首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
SR proteins are required for constitutive pre-mRNA splicing and also regulate alternative splice site selection in a concentration-dependent manner. They have a modular structure that consists of one or two RNA-recognition motifs (RRMs) and a COOH-terminal arginine/serine-rich domain (RS domain). We have analyzed the role of the individual domains of these closely related proteins in cellular distribution, subnuclear localization, and regulation of alternative splicing in vivo. We observed striking differences in the localization signals present in several human SR proteins. In contrast to earlier studies of RS domains in the Drosophila suppressor-of-white-apricot (SWAP) and Transformer (Tra) alternative splicing factors, we found that the RS domain of SF2/ASF is neither necessary nor sufficient for targeting to the nuclear speckles. Although this RS domain is a nuclear localization signal, subnuclear targeting to the speckles requires at least two of the three constituent domains of SF2/ASF, which contain additive and redundant signals. In contrast, in two SR proteins that have a single RRM (SC35 and SRp20), the RS domain is both necessary and sufficient as a targeting signal to the speckles. We also show that RRM2 of SF2/ASF plays an important role in alternative splicing specificity: deletion of this domain results in a protein that, although active in alternative splicing, has altered specificity in 5′ splice site selection. These results demonstrate the modularity of SR proteins and the importance of individual domains for their cellular localization and alternative splicing function in vivo.  相似文献   

4.
5.
6.
The yeast splicing factor Prp40 (pre-mRNA processing protein 40) consists of a pair of WW domains followed by several FF domains. The region comprising the FF domains has been shown to associate with the 5' end of U1 small nuclear RNA and to interact directly with two proteins, the Clf1 (Crooked neck-like factor 1) and the phosphorylated repeats of the C-terminal domain of RNA polymerase II (CTD-RNAPII). In this work we reported the solution structure of the first FF domain of Prp40 and the identification of a novel ligand-binding site in FF domains. By using chemical shift assays, we found a binding site for the N-terminal crooked neck tetratricopeptide repeat of Clf1 that is distinct and structurally separate from the previously identified CTD-RNAPII binding pocket of the FBP11 (formin-binding protein 11) FF1 domain. No interaction, however, was observed between the Prp40 FF1 domain and three different peptides derived from the CTD-RNAPII protein. Indeed, the equivalent CTD-RNAPII-binding site in the Prp40 FF1 domain is predominantly negatively charged and thus unfavorable for an interaction with phosphorylated peptide sequences. Sequence alignments and phylogenetic tree reconstructions using the FF domains of three functionally related proteins, Prp40, FBP11, and CA150, revealed that Prp40 and FBP11 are not orthologous proteins and supported the different ligand specificities shown by their respective FF1 domains. Our results also revealed that not all FF domains in Prp40 are functionally equivalent. We proposed that at least two different interaction surfaces exist in FF domains that have evolved to recognize distinct binding motifs.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号