissue carboxypeptidase A, and it generates angiotensin II in granulomatous inflammation as does ACE.  相似文献   

8.
Detergent-resistant phospholipase A, which is tightly bound to the outer membranes of Escherichia coli K-12 cells, was purified approximately 2000-fold to near homogeneity by solubilization with sodium dodecylsulfate and butan-1-ol, acid precipitation, acetone fractionation and column chromatographies on Sephadex G-100 in the presence of sodium dodecylsulfate and on DEAE-cellulose in the presence of Triton X-100. The final preparation showed a single band in the sodium dodecylsulfate gel system. The enzyme hydrolyzes both the 1-acyl and 2-acyl chains of phosphatidylethanolamine or phosphatidylcholine. It also attacks 1-acyl and 2-acylglycerylphosphorylethanolamine. Thus, this enzyme shows not only phospholipase A1 and lysophospholipase L1 activities but also phospholipase A2 and lysophospholipase L2 activities. The enzyme lost its activity completely on incubation at 80 degrees C for 5 min at either pH 6.4 or pH 8.0. It was stable in 0.5% sodium dodecylsulfate at below 40 degrees C. The enzyme was inactivated on incubation for 5 min at 90 degrees C in 1% sodium dodecylsulfate/1% 2-mercaptoethanol/4 M urea. The native and inactivated enzymes showed different protein bands with RF values corresponding to Mr 21 000 and Mr 28 000 respectively, in a sodium dodecylsulfate gel system. Triton X-100 seemed to protect the enzyme from inactivation. The purified enzyme was fully active on phosphatidylethanolamine in the presence of 0.0002% or 0.05% Triton X-100. The enzyme requires Ca2+. From its properties this enzyme seems to be identical with the enzyme purified from crude extracts of Escherichia coli B by Scandella and Kornberg. However, it differs from the latter in its positional specificity and susceptibility to sodium dodecylsulfate. Possible explanation of the difference of positional specificity of the two preparations is also described.  相似文献   

9.
A new purification procedure involving five column-chromatography steps is described for dihydro-orotase (L-5,6-dihydro-orotate amidohydrolase, EC 3.5.2.3) from Clostridium oroticum (A.T.C.C. 25750). The native purified enzyme is a dimer of Mr 102 000 and contains 4.0 +/- 0.3 g-atoms of zinc/mol of dimer. These observations agree with those reported previously [Taylor, Taylor, Balch & Gilchrist (1976) J. Bacteriol. 127, 863-873]. It is conclusively demonstrated that dihydro-orotase is a zinc metalloenzyme. Zinc is reversibly removed by treatment with chelators in phosphate buffer at pH 6.5, as demonstrated by atomic absorption spectrophotometry and decrease of enzyme activity. The specific activity is linearly dependent on zinc content. Addition of ZnSO4 to the chelator-treated enzyme results in regain of the normal complement of zinc and enzyme activity. Kinetic properties of the reconstituted enzyme are indistinguishable from those of the native enzyme. The amino acid composition of the homogeneous enzyme suggests that the zinc atoms occupy different environments.  相似文献   

10.
Phosphofructokinase (EC 2.7.1.11) from Trypanosoma (Trypanozoon) brucei brucei was purified to homogeneity by using a three-step procedure that may be performed within 1 day. Proteolysis, which removes a fragment of Mr approx. 2000, may occur during the purification, but this can be prevented by including antipain, an inhibitor of cysteine proteinases, in the buffers during the purification. The subunits of the enzyme appear to be identical in size, with an Mr of 49 000. The Mr of the native enzyme was estimated to be approx. 220 000, suggesting a tetrameric structure. Kinetic studies showed the activity to depend hyperbolically on the concentration of ATP but sigmoidally on the concentration of fructose 6-phosphate. Although cyclic AMP, AMP and ADP stimulated the enzyme activity at low concentrations of fructose 6-phosphate, the last two nucleotides were inhibitory at high concentrations of this substrate. Phosphoenolpyruvate behaved as an allosteric inhibitor of the phosphofructokinase. Citrate, fructose 1,6-bisphosphate, fructose 2,6-bisphosphate and Pi did not influence significantly the activity of the enzyme.  相似文献   

