首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this paper is to review the main aspects related to high bone density (HBD) as well as to discuss the physiologic mechanisms involved in bone health. There are still no well-defined criteria for identification of individuals with HBD and there are few studies on the topic. Most studies demonstrate that overweight, male gender, black ethnic background, physical activity, calcium and fluoride intake and use of medications such as statins and thiazide diuretics play a relevant and positive role on bone mineral density. Moreover, it is known that individuals with certain diseases such as obesity, diabetes, estrogen receptor-positive breast or endometrial cancer have greater bone density than healthy individuals, as well as athletes having higher bone density than non-athletes does not necessarily mean that they have healthy bones. A better understanding of risk and protective factors may help in the management of patients with bone frailty and have applicability in the treatment and in the prevention of osteoporosis, especially intervening on non-modifiable risk factors.  相似文献   

2.
While helpful for preoperative skin markings, methylene blue is washed away by irrigation and tissue fluids during bony reconstruction. The bone pencil is an ideal marker for hard tissue because it is indelible to irrigation. Further, the surgeon may draw with ease in areas of limited access (i.e., sagittal split and intraoral vertical ramus osteotomies). The pencil can be obtained from most art suppliers. No adverse effects from use of the pencil have been noted in any of our patients.  相似文献   

3.
Relaxation Young's and shear moduli of bovine bone and bone collagen were investigated. It was found that each relaxation process observed had two stages, which were referred to as process I and process II in order of time. Process II was described by a simple exponential decay while process I was not. The Kohlrausch-Williams-Watts (KWW) function, ψ(t) = exp[t1)B] (0 < B < 1), was found to be suitable to describe process I. The normalized relaxation modulus, Mr(t), was expressed by the combination of the simple exponential type relaxation function and the KWW function
Mr=A1exp[−(t1)B]+A2exp[(t1)](0<B1)
On the basis of this equation, the relaxation mechanism in bone and bone collagen was identified. According to the model proposed for the KWW relaxation function, the stress relaxation process in bone was considered to be governed by viscoelastic properties of matrix collagen fiber. The model for the KWW relaxation function requires the disordered glassy structure of collagen fiber, which is consistent with the results of the structural investigations.  相似文献   

4.
Mechanistic interpretations of bone cross-sectional shapes are based on the paradigm of shape optimization such that bone offers maximum mechanical resistance with a minimum of material. Recent in vivo strain studies (Demes et al., Am J Phys Anthropol 106 (1998) 87-100, Am J Phys Anthropol 116 (2001) 257-265; Lieberman et al., Am J Phys Anthropol 123 (2004) 156-171) have questioned these interpretations by demonstrating that long bones diaphyses are not necessarily bent in planes in which they offer maximum resistance to bending. Potential limitations of these in vivo studies have been pointed out by Ruff et al. (Am J Phys Anthropol 129 (2006) 484-498). It is demonstrated here that two loading scenarios, asymmetric bending and buckling, would indeed not lead to correct predictions of loads from strain. It is also shown that buckling is of limited relevance for many primate long bones. This challenges a widely held view that circular bone cross sections make loading directions unpredictable for bones which is based on a buckling load model. Asymmetric bending is a potentially confounding factor for bones with directional differences in principal area moments (I(max) > I(min)). Mathematical corrections are available and should be applied to determine the bending axis in such cases. It is concluded that loads can be reliably extrapolated from strains. More strain studies are needed to improve our understanding of the relationships between activities, bone loading regimes associated with them, and the cross-sectional geometry of bones.  相似文献   

5.
Immunohistochemical studies have revealed an extensive network of nerve fibers in the vicinity and within the skeleton, not only in the periosteum of bone but also in cortical and trabecular bone as well as in the bone marrow. Phenotyping of the skeletal nerve fibers have demonstrated the expression of a restrictive panel of different signalling molecules including neuropeptides, neurotransmitters and neurotrophins. In this review, the presence of receptors for the neuropeptides vasoactive intestinal peptide, calcitonin gene-related peptide and substance P on osteoblasts and osteoclasts and the capacity of these receptors to regulate bone formation, osteoclast formation and activity are described. These findings, together with data obtained by chemically and surgically targeted nerve deletion and observations made in paraplegic patients, strongly suggest that neuro-osteogenic interactions play an important role in skeletal function.  相似文献   

