首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SR proteins are essential splicing factors involved in the use of both constitutive and alternative exons. We previously showed that the SR proteins SRp20 and ASF/SF2 have antagonistic activities on SRp20 pre-mRNA splicing. SRp20 activates exon 4 recognition in its pre-mRNA, whereas ASF/SF2 inhibits this recognition. In experiments aimed at testing the specificity of SRp20 and ASF/SF2 for exon 4 splicing regulation, we show here that this specificity lies in the RNA binding domains of SRp20 and ASF/SF2 and not in the RS domains. Surprisingly, a deletion of 14 amino acids at the end of ASF/SF2-RBD2 converts ASF/SF2 from an inhibitor to an activator of exon 4 splicing. We found that ASF3 also inhibits exon 4 recognition, thus acting similarly to ASF/SF2, while SC35 activates a cryptic 5' splice site downstream of exon 3 and, in doing so, represses exon 4 use. In contrast, Tra2 and the SR proteins 9G8 and SRp40 do not appear to affect exon 4 splicing.  相似文献   

2.
The tau gene encodes a microtubule-associated protein that is critical for neuronal survival and function. Splicing defects in the human tau gene lead to frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), an autosomal dominant neurodegenerative disorder. Genetic mutations associated with FTDP-17 often affect tau exon 10 alternative splicing. To investigate mechanisms regulating tau exon 10 alternative splicing, we have developed a green fluorescent protein reporter for tau exon 10 skipping and an expression cloning strategy to identify splicing regulators. A role for SRp54 (also named SFRS11) as a tau exon 10 splicing repressor has been uncovered using this strategy. The overexpression of SRp54 suppresses tau exon 10 inclusion. RNA interference-mediated knock-down of SRp54 increases exon 10 inclusion. SRp54 interacts with a purine-rich element in exon 10 and antagonizes Tra2beta, an SR-domain-containing protein that enhances exon 10 inclusion. Deletion of this exonic element eliminates the activity of SRp54 in suppressing exon 10 inclusion. Our data support a role of SRp54 in regulating tau exon 10 splicing. These experiments also establish a generally useful approach for identifying trans-acting regulators of alternative splicing by expression cloning.  相似文献   

3.
The activity of the SR protein family of splicing factors in constitutive or alternative splicing requires direct interactions with the pre-mRNA substrate. Thus it is important to define the high affinity targets of the various SR species and to evaluate their ability to discriminate between defined RNA targets. We have analyzed the binding specificity of the 30-kDa SR protein 9G8, which contains a zinc knuckle in addition to the RNA binding domain (RBD). Using a SELEX approach, we demonstrate that 9G8 selects RNA sequences formed by GAC triplets, whereas a mutated zinc knuckle variant selects different RNA sequences, centered around a (A/U)C(A/U)(A/U)C motif, indicating that the zinc knuckle is involved in the RNA recognition specificity of 9G8. In contrast, SC35 selects sequences composed of pyrimidine or purine-rich motifs. Analyses of RNA-protein interactions with purified recombinant 30-kDa SR proteins or in nuclear extracts, by means of UV crosslinking and immunoprecipitation, demonstrate that 9G8, SC35, and ASF/SF2 recognize their specific RNA targets with high specificity. Interestingly, the RNA sequences selected by the mutated zinc knuckle 9G8 variant are efficiently recognized by SRp20, in agreement with the fact that the RBD of 9G8 and SRp20 are similar. Finally, we demonstrate the ability of 9G8 and of its zinc knuckle variant, or SRp20, to act as efficient splicing transactivators through their specific RNA targets. Our results provide the first evidence for cooperation between an RBD and a zinc knuckle in defining the specificity of an RNA binding domain.  相似文献   

4.
5.
6.
7.
8.
SR proteins and related factors play widespread roles in alternative pre-mRNA splicing and are known to promote splice site recognition through their Arg-Ser-rich effector domains. However, binding of SR regulators to some targets results in repression of splice sites through a distinct mechanism. Here, we investigate how activated and repressed targets of the Drosophila SR regulator Transformer2 elicit its differing effects on splicing. We find that, like activation, repression affects early steps in the recognition of splice sites and spliceosome assembly. Repositioning of regulatory elements reveals that Tra2 complexes that normally repress splicing from intronic positions activate splicing when located in an exon. Protein tethering experiments demonstrate that this position dependence is an intrinsic property of Tra2 and further show that repression and activation are mediated by separate effector domains of this protein. When other Drosophila SR factors (SF2 and Rbp1) that activate splicing from exonic positions were tethered intronically they failed to either activate or repress splicing. Interestingly, both activities of Tra2 favor the exonic identity of the RNA sequences that encompass its binding sites. This suggests a model in which these two opposite functions act in concert to define both the position and extent of alternatively spliced exons.  相似文献   

