首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organelles of the endolysosomal system undergo multiple fission and fusion events to combine sorting of selected proteins to the vacuole with endosomal recycling. This sorting requires a consecutive remodeling of the organelle surface in the course of endosomal maturation. Here we dissect the remodeling and fusion machinery on endosomes during the process of endocytosis. We traced selected GFP-tagged endosomal proteins relative to exogenously added fluorescently labeled α-factor on its way from the plasma membrane to the vacuole. Our data reveal that the machinery of endosomal fusion and ESCRT proteins has similar temporal localization on endosomes, whereas they precede the retromer cargo recognition complex. Neither deletion of retromer nor the fusion machinery with the vacuole affects this maturation process, although the kinetics seems to be delayed due to ESCRT deletion. Of importance, in strains lacking the active Rab7-like Ypt7 or the vacuolar SNARE fusion machinery, α-factor still proceeds to late endosomes with the same kinetics. This indicates that endosomal maturation is mainly controlled by the early endosomal fusion and remodeling machinery but not the downstream Rab Ypt7 or the SNARE machinery. Our data thus provide important further understanding of endosomal biogenesis in the context of cargo sorting.  相似文献   

2.
Mutations in the VPS (vacuolar protein sorting) genes of Saccharomyces cerevisiae have been used to define the trafficking steps that soluble vacuolar hydrolases take en route from the late Golgi to the vacuole. The class D VPS genes include VPS21, PEP12, and VPS45, which appear to encode components of a membrane fusion complex involved in Golgi-to-endosome transport. Vps21p is a member of the Rab family of small Ras-like GTPases and shows strong homology to the mammalian Rab5 protein, which is involved in endocytosis and the homotypic fusion of early endosomes. Although Rab5 and Vps21p appear homologous at the sequence level, it has not been clear if the functions of these two Rabs are similar. We find that Vps21p is an endosomal protein that is involved in the delivery of vacuolar and endocytosed proteins to the vacuole. Vacuolar and endocytosed proteins accumulate in distinct transport intermediates in cells that lack Vps21p function. Therefore, it appears that Vps21p is involved in two trafficking steps into the prevacuolar/late endosomal compartment.  相似文献   

3.
In the degradative pathway, the progression of cargos through endosomal compartments involves a series of fusion and maturation events. The HOPS (homotypic fusion and protein sorting) complex is part of the machinery that promotes the progression from early to late endosomes and lysosomes by regulating the exchange of small GTPases. We report that an interaction between subunits of the HOPS complex and the ERM (ezrin, radixin, moesin) proteins is required for the delivery of EGF receptor (EGFR) to lysosomes. Inhibiting either ERM proteins or the HOPS complex leads to the accumulation of the EGFR into early endosomes, delaying its degradation. This impairment in EGFR trafficking observed in cells depleted of ERM proteins is due to a delay in the recruitment of Rab7 on endosomes. As a consequence, the maturation of endosomes is perturbed as reflected by an accumulation of hybrid compartments positive for both early and late endosomal markers. Thus, ERM proteins represent novel regulators of the HOPS complex in the early to late endosomal maturation.  相似文献   

4.
Endosomal sorting is essential for cell homeostasis. Proteins targeted for degradation are retained in the maturing endosome vacuole while others are recycled to the cell surface or sorted to the biosynthetic pathway via tubular transport carriers. Sorting nexin (SNX) proteins containing a BAR (for Bin-Amphiphysin-Rvs) domain are key regulators of phosphoinositide-mediated, tubular-based endosomal sorting, but how such sorting is co-ordinated with endosomal maturation is not known. Here, using well-defined Rab GTPases as endosomal compartment markers, we have analyzed the localization of SNX1 [endosome-to-trans-Golgi network (TGN) transport as part of the SNX-BAR-retromer complex], SNX4 (cargo-recycling from endosomes to the plasma membrane) and SNX8 (endosomes-to-TGN trafficking in a retromer-independent manner). We show that these SNX-BARs are primarily localized to early endosomes, but display the highest frequency of tubule formation at the moment of early-to-late endosome transition: the Rab5-to-Rab7 switch. Perturbing this switch shifts SNX-BAR tubulation to early endosomes, resulting in SNX1-decorated tubules that lack retromer components VPS26 and VPS35, suggesting that both early and late endosomal characteristics of the endosome are important for SNX-BAR-retromer-tubule formation. We also establish that SNX4, but not SNX1 and SNX8, is associated with the Rab11-recycling endosomes and that a high frequency of SNX4-mediated tubule formation is observed as endosomes undergo Rab4-to-Rab11 transition. Our study therefore provides evidence for fine-tuning between the processes of endosomal maturation and the formation of endosomal tubules. As tubulation is required for SNX1-, SNX4- and SNX8-mediated sorting, these data reveal a previously unrecognized co-ordination between maturation and tubular-based sorting.  相似文献   