11.
Demetallized concanavalin A is degraded rapidly at pH 7.0 and 8.2 by alpha-chymotrypsin, thermolysin or trypsin, yielding peptide fragments devoid of ability to bind to Sephadex G-75. Addition of Ni2+ and of Ca2+ confers on concanavalin A high resistance towards proteolytic attack so that even after long periods of exposure to the enzymes, almost all of the saccharide-binding capacity is preserved. Ni2+ alone protects strongly at pH 7.0 but not at pH 8.2. Apparently, both the transition metal ion and Ca2+ play an important role in stabilizing the native conformation of the protein molecule. Digestion of demetallized concanavalin A with alpha-chymotrypsin or thermolysin readily yields small peptide fragments (Mr less than 10 000), while trypsin yields as the major product(s) larger peptide(s) (Mr approximately 20 000) of appreciable resistance to further fragmentation.  相似文献   

12.
The conformation of porcine serum ferric transferrin (Tf) and its stability against denaturation were studied by circular dichroism. Tf was estimated to have 19-24% alpha-helix and 50-55% beta-sheet based on the methods of Chang et al. (Chang, C.T., Wu, C.-S.C., & Yang, J.T., 1978, Anal. Biochem. 91, 13-31) and Provencher and Glöckner (Provencher, S.W. & Glöckner, J., 1981, Biochemistry 20, 33-37). Removal of the bound ferric ions (apo-Tf) did not alter the overall conformation, but there were subtle changes in local conformation based on its near-UV CD spectrum. The Tfs were stable between pH 3.5 and 11. Denaturation by guanidine hydrochloride (Gu-HCl) showed two transitions at 1.6 and 3.4 M denaturant. The process of denaturation by acid and base was reversible, whereas that by Gu-HCl was partially reversible. The irreversible thermal unfolding of Tfs began at temperatures above 60 degrees C and was not complete even at 80 degrees C. The bound irons (based on absorbance at 460 nm) were completely released at pH < 4 or in Gu-HCl solution above 1.7 M, when the protein began to unfold, but they remained intact in neutral solution even at 85 degrees C. The NH2- and COOH-terminal halves of the Tf molecule obtained by limited trypsin digestion had CD spectra similar to the spectrum of native Tf, and the COOH-terminal fragment had more stable secondary structure than the NH2-terminal fragment.  相似文献   

13.
Thymidilate synthetase (methylenetetrahydrofolate:dUMP C-methyltransferase) in crude extract from Diplococcus pneumoniae exhibits a partial but variable requirement for Mg-2+ depending upon the buffer. Optimum Mg-2+ concentration is between 0.014 and 0.02 M. The optimum pH for activity in a variety of buffers occurred as a broad peak between 7.0 and 7.7. In Tris/acetate buffer, but not in potassium phosphate buffer, the pH optimum was different in the presence and absence of Mg-2+. Methylation of uridylate, cytidylate and deoxycytidylate could not be demonstrated over a pH range of 5.0-8.0. The enzyme exhibited an apparent Km for deoxyuridylate of 3.08 - 10-5 M and an apparent Km for L-(+)(minus)-5,10-methylene tetrahydrofolate of 2.66 - 10-4 M. During molecular-sieve chromatography and sucrose density-gradient centrifugation, the enzyme was detectable only as a single catalytically active form of Mr 34 000-38 000. 2,4-Diamino quinazoline antifolates were better competitive inhibitors (Ki = 3-8 -10-6 M) of thymidylate synthetase than 2,4-diamino pteridines (Ki = 3- 10-5 M). 2-Amino-4-hydroxy-quinazolines were the best inhibitors (Ki = 1.3-2.9 - 10-6 M). All of the 2,4-diamino quinazolines and pteridines inhibited dihydrofolate reductase from D. pneumoniae in a nearly stoichiometric fashion (Ki = less than 10-10 M). The 2-amino-4-hydroxy-quinazolines were poor inhibitors of this enzyme (Ki = 10=5 M).  相似文献   