9.
The alternative exon EIIIA of the fibronectin gene is included in mRNAs produced in undifferentiated mesenchymal cells but excluded from differentiated chondrocytes. As members of the SR protein family of splicing factors have been demonstrated to be involved in the alternative splicing of other mRNAs, the role of SR proteins in chondrogenesis-associated EIIIA splicing was investigated. SR proteins interacted with chick exon EIIIA sequences that are required for exon inclusion in a gel mobility shift assay. Addition of SR proteins to in vitro splicing reactions increased the rate and extent of exon EIIIA inclusion. Co-transfection studies employing cDNAs encoding individual SR proteins revealed that SRp20 decreased mRNA accumulation in HeLa cells, which make A+ mRNA, apparently by interfering with pre-mRNA splicing. Co-transfection studies also demonstrated that SRp40 increased exon EIIIA inclusion in chondrocytes, but not in HeLa cells, suggesting the importance of cellular context for SR protein activity. Immunoblot analysis did not reveal a relative depletion of SRp40 in chondrocytic cells. Possible mechanisms for regulation of EIIIA splicing in particular, and chondrogenesis associated splicing in general, are discussed.  相似文献   

10.
Sexual differentiation in Drosophila is regulated through alternative splicing of doublesex. Female-specific splicing is activated through the activity of splicing enhancer complexes assembled on multiple repeat elements. Each of these repeats serves as a binding platform for the cooperative assembly of a heterotrimeric complex consisting of the SR proteins Tra, Tra2 and 9G8. Using quantitative kinetic analyses, we demonstrate that each component of the enhancer complex is capable of recruiting the spliceosome. Surprisingly, Tra, Tra2 and 9G8 are much stronger splicing activators than other SR protein family members and their activation potential is significantly higher than expected from their serine/arginine content. 9G8 activates splicing not only through its RS domains but also through its RNA-binding domain. The RS domains of Tra and Tra2 are required but not sufficient for efficient complex assembly. Thus, the regulated assembly of the dsx enhancer complexes leads to the generation of an extended activation domain to guarantee the ‘all or none’ splicing switch that is required during Drosophila sexual differentiation.  相似文献   

11.
12.
13.
XE7: a novel splicing factor that interacts with ASF/SF2 and ZNF265   总被引:1,自引:0,他引:1       下载免费PDF全文
Pre-mRNA splicing is performed by the spliceosome. SR proteins in this macromolecular complex are essential for both constitutive and alternative splicing. By using the SR-related protein ZNF265 as bait in a yeast two-hybrid screen, we pulled out the uncharacterized human protein XE7, which is encoded by a pseudoautosomal gene. XE7 had been identified in a large-scale proteomic analysis of the human spliceosome. It consists of two different isoforms produced by alternative splicing. The arginine/serine (RS)-rich region in the larger of these suggests a role in mRNA processing. Herein we show for the first time that XE7 is an alternative splicing regulator. XE7 interacts with ZNF265, as well as with the essential SR protein ASF/SF2. The RS-rich region of XE7 dictates both interactions. We show that XE7 localizes in the nucleus of human cells, where it colocalizes with both ZNF265 and ASF/SF2, as well as with other SR proteins, in speckles. We also demonstrate that XE7 influences alternative splice site selection of pre-mRNAs from CD44, Tra2-β1 and SRp20 minigenes. We have thus shown that the spliceosomal component XE7 resembles an SR-related splicing protein, and can influence alternative splicing.  相似文献   

