首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fibrate therapy results in elevation of plasma total homocysteine (tHcy), which is known to induce oxidative stress and endothelial dysfunction. We aimed to establish whether fibrate-induced elevation of tHcy has also similar consequences and whether they may be prevented by folate co-administration. Eighteen subjects with hypercholesterolemia were included in an open, prospective, cross-over study. We compared intra-individually the effect of fenofibrate on tHcy, oxidative stress and endothelial dysfunction surrogates, in monotherapy and when combined with 10 mg of folate. These effects were also compared with fluvastatin monotherapy. Fenofibrate in monotherapy significantly decreased LDL cholesterol, increased the tHcy by 39.5 %, while oxidized LDL (oxLDL), malondialdehyde (MDA), von Willebrand factors (vWf) and thrombomodulin (TMD) remained unchanged. When fibrate was co-administered with folate, the tHcy remained on the initial post-diet level, while both the total and oxLDL as well as MDA, vWf and TMD decreased. In contrast to fenofibrate monotherapy, fluvastatin (80 mg) had a similar effect as combined therapy with fenofibrate and folate, while tHcy remained uninfluenced. In conclusion, fenofibrate decreases the LDL cholesterol, but in contrast to fluvastatin, has no significant antioxidative and endothelium-protective potential, probably due to a concomitant increase of tHcy. These effects may be improved by co-administration of folate.  相似文献   

2.
Oxidative stress has been suggested as one of the physiopathologic conditions underlying the association of total plasma homocysteine (p-tHcy) with cardiovascular disease (CVD), but this hypothesis has not been validated in human epidemiological studies. We measured plasma and erythrocyte antioxidant enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD), along with serum lipid-soluble antioxidants alpha-tocopherol, beta-carotene, lycopene and retinol, in a sample of 123 healthy elderly subjects (54 men, 69 women). Plasma malondialdehyde (p-MDA) was determined as a marker of lipid peroxidation, and p-tHcy was quantified by HPLC. No significant differences were found for p-MDA, GPx or SOD activities or serum antioxidant concentrations, in subjects with elevated p-tHcy (≥15 μmol/l) as compared to those with lower plasma homocysteine. Hyperhomocysteinemia did not lead to increased risk of having the highest p-MDA values, in either sex. We found no evidence that p-tHcy was associated with lipid peroxidation in this elderly human sample. Our results do not support the view that hyperhomocysteinemia would induce an adaptive response of antioxidant systems, either. More epidemiologic and clinical research is needed to clarify whether homocysteine promotes atherosclerosis by means of an oxidative stress mechanism.  相似文献   

3.
We have previously demonstrated that acute hyperhomocysteinemia induces oxidative stress in rat brain. In the present study, we initially investigated the effect of chronic hyperhomocysteinemia on some parameters of oxidative damage, namely total radical-trapping antioxidant potential and activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), as well as on DNA damage in parietal cortex and blood of rats. We also evaluated the effect of folic acid on biochemical alterations elicited by hyperhomocysteinemia. Wistar rats received daily subcutaneous injection of Hcy (0.3-0.6 micromol/g body weight), and/or folic acid (0.011 micromol/g body weight) from their 6th to their 28th day of life. Twelve hours after the last injection the rats were sacrificed, parietal cortex and total blood was collected. Results showed that chronic homocysteine administration increased DNA damage, evaluated by comet assay, and disrupted antioxidant defenses (enzymatic and non-enzymatic) in parietal cortex and blood/plasma. Folic acid concurrent administration prevented homocysteine effects, possibly by its antioxidant and DNA stability maintenance properties. If confirmed in human beings, our results could propose that the supplementation of folic acid can be used as an adjuvant therapy in disorders that accumulate homocysteine.  相似文献   

4.
Oxidative stress in thalassemia is caused by secondary iron overload and stems from blood transfusion and increased iron uptake. In this study, we hypothesized that levels of o- and m-tyrosine, products of hydroxyl radical attack on phenylalanine, would be elevated in beta-thalassemia (intermediate). This study represents the first report in which specific markers of protein oxidative damage have been quantified in thalassemia. We used GC/MS to assay o- and m-tyrosine at the femtomole level using only a few microliters of plasma. Levels of both markers were significantly higher in patients with beta-thalassemia than in controls and were positively correlated with serum ferritin, malondialdehyde, superoxide dismutase, glutathione peroxidase and glutathione. We conclude that o- and m-tyrosine are useful biomarkers of oxidative damage to proteins in thalassemia (intermediate) and may also be useful markers in other iron overload diseases. Positive correlations between o- and m-tyrosine levels and malondialdehyde as well as antioxidants such as superoxide dismutase, glutathione peroxidase and glutathione, are indicative of the broad impact of oxidative stress on blood plasma in thalassemia, with up-regulation of antioxidant proteins probably reflecting a homeostatic response to these increased stress levels.  相似文献   