6.
7.
Liver and bone     
Osteoporosis is a frequent complication in patients with chronic liver disease, especially in end-stages and in cases with chronic cholestasis, hemochromatosis and alcohol abuse. The problem is more critical in transplant patients when bone loss is accelerated during the period immediately after transplantation, leading to a greater incidence of fractures. Advanced age, low body mass index and severity of the liver disease are the main risk factors for bone disease in patients with cholestasis. Mechanisms underlying osteoporosis in chronic liver disease are complex and poorly understood, but osteoporosis mainly results from low bone formation, related to the effects of retained substances of cholestasis, such as bilirubin and bile acids, or to the effects of alcohol on osteoblastic cells. Increased bone resorption has also been described in cholestatic women with advanced disease. Although there is no specific treatment, bisphosphonates associated with supplements of calcium and vitamin D are effective for increasing bone mass in patients with chronic cholestasis and after liver transplantation. The outcome in reducing the incidence of fractures has not been adequately demonstrated essentially because of the low number of patients included in the therapeutic trials. Randomized studies assessing bisphosphonates in larger series of patients, the development of new drugs for osteoporosis and the improvement in the management of liver transplant recipients may change the future.  相似文献   

8.
Clarke BL  Khosla S 《Steroids》2009,74(3):296-305
Testosterone is the major gonadal sex steroid produced by the testes in men. Testosterone is also produced in smaller amounts by the ovaries in women. The adrenal glands produce the weaker androgens dehydroepiandrosterone, dehydroepiandrosterone sulfate, and androstenedione. These androgens collectively affect skeletal homeostasis throughout life in both men and women, particularly at puberty and during adult life. Because testosterone can be metabolized to estradiol by the aromatase enzyme, there has been controversy as to which gonadal sex steroid has the greater skeletal effect. The current evidence suggests that estradiol plays a greater role in maintenance of skeletal health than testosterone, but that androgens also have direct beneficial effects on bone. Supraphysiological levels of testosterone likely have similar effects on bone as lower levels via direct interaction with androgen receptors, as well as effects mediated by estrogen receptors after aromatization to estradiol. Whether high doses of synthetic, non-aromatizable androgens may, in fact, be detrimental to bone due to suppression of endogenous testosterone (and estrogen) levels is a potential concern that warrants further study.  相似文献   

9.
Fat and bone     
Body weight is a principal determinant of bone density and fracture risk, and adipose tissue mass is a major contributor to this relationship. In contrast, some recent studies have argued that “fat mass after adjustment for body weight” actually has a deleterious effect on bone, but these analyses are confounded by the co-linearity between the variables studied, and therefore have produced misleading results. Mechanistically, fat and bone are linked by a multitude of pathways, which ultimately serve the function of providing a skeleton appropriate to the mass of adipose tissue it is carrying. Adiponectin, insulin/amylin/preptin, leptin and adipocytic estrogens are all likely to be involved in this connection. In the clinic, the key issues are that obesity is protective against osteoporosis, but underweight is a major preventable risk factor for fractures.  相似文献   

10.
11.
Feeding and bone     
Diurnal variation in bone turnover is responsive to feeding and fasting, and feeding results in an acute decrease in bone resorption. These responses may be governed by multiple intermediary systems, and investigation of these systems has led to new potential therapeutic agents for osteoporosis. Here we review the current understanding of the mediators of bone turnover response to feeding, including calcitropic hormones, cortisol, gut peptides and pancreatic peptides. We also discuss the results of clinical trials of analogues of ghrelin, amylin and GLP-2 in the treatment of low bone density, and the potential bone effects of GLP-1 mimetics that are used in the treatment of type 2 diabetes.  相似文献   

12.
Thyroid and bone     
The hypothalamic-pituitary-thyroid axis plays a key role in skeletal development, acquisition of peak bone mass and regulation of adult bone turnover. Euthyroid status is essential for maintenance of optimal bone mineralization and strength. In population studies, hypothyroidism and hyperthyroidism have both been associated with an increased risk of fracture. Furthermore, recent studies in healthy euthyroid post-menopausal women indicate that thyroid status in the upper normal range is also associated with low bone mineral density and an increased risk of non-vertebral fracture. Studies in mutant mice have demonstrated that thyroid hormone receptor α is the major mediator of T3 action in bone and that thyroid hormones exert anabolic actions during growth but have catabolic effects on the adult skeleton. Nevertheless, TSH has also been proposed to be a direct negative regulator of bone turnover, although the relative importance of T3 and TSH actions in the skeleton has yet to be clarified.  相似文献   