14.
SR proteins have a characteristic C-terminal Ser/Arg-rich repeat (RS domain) of variable length and constitute a family of highly conserved nuclear phosphoproteins that can function as both essential and alternative pre-mRNA splicing factors. We have cloned a cDNA encoding a novel human SR protein designated SRp30c, which has an unusually short RS domain. We also cloned cDNAs encoding the human homologues of Drosophila SRp55/B52 and rat SRp40/HRS. Recombinant proteins expressed from these cDNAs are active in constitutive splicing, as shown by their ability to complement a HeLa cell S100 extract deficient in SR proteins. Additional cDNA clones reflect extensive alternative splicing of SRp40 and SRp55 pre-mRNAs. The predicted protein isoforms lack the C-terminal RS domain and might be involved in feedback regulatory loops. The ability of human SRp30c, SRp40 and SRp55 to modulate alternative splicing in vivo was compared with that of other SR proteins using a transient contransfection assay. The overexpression of individual SR proteins in HeLa cells affected the choice of alternative 5' splice sites of adenovirus E1A and/or human beta-thalassemia reporters. The resulting splicing patterns were characteristic for each SR protein. Consistent with the postulated importance of SR proteins in alternative splicing in vivo, we demonstrate complex changes in the levels of mRNAs encoding the above SR proteins upon T cell activation, concomitant with changes in the expression of alternatively spliced isoforms of CD44 and CD45.  相似文献   

15.
The leucocyte common antigen (LCA or CD45) consists of various isoforms generated by alternative splicing of variable exons 4, 5 and 6 (or A, B and C). To follow splicing behaviour in different cell types we developed a human CD45 mini-gene and analysed its expression in transfected cell lines and transgenic mouse tissues. In Cos-1, HeLa and 3T3 cells we found distinct expression patterns which could only be modulated slightly by protein synthesis inhibitors but not by variation in culture conditions like pH, serum concentration and cell density, or by stimulation with phorbol ester (TPA). In all non-lymphoid transgenic tissues the default splicing pattern (CD45R0) was found, while the expression profile in lymphoid cells, where all eight isoforms are present, mimics that of the endogenous mouse LCA gene products. Next, to examine the factors involved in alternative exon use we analysed the expression pattern of members of the family of SR proteins, well known splicing regulators with arginine/serine-rich (R/S) domains. Cell lines expressed variable levels of SRp75, SRp30 and SRp20 and constant amounts of SRp40. Mouse tissues expressed large amounts of SRp75, SRp55 and SRp40, additional expression of SRp30s and SRp20 was restricted to lymphoid tissues. Therefore, SRp30 and SRp20 may contribute to forming the appropriate cellular conditions for alternative use of CD45 exons 4-6 in the haematopoietic compartment.  相似文献   

16.
SRrp86 is an 86-kDa member of the SR protein superfamily that is unique in that it can alter splice site selection by regulating the activity of other SR proteins. To study the function of SRrp86, inducible cell lines were created in which the concentration of SRrp86 could be varied and its effects on alternative splicing determined. Here, we show that SRrp86 can activate SRp20 and repress SC35 in a dose-dependent manner both in vitro and in vivo. These effects are apparently mediated through direct protein-protein interaction, as pull-down assays showed that SRrp86 interacts with both SRp20 and SC35. Consistent with the hypothesis that relatively modest changes in the concentration or activity of one or more splicing factors can combinatorially regulate overall splicing, protein expression patterns of SRrp86, SRp20, and SC35 reveal that each tissue maintains a unique ratio of these factors. Regulation of SR protein activity, coupled with regulated protein expression, suggest that SRrp86 may play a crucial role in determining tissue specific patterns of alternative splicing.  相似文献   

17.
We are using the tissue-specific splicing of myosin phosphatase targeting subunit (MYPT1) as a model to investigate smooth muscle phenotypic diversity. We previously identified a U-rich intronic enhancer flanking the 5' splice site (IE1), and a bipartite exonic enhancer/suppressor, that regulate splicing of the MYPT1 central alternative exon. Here we show that T-cell inhibitor of apoptosis (TIA-1) and T-cell inhibitor of apoptosis-related (TIAR) proteins bind to the IE1. Co-transfection of TIA expression vectors with a MYPT1 mini-gene construct increase splicing of the central alternative exon. TIA proteins do not enhance splicing when the palindromic exonic splicing enhancer (ESE) is mutated, indicating that TIAs are necessary but not sufficient for splicing. The ESE specifically binds SRp55 and SRp20 proteins, supporting a model in which both SR and TIA proteins binding to their cis-elements are required for the recruitment of the splicing complex to a weak 5' splice site. Inactivation of TIA proteins in the DT40 cell line (TIA-1(-/-)TIAR(+/-)) reduced the splicing of the central alternative exon of the endogenous MYPT1 as well as stably transfected MYPT1 minigene constructs. Splicing of the MYPT1 3' alternative exon and the MLC(17) alternative exon were unaffected, suggesting that TIA proteins regulate a subset of smooth muscle/nonmuscle alternative splicing reactions. Finally, reduced RNA binding and reduced expression of the TIA and SR proteins in phasic (gizzard) smooth muscle around hatching coincided with the switch from exon inclusion to exon skipping, suggesting that loss of TIA and SR enhancer activity may play a role in the developmental switch in MYPT1 splicing.  相似文献   