14.
Glutamate decarboxylase has been purified from potato tubers. The final preparation was homogeneous as judged from native and sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Gel filtration on Sephadex G-200 gave a relative molecular mass Mr, of 91 000 for the native enzyme. Sodium dodecyl sulfate polyacrylamide gel electrophoresis gave a subunit Mr of 43 000. Thus the enzyme appears to be a dimer of identical subunits. It has 2 mol pyridoxal 5'-phosphate/mol protein, which could not be removed by exhaustive dialysis or gel filtration on Sephadex G-25. The enzyme has an absorption maximum at 370 nm in sodium phosphate buffer, pH 5.8. Reduction of the enzyme with sodium borohydride abolished the absorption maximum at 370 nm with attendant loss of catalytic activity. The enzyme exhibited pH-dependent spectral changes. The enzyme was specific for L-glutamate and could not decarboxylate other amino acids tested. The enzyme was maximally active at pH 5.8 and a temperature of 37 degrees C. Isoelectric focussing gave a pI of 4.7 Km values for L-glutamate and pyridoxal 5'-phosphate were 5.6 mM and 2 microM respectively. Thiol-directed reagents and heavy metal ions inhibited the enzyme, indicating that an -SH group is required for activity. The nature of the functional groups at the active site of the enzyme was inferred from competitive inhibition studies. L-Glutamate promoted inactivation of the enzyme caused by decarboxylation-dependent transamination was demonstrated. The characteristics of potato enzyme were compared with enzyme from other sources.  相似文献   

15.
Limited proteolysis has been utilized to study the structural organization of rabbit skeletal muscle myosin light chain kinase. The enzyme (Mr approximately 89,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) consists of an amino-terminal, protease-susceptible region of unidentified function and a carboxyl-terminal, protease-resistant region of Mr approximately 40,000 containing the catalytic and calmodulin-binding domains. Partial digestion with trypsin produced an intermediate 56,000-dalton fragment and a stable 38,000-dalton fragment, both of which were catalytically active and calmodulin-dependent. Chymotryptic digestion yielded three catalytically active fragments of about 37,000, 36,000, and 35,000 daltons. The Mr = 37,000 fragment was calmodulin-dependent with an apparent affinity equivalent to that of the native enzyme (approximately 1 nM). The 36,000-dalton fragment was also calmodulin-dependent but had a approximately 200-fold lower apparent affinity. The Mr = 35,000 fragment was calmodulin-independent. These three chymotryptic fragments, had identical amino termini. Nineteen residues were missing from the carboxyl terminus of the calmodulin-independent chymotryptic fragment whereas only 8 or 9 carboxyl-terminal residues were missing from the calmodulin-dependent tryptic fragments. These results suggest that the 11-residue sequence (IAVSAANRFKK) in the carboxyl-terminal region of myosin light chain kinase contributes directly to the binding of calmodulin. This conclusion is in accord with data (Blumenthal, D. K., Takio, K., Edelman, A. M., Charbonneau, H., Titani, K., Walsh, K. A., and Krebs, E. G. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3187-3191) that the carboxyl-terminal, 27-residue CNBr peptide of the native enzyme shows Ca2+-dependent, high affinity binding to calmodulin and that similar calmodulin-binding activity, although detectable in unfractionated CNBr digests of calmodulin-dependent enzyme forms, is much reduced in a CNBr digest of the calmodulin-independent, Mr = 35,000 chymotryptic fragment.  相似文献   