5.
Since moderate hyperhomocysteinemia is an independent risk factor for vascular disease by mean of its oxidant effect and glutathione plays a main role as intracellular redox-regulating agent, we have studied for the first time the total intracellular content of homocysteine in aging. Plasma homocysteine concentration, total intracellular and plasma glutathione, and other related thiol compounds such as cysteine and the glutathione catabolite cysteinglycine were also studied. Forty three healthy elderly subjects and twenty seven healthy young ones were studied. The total intracellular peripheral blood mononuclear cell content was higher for homocysteine, cysteine and cysteinglycine, whereas that of the total glutathione was greatly decreased in elderly people with respect to young ones. Elderly subjects showed significantly higher levels than young ones of total plasma homocysteine and cysteinglycine, but not cysteine, whereas total plasma glutathione levels were increased. In addition, elderly subjects showed significantly decreased plasma vitamin E levels and increased concentrations of serum lipid peroxides measured as TBARS (reaction product of malondialdehyde with thiobarbituric acid). The intracellular glutathione content presented significantly negative correlation with serum TBARS, and intracellular and plasma homocysteine levels. These findings show an increase of homocysteine synthesis associated with aging, which in turn can produce an augmented oxidant effect on endothelium, and an impaired intracellular antioxidant capacity leading to an enhanced lipid peroxidation and decreased total intracellular glutathione content.  相似文献   

6.
Oxidative stress is a hypothesis for the association of reactive oxygen species with cerebrovascular and neurodegenerative diseases. Thus, we examined whether oral betaine can act as a preventive agent in ethanol-induced oxidative stress on the cerebellum of rats. Thirty-two adult male Sprague–Dawley rats were divided into four equal groups (control, ethanol, betaine, and betaine plus ethanol) with different dietary regimens and were followed up for 1 month. Total homocysteine (tHcy) of plasma and cerebellum homogenate was determined by an Axis® homocysteine EIA kit, and antioxidant enzyme (glutathione peroxidase (GPx), SOD, and CAT) activities of cerebellum homogenate were measured chemically by a spectrophotometer. Lipid peroxidation of cerebellum was shown by the measurement of thiobarbituric reactive substances (TBARS) via a spectrophotometer. Ethanol-induced hyperhomocysteinemia was manifested by an increase in the concentrations of tHcy in the plasma and cerebellum homogenates of the ethanol group, while ethanol-induced oxidative stress was indicated via an increase in lipid peroxidation marker (TBARS) in cerebellum homogenates of ethanol-treated rats. In contrast, betaine prevented hyperhomocysteinemia and oxidative stress in the betaine plus ethanol group as well as the betaine group. The results of the present investigation indicated that the protective effect of betaine is probably related to its ability to strengthen the cerebellum membrane cells by enhancement of antioxidant enzyme activity principally GPx, while the methyl donor effect of betaine to reduce hyperhomocysteinemia has been explained previously and confirmed in the present study.  相似文献   

7.
We aimed to determine whether patients with subclinical hyperthyroidism (SH) are subject to oxidative stress. Twenty-two women and 8 men having endogenous subclinical hyperthyroidism for a duration of at least 6 months, and 21 women and 9 men healthy controls were included in this study. We measured the level of plasma malondialdehyde, as one of the lipid peroxidation markers, and the activity of erythrocyte superoxide dismutase, which is an antioxidant enzyme. The activity of erythrocyte superoxide dismutase and plasma malondialdehyde levels were found to be significantly higher in subjects with subclinical hyperthyroidism than the control group (P < .01). The results of this study suggest that oxidative stress and antioxidative response could be increased in patients having subclinical hyperthyroidism.  相似文献   