18.
The cardiac troponin T pre-mRNA contains an exonic splicing enhancer that is required for inclusion of the alternative exon 5. Here we show that enhancer activity is exquisitely sensitive to changes in the sequence of a 9-nucleotide motif (GAGGAAGAA) even when its purine content is preserved. A series of mutations that increased or decreased the level of exon inclusion in vivo were used to correlate enhancer strength with RNA-protein interactions in vitro. Analyses involving UV cross-linking and immunoprecipitation indicated that only four (SRp30a, SRp40, SRp55, and SRp75) of six essential splicing factors known as SR proteins bind to the active enhancer RNA. Moreover, purified SRp40 and SRp55 activate splicing of exon 5 when added to a splicing-deficient S100 extract. Purified SRp30b did not stimulate splicing in S100 extracts, which is consistent with its failure to bind the enhancer RNA. In vitro competition of SR protein splicing activity and UV cross-linking demonstrated that the sequence determinants for SR protein binding were precisely coincident with the sequence determinants of enhancer strength. Thus, a subset of SR proteins interacts directly with the exonic enhancer to promote inclusion of a poorly defined alternative exon. Independent regulation of the levels of SR proteins may, therefore, contribute to the developmental regulation of exon inclusion.  相似文献   

19.
An important group of splicing factors involved in constitutive and alternative splicing contain an arginine/serine (RS)-rich domain. We have previously demonstrated the existence of such factors in plants and report now on a new family of splicing factors (termed the RSZ family) from Arabidopsis thaliana which additionally harbor a Zn knuckle motif similar to the human splicing factor 9G8. Although only around 20 kDa in size, members of this family possess a multi-domain structure. In addition to the N-terminal RNA recognition motif (RRM), a Zn finger motif of the CCHC-type is inserted in an RGG-rich region; all three motifs are known to contribute to RNA binding. The C-terminal domain has a characteristic repeated structure which is very arginine-rich and centered around an SP dipeptide. One member of this family, atRSZp22, has been shown to be a phosphoprotein with properties similar to SR proteins. Furthermore, atRSZp22 was able to complement efficiently splicing deficient mammalian S100 as well as h9G8-depleted extracts. RNA binding assays to selected RNA sequences indicate an RNA binding specificity similar to the human splicing factors 9G8 and SRp20. Taken together, these result show that atRSZp22 is a true plant splicing factor which combines structural and functional features of both h9G8 and hSRp20.  相似文献   

20.
Chen X  Huang J  Li J  Han Y  Wu K  Xu P 《Cell biology international》2004,28(11):791-799
The present study demonstrates that the expression of Tra2beta1 (Transformer 2-beta1) proteins, an SR (serine/arginine rich) protein, is developmentally up-regulated in a neural-specific pattern. The up-regulation is also observed in RA (retinoic acid) induced neural differentiation of P19 cells. Tra2betal proteins are located in the nuclei of P19 cells, which are consistent with its functional site as an SR protein. The over-expression of Tra2betal proteins promotes RA induced neuronal differentiation of P19 cells. In P19 cells, the splicing of FGF-2R (fibroblast growth factor receptor 2) minigene produces the BEK form, while the alternative splicing of GluR-B (glutamate receptor subunit B) minigene generates two products, the Flop and the Truncated isoforms. Tra2betal inhibits the BEK splicing, but it promotes the Flop splicing. The results therefore suggest that Tra2betal is involved in the regulation of alternative splicing processes during neural development, peculiarly the splicing of FGF-2R and GluR-B genes. Both FGF-2R and GluR-B genes are known to play important roles in neural differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号