13.
14.
Aging reduces the number of mesenchymal stem cells (MSCs) that can differentiate into osteoblasts in the bone marrow, which leads to impairment of osteogenesis. However, if MSCs could be directed toward osteogenic differentiation, they could be a viable therapeutic option for bone regeneration. We have developed a method to direct MSCs to the bone surface by attaching a synthetic high-affinity and specific peptidomimetic ligand (LLP2A) against integrin α4β1 on the MSC surface to a bisphosphonate (alendronate, Ale) that has a high affinity for bone. LLP2A-Ale induced MSC migration and osteogenic differentiation in vitro. A single intravenous injection of LLP2A-Ale increased trabecular bone formation and bone mass in both xenotransplantation studies and in immunocompetent mice. Additionally, LLP2A-Ale prevented trabecular bone loss after peak bone acquisition was achieved or as a result of estrogen deficiency. These results provide proof of principle that LLP2A-Ale can direct MSCs to the bone to form new bone and increase bone strength.  相似文献   

15.
Although recombinant human bone morphogenetic proteins (BMPs) are used locally for treating bone defects in humans, their systemic effect on bone augmentation has not been explored. We have previously demonstrated that demineralized bone (DB) from ovariectomized (OVX) rats cannot induce bone formation when implanted ectopically at the subcutaneous site. Here we showed in vitro that 17beta-estradiol (E2) specifically induced expression of Bmp6 mRNA in MC3T3-E1 preosteoblastic cells and that bone extracts from OVX rats lack BMPs. Next we demonstrated that 125I-BMP-6 administered systemically accumulated in the skeleton and also restored the osteoinductive capacity of ectopically implanted DB from OVX rats. BMP-6 applied systemically to aged OVX rats significantly increased bone volume and mechanical characteristics of both the trabecular and cortical bone, the osteoblast surface, serum osteocalcin and osteoprotegerin levels, and decreased the osteoclast surface, serum C-telopeptide, and interleukin-6. E2 was significantly less effective, and was not synergistic with BMP-6. Animals that discontinued BMP-6 therapy maintained bone mineral density gains for another 12 weeks. BMP-6 increased in vivo the bone expression of Acvr-1, Bmpr1b, Smad5, alkaline phosphatase, and collagen type I and decreased expression of Bmp3 and BMP antagonists, chordin and cerberus. These results show, for the first time, that systemically administered BMP-6 restores the bone inductive capacity, microarchitecture, and quality of the skeleton in osteoporotic rats.  相似文献   

16.
The article deals with the clinical value of monitoring of serum markers of osteoresorption (ICTP) and bone formation (PICP) in multiple myeloma. In a group of patients treated by conventional chemotherapy and group of patients treated by high dose chemotherapy with autologous peripheral blood stemm cell transplantation (APBSTC).  相似文献   

17.
18.
The cartilage damage which characterizes osteoarthritis is often accompanied by bone lesions. Joint integrity results from the balance in the physiological interactions between bone and cartilage. Several local factors regulate the physiological remodeling of cartilage, the disequilibrium of these leading to a higher cartilage catabolism. Several cytokines secreted by bone cells can induce chondrocyte differentiation, which suggests their role in the dialogue between both cells. Accumulative in vivo evidence shows that increased bone resorption occurs at an early stage in the development of osteoarthritis and that blocking bone-resorbing cytokines prevents cartilage damage, confirming the role of bone factors in the crosstalk of both tissues. Recently, molecules of the Wnt pathway have emerged as key regulators of bone and cartilage. Activation of Wnt/βcatenin induces an imbalance in cartilage homeostasis, and agonists/antagonists of Wnt are potential candidates for this interaction. This review will summarize what is known about the contribution of bone cytokines to the physiological remodeling of cartilage and in the pathophysiology of osteoarthritis.  相似文献   

19.
随着肿瘤治疗水平的提高,肿瘤患者的生存期显著延长,转移性骨肿瘤的发生率呈增长趋势.骨转移引起的剧烈的临床症状和其较长的潜伏期,以及缺乏有效的治疗方法,极大降低了患者的生活质量.本文主要综述了骨转移相关的细胞特征及骨微环境在骨转移中的作用,并分析了影响骨转移形成的相关分子因素,为骨转移的定向分子治疗提供进一步的理论依据.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号