8.
Homocystinuria is a neurometabolic disease caused by severe deficiency of cystathionine beta-synthase activity, resulting in severe hyperhomocysteinemia. Affected patients present several symptoms including a variable degree of motor dysfunction, being that the pathomechanism is not fully understood. In the present study we investigated the effect of chronic hyperhomocysteinemia on some parameters of oxidative stress, namely 2′7′dichlorofluorescein (DCFH) oxidation, levels of thiobarbituric acid-reactive substances (TBARS), antioxidant enzyme activities (SOD, CAT and GPx), reduced glutathione (GSH), total sulfhydryl and carbonyl content, as well as nitrite levels in soleus skeletal muscle of young rats subjected to model of severe hyperhomocysteinemia. We also evaluated the effect of creatine on biochemical alterations elicited by hyperhomocysteinemia. Wistar rats received daily subcutaneous injection of homocysteine (0.3–0.6 μmol/g body weight), and/or creatine (50 mg/kg body weight) from their 6th to the 28th days age. Controls and treated rats were decapitated at 12 h after the last injection. Chronic homocysteine administration increased 2′7′dichlorofluorescein (DCFH) oxidation, an index of production of reactive species and TBARS levels, an index of lipoperoxidation. Antioxidant enzyme activities, such as SOD and CAT were also increased, but GPx activity was not altered. The content of GSH, sulfhydril and carbonyl were decreased, as well as levels of nitrite. Creatine concurrent administration prevented some homocysteine effects probably by its antioxidant properties. Our data suggest that the oxidative insult elicited by chronic hyperhomocystenemia may provide insights into the mechanisms by which homocysteine exerts its effects on skeletal muscle function. Creatine prevents some alterations caused by homocysteine.  相似文献   

9.
Antioxidant and antifibrotic properties of colchicine were investigated in the carbon tetrachloride (CCl(4)) rat model. (1) The protective effect of colchicine pretreatment on CCl(4) induced oxidant stress was examined in rats subsequently receiving a single lethal dose of CCl(4). Urinary 8-isoprostane, kidney and liver malondialdehyde and kidney glutathione levels increased following CCl(4) treatment, but only the rise in kidney malondialdehyde was significantly inhibited by colchicine pretreatment. Serum total antioxidant levels were significantly higher in the colchicine pretreatment group. (2) The long term effects of colchicine treatment on CCl(4) induced liver damage were investigated using liver histology and biochemical markers (hydroxyproline and type III procollagen peptide). Co-administration of colchicine with sub-lethal doses of CCl(4) over 10 weeks did not prevent progression to cirrhosis. However, rats made cirrhotic with repeated CCl(4) challenge and subsequently treated with colchicine for 12 months, all showed histological regression of cirrhosis. (3) The antioxidant effect of colchicine in vitro was evident only at very high concentrations compared to other plasma antioxidants. In summary, colchicine has only weak antioxidant properties, but does afford some protection against oxidative stress; more importantly, long term treatment with this drug may be of value in producing regression of established cirrhosis.  相似文献   

10.
In view of growing body of evidence favouring the association of aberrations in one-carbon metabolism and oxidative stress in the aetiology of coronary artery disease (CAD), we investigated the risk associated with polymorphisms regulating the folate uptake and transport such as the glutamate carboxypeptidase II (GCPII) C1561T, reduced folate carrier 1 (RFC1) G80A and cytosolic serine hydroxymethyltransferase (cSHMT) C1420T. We further evaluated the impact of seven putatively functional polymorphisms of this pathway on oxidative stress markers. Genotyping was performed on 288 CAD cases and 266 healthy controls along with the dietary folate assessment. GCPII C1561T polymorphism was found to be an independent risk factor (OR 2.71, 95% CI 1.47–4.98) for CAD, whereas cSHMT C1420T conferred protection (OR 0.51, 95% CI 0.37–0.70). Oxidative stress markers like the plasma levels of malondialdehyde, protein carbonyls and 8-oxo-deoxyguanosine were significantly increased and total glutathione was significantly decreased in CAD cases. Elevated oxidative stress was observed in subjects carrying GCPII 1561T and MTRR 66A-variant alleles and low oxidative stress was observed in the subjects carrying cSHMT 1420T and TYMS 5′-UTR 2R allele. GCPII C1561T, MTHFR C677T and MTRR A66G polymorphisms were observed to influence the homocysteine levels (P < 0.05). SHMT and TYMS variants were found to decrease oxidative stress by increasing the folate pool (r = 0.38, P = 0.003) and also by increasing the antioxidant status (r = 0.28, P = 0.03). Influence of dietary folate status was not observed. Overall, this study revealed elevated oxidative stress that was associated with the aberrations in one-carbon metabolism which could possibly influence the CAD risk.  相似文献   