5.
Protein traffic from the cell surface or the trans-Golgi network reaches the lysosome via a series of endosomal compartments. One of the last steps in the endocytic pathway is the fusion of late endosomes with lysosomes. This process has been reconstituted in vitro and has been shown to require NSF, alpha and gamma SNAP, and a Rab GTPase based on inhibition by Rab GDI. In Saccharomyces cerevisiae, fusion events to the lysosome-like vacuole are mediated by the syntaxin protein Vam3p, which is localized to the vacuolar membrane. In an effort to identify the molecular machinery that controls fusion events to the lysosome, we searched for mammalian homologues of Vam3p. One such candidate is syntaxin 7. Here we show that syntaxin 7 is concentrated in late endosomes and lysosomes. Coimmunoprecipitation experiments show that syntaxin 7 is associated with the endosomal v-SNARE Vamp 8, which partially colocalizes with syntaxin 7. Importantly, we show that syntaxin 7 is specifically required for the fusion of late endosomes with lysosomes in vitro, resulting in a hybrid organelle. Together, these data identify a SNARE complex that functions in the late endocytic system of animal cells.  相似文献   

6.
Delivery of endocytosed macromolecules to mammalian cell lysosomes occurs by direct fusion of late endosomes with lysosomes, resulting in the formation of hybrid organelles from which lysosomes are reformed. The molecular mechanisms of this fusion are analogous to those of homotypic vacuole fusion in Saccharomyces cerevisiae. We report herein the major roles of the mammalian homolog of yeast Vps18p (mVps18p), a member of the homotypic fusion and vacuole protein sorting complex. When overexpressed, mVps18p caused the clustering of late endosomes/lysosomes and the recruitment of other mammalian homologs of the homotypic fusion and vacuole protein sorting complex, plus Rab7-interacting lysosomal protein. The clusters were surrounded by components of the actin cytoskeleton, including actin, ezrin, and specific unconventional myosins. Overexpression of mVps18p also overcame the effect of wortmannin treatment, which inhibits membrane traffic out of late endocytic organelles and causes their swelling. Reduction of mVps18p by RNA interference caused lysosomes to disperse away from their juxtanuclear location. Thus, mVps18p plays a critical role in endosome/lysosome tethering, fusion, intracellular localization and in the reformation of lysosomes from hybrid organelles.  相似文献   

7.
Aspergillus nidulans early endosomes display characteristic long-distance bidirectional motility. Simultaneous dual-channel acquisition showed that the two Rab5 paralogues RabB and RabA colocalize in these early endosomes and also in larger, immotile mature endosomes. However, RabB-GTP is the sole recruiter to endosomes of Vps34 PI3K (phosphatidylinositol-3-kinase) and the phosphatidylinositol-3-phosphate [PI(3)P] effector AnVps19 and rabBΔ, leading to thermosensitivity prevents multivesicular body sorting of endocytic cargo. Thus, RabB is the sole mediator of degradative endosomal identity. Importantly, rabBΔ, unlike rabAΔ, prevents early endosome movement. As affinity experiments and pulldowns showed that RabB-GTP recruits AnVps45, RabB coordinates PI(3)P-dependent endosome-to-vacuole traffic with incoming traffic from the Golgi and with long-distance endosomal motility. However, the finding that Anvps45Δ, unlike rabBΔ, severely impairs growth indicates that AnVps45 plays RabB-independent functions. Affinity chromatography showed that the CORVET complex is a RabB and, to a lesser extent, a RabA effector, in agreement with GST pulldown assays of AnVps8. rabBΔ leads to smaller vacuoles, suggesting that it impairs homotypic vacuolar fusion, which would agree with the sequential maturation of endosomal CORVET into HOPS proposed for Saccharomyces cerevisiae. rabBΔ and rabAΔ mutations are synthetically lethal, demonstrating that Rab5-mediated establishment of endosomal identity is essential for A. nidulans.  相似文献   