16.
The purification of cathepsin D from pig uterus by two-step affinity chromatography on concanavalin A- and pepstatin-Sepharose was described previously [Afting & Becker (1981) Biochem. J. 197, 519-522]. In this paper, chemical and physical properties of the proteinase are presented. The purified enzyme showed three bands on SDS (sodium dodecyl sulphate)/polyacrylamide-gel electrophoresis, one main band corresponding to an Mr of 31 000 and two minor bands with Mr values of 43 000 and 15 000 respectively. Gel filtration on Bio-gel P-150 and sedimentation-diffusion equilibrium studies give an Mr for the main band of about 35 000. The pI of the enzyme was determined to be 7.2. Haemoglobin was the best substrate, with a Km value of 6.4 X 10(-6)M. It was hydrolysed with a pH optimum between 3.0 and 3.3 for a substrate concentration of 100 microM. The proteinase was stable over the pH range of 3.5-6.5. At pH 6 the enzyme showed stability up to a temperature of 50 degrees C; at pH 3 the activity was already decreased below 40 degrees C. Carbohydrate studies resulted in the staining of all three bands on an SDS/polyacrylamide gel by thymol/H2SO4. After treatment with endo-beta-N-acetylglucosaminidase H, all three bands were shifted to a region of lower Mr. Of various inhibitors tested, only pepstatin was strongly inhibiting, with a Ki of 2.1 X 10(-9)M.  相似文献   

17.
M Veron  Y Guillou  G N Cohen 《FEBS letters》1985,181(2):381-384
A proteolytic fragment (Mr approximately 25 000) carrying only the aspartokinase activity has been purified by chromatofocusing after limited proteolysis of aspartokinase I-homoserine dehydrogenase I from E.coli K12. The NH2-terminal sequence shows that it corresponds to the amino terminal peptide of the native enzyme. The results confirm a previous hypothesis about the organization of native aspartokinase I-homoserine dehydrogenase I.  相似文献   

18.
Citrate synthase was purified to homogeneity from a Gram-positive bacterium (Bacillus megaterium) for the first time. The Mr of the native enzyme was determined to be 84 000 (S.E.M. +/- 5000). Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel filtration in guanidinium chloride revealed a single protein species of Mr 40 300 (S.E.M. +/- 4400), indicating a dimeric enzyme. This dimeric structure was confirmed by cross-linking the native enzyme with dimethyl suberimidate and with glutaraldehyde, followed by electrophoretic analysis. The enzyme follows Michaelis-Menten kinetics with respect to both substrates, acetyl-CoA and oxaloacetate, and is sensitive to non-specific inhibition by a range of adenine nucleotides. In both molecular and catalytic properties the citrate synthase closely resembles the enzyme from eukaryotic sources and contrasts markedly with the larger, hexameric, enzyme from Gram-negative bacteria.  相似文献   

19.
Tryptophan dioxygenase, derived from Streptomyces parvulus, was purified to near homogeneity and shown to have a native Mr of 88,000. Kinetic parameters of the enzyme were determined and evidence suggesting that it is a hemoprotein was obtained. Tryptophan dioxygenase has a high specificity toward L-tryptophan with an apparent Km of 0.3 mM. L-3-Hydroxykynurenine was a competitive inhibitor with respect to L-tryptophan with a Ki of 0.16 mM. In vitro, the enzyme displayed little activity in the absence of a reducing agent; ascorbate, at 50 mM, was the preferred reductant providing almost a 50-fold increase in enzyme activity. The regulation of tryptophan dioxygenase synthesis and activity is described. The expression of the enzyme is correlated with the biosynthesis of actinomycin D in S. parvulus. These results support the hypothesis that tryptophan dioxygenase functions as the first enzyme in the sequence converting L-tryptophan to the chromophore of this antibiotic.  相似文献   

20.
The FAD-containing short-chain acyl-CoA dehydrogenase was purified from ox liver mitochondria by using (NH4)2SO4 fractionation, DEAE-Sephadex A-50 and chromatofocusing on PBE 94 resin. The enzyme is a tetramer, with a native Mr of approx. 162 000 and a subunit Mr of 41 000. Short-chain acyl-CoA dehydrogenases are usually isolated in a green form. The chromatofocusing step in the purification presented here partially resolved the enzyme into a green form and a yellow form. In the dye-mediated assay system, the enzyme exhibited optimal activity towards 50 microM-butyryl-CoA at pH 7.1. Kinetic parameters were also determined for a number of other straight-chain acyl-CoA substrates. The u.v.- and visible-absorption characteristics of the native forms of the enzyme are described, together with complexes formed by addition of butyryl-CoA, acetoacetyl-CoA and CoA persulphide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号