11.
The epsilon 4 allele of the apolipoprotein E gene (ApoE) is associated with Alzheimer's disease (AD). The extent of oxidative damage in AD brains correlates with the presence of the E4 allele of ApoE, suggesting an association between the ApoE4 genotype and oxygen-mediated damage in AD. We tested this hypothesis by subjecting normal and transgenic mice lacking ApoE to oxidative stress by folate deprivation and/or excess dietary iron. Brain tissue of ApoE-deficient mice displayed increased glutathione and antioxidant levels, consistent with attempts to compensate for the lack of ApoE. Folate deprivation and iron challenge individually increased glutathione and antioxidant levels in both normal and ApoE-deficient brain tissue. However, combined treatment with folate deprivation and dietary iron depleted antioxidant capacity and induced oxidative damage in ApoE-deficient brains despite increased glutathione, indicating an inability to compensate for the lack of ApoE under these conditions. These data support the hypothesis that ApoE deficiency is associated with oxidative damage, and demonstrate a combinatorial influence of genetic predisposition, dietary deficiency, and oxidative stress on oxidative damage relevant to AD.  相似文献   

12.
The present study examined the effects of derivatives of galactosides and glucosides in a polysaccharide extract from Euphorbia kansui (Euphorbiaceae) on exercise-induced oxidative stress in mice. Exhaustive swimming exercise significantly increases the degree of lipid peroxidation in terms of malondialdehyde content and reduces the antioxidant activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Our findings revealed that chronic oral treatment with the extract elevates enzymatic activities of SOD and GPx accompanied by a corresponding decrease in malondialdehyde. The antioxidative activities of these compounds against exercise-induced oxidative stress are correlated with various activities such as reducing the production of superoxide and hydroxyl radicals, inhibiting lipid peroxidation, enhancing antioxidative defenses, and increasing the production of SOD and GPx activity and expression in different tissues. These compounds may be involved in glycogen metabolism to meet the requirement of working skeletal muscles and act as antioxidants by terminating the chain reaction of lipid peroxidation to maintain the morphological stability of mitochondria in spinal motor neurons. These observations suggest that E. kansui has antioxidative and antifatigue properties and can be given as prophylactic and (or) therapeutic supplements for increasing antioxidant enzyme activities and preventing lipid peroxidation during strenuous exercise.  相似文献   

13.
Thalassemia is a group of genetic disorders resulting from different mutations in the globin gene complex and leading to an imbalance in globin synthesis. Unmatched globin chains are less stable and susceptible to oxidation. Patients with beta-thalassemia/HbE are prone to increased oxidative stress as indicated by increased lipid peroxidation product, malondialdehyde (MDA), partly because of the presence of iron in the form of heme and hemichromes released from excess globin chains and excess iron deposition in various tissues. The level of antioxidant such as glutathione is markedly decreased while activities of antioxidant enzymes including superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) are increased. We have recently found that the levels of coenzyme Q(10) (CoQ(10)) are also very low in thalassemia. We therefore evaluated the oxidative stress and the antioxidants in these patients before and after supplementation with 100 mg CoQ(10) daily for 6 months. The results showed that the plasma level of CoQ(10) significantly increased and the oxidative stress decreased as the level of MDA declined. The administration of CoQ(10) led to significant improvement of biochemical parameters of antioxidant enzymes. The antioxidant supplementation will be beneficial for thalassemia patients as adjunct therapy to increase their quality of life.  相似文献   