8.
Within the endomembrane system of eukaryotic cells, multisubunit tethering complexes together with their corresponding Rab‐GTPases coordinate vesicle tethering and fusion. Here, we present evidence that two homologous hexameric tethering complexes, the endosomal CORVET (Class C core vacuole/endosome transport) and the vacuolar HOPS (homotypic vacuole fusion and protein sorting) complex, have similar subunit topologies. Both complexes contain two Rab‐binding proteins at one end, and the Sec1/Munc18‐like Vps33 at the opposite side, suggesting a model on membrane bridging via Rab‐GTP and SNARE binding. In agreement, HOPS activity can be reconstituted using purified subcomplexes containing the Rab and Vps33 module, but requires all six subunits for activity. At the center of HOPS and CORVET, the class C proteins Vps11 and Vps18 connect the two parts, and Vps11 binds both HOPS Vps39 and CORVET Vps3 via the same binding site. As HOPS Vps39 is also found at endosomes, our data thus suggest that these tethering complexes follow defined but distinct assembly pathways, and may undergo transition by simple subunit interchange.  相似文献   

9.
Upon entry into mammalian cells, the intracellular pathogen Brucella abortus resides within a membrane-bound compartment, the Brucella -containing vacuole (BCV), the maturation of which is controlled by the bacterium to generate a replicative organelle derived from the endoplasmic reticulum (ER). Prior to reaching the ER, Brucella is believed to ensure its intracellular survival by inhibiting fusion of the intermediate BCV with late endosomes and lysosomes, although such BCVs are acidic and accumulate the lysosomal-associated membrane protein (LAMP-1). Here, we have further examined the nature of intermediate BCVs using confocal microscopy and live cell imaging. We show that BCVs rapidly acquire several late endocytic markers, including the guanosine triphosphatase Rab7 and its effector Rab-interacting lysosomal protein (RILP), and are accessible to fluid-phase markers either delivered to the whole endocytic pathway or preloaded to lysosomes, indicating that BCVs interact with late endosomes and lysosomes. Consistently, intermediate BCVs are acidic and display proteolytic activity up to 12 h post-infection. Expression of dominant-negative Rab7 or overexpression of RILP significantly impaired the ability of bacteria to convert their vacuole into an ER-derived organelle and replicate, indicating that BCV maturation requires interactions with functional late endosomal/lysosomal compartments. In cells expressing dominant-negative Rab7[T22N], BCVs remained acidic, yet displayed decreased fusion with lysosomes. Taken together, these results demonstrate that BCVs traffic along the endocytic pathway and fuse with lysosomes, and such fusion events are required for further maturation of BCVs into an ER-derived replicative organelle.  相似文献   

10.
In the process of internalization of molecules from the extracellular milieu, a cell uses multiple endocytic pathways, consequently generating different endocytic vesicles. These primary endocytic vesicles are targeted to specific destinations inside the cell. Here, we show that GPI-anchored proteins are internalized by an Arf6-independent mechanism into GPI-anchored protein-enriched early endosomal compartments (GEECs). Internalized GPI-anchored proteins and the fluid phase are first visualized in GEECs that are acidic, primary endocytic structures, negative for early endosomal markers, Rab4, Rab5, and early endosome antigen (EEA)1. They subsequently acquire Rab5 and EEA1 before homotypic fusion with other GEECs, and heterotypic fusion with endosomes containing cargo from the clathrin-dependent endocytic pathway. Although, the formation of GEECs is unaffected by inhibition of Rab5 GTPase and phosphatidylinositol-3'-kinase (PI3K) activity, their fusion with sorting endosomes is dependent on both activities. Overexpression of Rab5 reverts PI3K inhibition of fusion, providing evidence that Rab5 effectors play important roles in heterotypic fusion between the dynamin-independent GEECs and clathrin- and dynamin-dependent sorting endosomes.  相似文献   

11.
Transport within the endocytic pathway depends on a consecutive function of the endosomal Rab5 and the late endosomal/lysosomal Rab7 GTPases to promote membrane recycling and fusion in the context of endosomal maturation. We previously identified the hexameric BLOC-1 complex as an effector of the yeast Rab5 Vps21, which also recruits the GTPase-activating protein (GAP) Msb3. This raises the question of when Vps21 is inactivated on endosomes. We provide evidence for a Rab cascade in which activation of the Rab7 homologue Ypt7 triggers inactivation of Vps21. We find that the guanine nucleotide exchange factor (GEF) of Ypt7 (the Mon1-Ccz1 complex) and BLOC-1 both localize to the same endosomes. Overexpression of Mon1-Ccz1, which generates additional Ypt7-GTP, or overexpression of activated Ypt7 promotes relocalization of Vps21 from endosomes to the endoplasmic reticulum (ER), which is indicative of Vps21 inactivation. This ER relocalization is prevented by loss of either BLOC-1 or Msb3, but it also occurs in mutants lacking endosome–vacuole fusion machinery such as the HOPS tethering complex, an effector of Ypt7. Importantly, BLOC-1 interacts with the HOPS on vacuoles, suggesting a direct Ypt7-dependent cross-talk. These data indicate that efficient Vps21 recycling requires both Ypt7 and endosome–vacuole fusion, thus suggesting extended control of a GAP cascade beyond Rab interactions.  相似文献   