14.
In recent years there have been remarkable developments in the prevention of diseases, especially with regards to the role of free radicals and antioxidants. Ethanol-induced oxidative stress appears to be one mechanism by which ethanol causes liver injury. The protective effect of aqueous plant extract of Aframomum melegueta on ethanol-induced toxicity was investigated in male Wistar rats. The rats were treated with 45 % ethanol (4.8 g/kg b.w.t.) for 16 days to induce alcoholic diseases in the liver. The activities of alanine aminotransferase, aspartate aminotransferase and triglyceride were monitored and the histological changes in liver examined in order to evaluate the protective effects of the plant extract. Hepatic malondialdehyde and reduced glutathione, as well as superoxide dismutase and glutathione-S-transferase activities were determined for the antioxidant status. Chronic ethanol administration resulted in a statistically significant elevation of serum alanine aminotransferases and triglyceride levels, as well as a decrease in reduced glutathione and superoxide dismutase which was dramatically attenuated by the co-administration of the plant extract. Histological changes were related to these indices. Co-administration of the plant extract suppressed the elevation of lipid peroxidation, restored the reduced glutathion, and enhanced the superoxide dismutase activity. These results highlight the ability of Aframomum melegueta to ameliorate oxidative damage in the liver and the observed effects are associated with its antioxidant activities.  相似文献   

15.
Lipid-lowering therapy has been reported to reduce several oxidative stress (OS) markers in hypercholesterolemia. Since OS is frequently associated with renal dysfunction, we aimed to investigate the effect of hypolipidemic drugs on oxidative stress and plasma taurine (Tau), a sulfur amino acid with a marked antioxidant effect, in chronic kidney disease (CKD). We enrolled 30 CKD randomized to receive three different hypolipidemic regimens for 12?months: simvastatin alone (40?mg/day) or ezetimibe/simvastatin combined therapy (10/20 or 10/40?mg/day). Low molecular weight (LMW) thiols including homocysteine, cysteine, cysteinylglycine, glutathione, and glutamylcysteine in their reduced and total form and oxidative stress indices as malondialdehyde (MDA) and allantoin/uric acid (All/UA) ratio were also evaluated. Tau concentration significantly increased throughout the therapy. The rise of taurine was more striking for the group with the concomitant administration of ezetimibe/simvastatin 10/40?mg/day (+31.6% after 1?year of therapy). A significant decrease of both MDA and All/UA ratio was observed during therapy for all patients (-19% for both MDA and All/UA ratio) with a more pronounced effect in patients treated with ezetimibe/simvastatin 10/40?mg/day (-26% for MDA and -28% for All/UA ratio). Besides, an increase of thiols reduced forms was found (+20.7% of LMW thiols redox status) with a greater effect in subjects treated with ezetimibe/simvastatin 10/40?mg/day (+24.7%). Moreover, we demonstrated that oxidative stress improvement during therapy was correlated with increased taurine levels. We hypothesize that taurine may be responsible for the oxidative stress improvement observed during lipid-lowering treatment through the reduction of superoxide anion production at the respiratory chain activity level.  相似文献   

16.
《Free radical research》2013,47(12):1505-1513
Abstract

Oxidative stress is associated with decreased female fertility and adversely affects prenatal development. Mammalian cells have developed a network of enzymatic and non-enzymatic antioxidant defence systems to prevent oxidative stress. Little attention has been paid to the antioxidative pathways in placentas of normal and disturbed pregnancies, leaving a gap in our knowledge about the role of antioxidants in the control of foeto-placental development. The challenges in studying early human pregnancy can partly be overcome by designing animal models of abnormal pregnancy. We aimed to determine whether the antioxidant status of placentas from the CBA/J × DBA/2 abortion-prone pregnant mice differed from that of normal pregnant mice. The foetal/placental weight ratio was lower in abortion-prone matings compared with that in non-abortion-prone matings. The increased placental malondialdehyde (MDA) content, the end products of lipid peroxidation, with concomitants alterations in placental antioxidants, namely copper-zinc containing superoxide dismutase (SOD1), manganese containing (SOD2), glutathione peroxidases (GPX), glutathione reductase (GR) and catalase (CAT) activities may be involved in placental and foetal growth restriction. We show that placental oxidative stress is linked with poor prenatal development and pregnancy losses in CBA/J × DBA/2 mice matings. This animal model may be useful in the evaluation of nutritional antioxidant therapies for oxidative stress and associated prenatal developmental disorders.  相似文献   

17.
Oxidative stress contributes to cardiovascular diseases. We aimed to study the effects of palm tocotrienol-rich fraction (TRF) on plasma homocysteine and cardiac oxidative stress in rats fed with a high-methionine diet. Forty-two male Wistar rats were divided into six groups. The first group was the control. Groups 2–6 were fed 1 % methionine diet for 10 weeks. From week 6 onward, folate (8 mg/kg diet) or palm TRF (30, 60 and 150 mg/kg diet) was added into the diet of groups 3, 4, 5 and 6. The rats were then killed. Palm TRF at 150 mg/kg and folate supplementation prevented the increase in plasma total homocysteine (4.14?±?0.33 and 4.30?±?0.26 vs 5.49?±?0.25 mmol/L, p?<?0.05) induced by a high-methionine diet. The increased heart thiobarbituric acid reactive substance in rats fed with high-methionine diet was also prevented by the supplementations of palm TRF (60 and 150 mg/kg) and folate. The high-methionine group had a lower glutathione peroxidase activity (49?±?3 vs 69?±?4 pmol/mg protein/min) than the control group. This reduction was reversed by palm TRF at 60 and 150 mg/kg diet (p?<?0.05), but not by folate. Catalase and superoxide dismutase activities were unaffected by both methionine and vitamin supplementations. In conclusion, palm TRF was comparable to folate in reducing high-methionine diet-induced hyperhomocysteinemia and oxidative stress in the rats’ hearts. However, palm TRF was more effective than folate in preserving the heart glutathione peroxidase enzyme activity.  相似文献   

18.
Elevated plasma homocysteine is considered to be a risk factor for cardiovascular disease. The mechanisms for this effect are not fully understood but there is some evidence for a role for reactive oxygen species (ROS). This study was conducted to explore the effects of elevated plasma total homocysteine (tHcy) concentration on activity of antioxidant enzymes in the circulation. The study group consisted of 10 patients with inherited defects of homocysteine metabolism, from whom 41 blood samples were collected over a period of six months. Blood samples were also collected from 13 of their obligate heterozygous parents. For data analysis samples were classified as those with plasma tHcy < 20 microM or > 20 microM. The activity of erythrocyte superoxide dismutase (SOD) and plasma glutathione peroxidase (GSHPx) was elevated in samples with plasma tHcy > 20 microM. Moreover, a significant correlation was demonstrated between plasma GSHPx activity, plasma glutathione peroxidase protein and plasma tHcy. III vitro studies confirmed that this observation was not due to a simple chemical enhancement of enzyme activity. Homocysteine protected GSHPx from loss of activity following incubation at 37 degrees C. A similar effect was seen with another thiol-containing amino acid, cysteine. Results suggest that elevated plasma tHcy represents an oxidative stress, resulting in an adaptive increase in activity of antioxidant enzymes in the circulation.  相似文献   

19.
Erythrocyte, plasma, and serum antioxidant activities were studied in patients with newly diagnosed and untreated toxic multinodular hyperthyroid goiter and compared to healthy control subjects. Erythrocyte antioxidant enzyme activities, glutathione, malondialdehyde, and ceruloplasmin levels were significantly increased, whereas serum vitamin E, plasma vitamin C, and selenium levels were decreased in hyperthyroid patients compared to control subjects. The findings show that untreated toxic multinodular goiter causes profound alterations in components of the antioxidant system in erythrocytes indicative of increased oxidative stress. Taken together, these data suggest that hyperthyroid patients may benefit from dietary supplements of antioxidants.  相似文献   

20.
The aim of this study was to investigate the effects of propolis on oxytetracycline (OTC)-induced oxidative stress and immunosuppression in fish. OTC (100 mg per kg?1 body weight) was orally administered to fish for 14 days. A significant elevation in the level of malondialdehyde, as an index of lipid peroxidation, and reductions in antioxidant enzyme activities (superoxide dismutase, catalase, and glutathione peroxidase) and low molecular weight antioxidant (reduced glutathione) levels were observed in the blood, liver, kidney, spleen, and heart tissues of OTC-treated fish. OTC also had a suppressive effect on specific and non-specific immune system parameters, such as leucocyte counts, oxidative radical production (nitrobluetetrazolium activity), total plasma protein and immunoglobulin levels, and phagocytic activity. Pre-treatment, post-treatment, and simultaneous treatment with propolis (50 mg per kg?1 body weight, orally) attenuated the OTC-induced oxidative stress by significantly decreasing the levels of malondialdehyde in tissues. In addition, propolis significantly increased the level of reduced glutathione and the catalase, glutathione peroxidase, and superoxide dismutase activities. Upon the administration of propolis, the suppressed immune system parameters were significantly increased in fish treated with OTC. The present results suggest that pre-treatment, post-treatment, and simultaneous administration of propolis might alleviate OTC-induced oxidative stress and immunosuppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号