12.
Rab GTPases play an important regulatory role in early endocytosis. We recently demonstrated that epitope-tagged Rab15 (HArab15) co-localizes with Rab4, -5, and -11 on early endosomal membranes in CHO cells (Zuk, P. A., and Elferink, L. A. (1999) J. Biol. Chem. 274, 22303-22312). To characterize the role of Rab15 in endocytosis, we prepared functional mutants of HArab15 and examined their effects on early endocytic trafficking. Wild-type HArab15 and its constitutively active, GTP-bound mutant (Q67L) reduce fluid phase and receptor-mediated endocytosis without affecting the rate of recycling from early endosomal compartments. Inhibition of early endocytosis appears to be due to a reduction in the rate of homotypic early endosome fusion. Conversely, mutations that constitutively inactivate HArab15 stimulate early endocytosis and the homotypic fusion of early endosomes in vitro. Unlike active forms of HArab15, constitutively inactive HArab15 mutants also affect recycling from early endosomal compartments. Moreover, the two constitutively inactive mutants, GDP-bound HArab15-T22N and the non-nucleotide binding mutant HArab15-N121I, differentially regulate the transit of fluid phase and receptor-mediated endocytic tracers through early/sorting endosomes. Together, these data suggest that HArab15 may counteract the reported stimulatory effect of Rab5 on early endocytosis. Consistent with this, overexpression of constitutively active HArab15-Q67L attenuates Rab5-stimulated endocytosis, whereas Rab5-stimulated endocytosis is augmented in cells overexpressing a constitutively inactive HArab15 mutant defective in guanine nucleotide binding (N121I). Our data indicate that HArab15 differentially regulates distinct steps in membrane trafficking through early/sorting and pericentriolar recycling endosomes.  相似文献   

13.
During autophagy, double-membrane autophagosomes deliver sequestered cytoplasmic content to late endosomes and lysosomes for degradation. The molecular mechanism of autophagosome maturation is still poorly characterized. The small GTPase Rab11 regulates endosomal traffic and is thought to function at the level of recycling endosomes. We show that loss of Rab11 leads to accumulation of autophagosomes and late endosomes in Drosophila melanogaster. Rab11 translocates from recycling endosomes to autophagosomes in response to autophagy induction and physically interacts with Hook, a negative regulator of endosome maturation. Hook anchors endosomes to microtubules, and we show that Rab11 facilitates the fusion of endosomes and autophagosomes by removing Hook from mature late endosomes and inhibiting its homodimerization. Thus induction of autophagy appears to promote autophagic flux by increased convergence with the endosomal pathway.  相似文献   

14.
Coupling of Rab GTPase activation and SNARE complex assembly during membrane fusion is poorly understood. The homotypic fusion and vacuole protein sorting (HOPS) complex links these two processes: it is an effector for the vacuolar Rab GTPase Ypt7p and is required for vacuolar SNARE complex assembly. We now report that pure, active HOPS complex binds phosphoinositides and the PX domain of the vacuolar SNARE protein Vam7p. These binding interactions support HOPS complex association with the vacuole and explain its enrichment at the same microdomains on docked vacuoles as phosphoinositides, Ypt7p, Vam7p, and the other SNARE proteins. Concentration of the HOPS complex at these microdomains may be a key factor for coupling Rab GTPase activation to SNARE complex assembly.  相似文献   

15.
《Autophagy》2013,9(5):676-689
Autophagy is a highly conserved degradative pathway whereby a double membrane engulfs cytoplasmic constituents to form an autophagic vacuole or autophagosome. An essential requirement for efficient autophagy is the acquisition of an adequate degradative capacity by the autophagosomes. To acquire this capacity the immature autophagic vacuoles (AVis) obtain lysosomal hydrolases by fusion with endosomes. The current models suggest that at least two types of endosomes, early and late, fuse with AVis to form mature, degradative AVds. This fusion and maturation requires proteins also involved in endosome maturation such as Rab7. However, it is not known if there are molecular requirements unique to AVi-endosome fusion. To identify and investigate the molecular requirements of this fusion we developed a cell-free fusion assay based on content mixing, which occurs after fusion of isolated AVis and different endosomal fractions. Our assay shows that isolated AVis can fuse to a similar extent in vitro with both early and late endosomes. Furthermore, fusion between autophagosomes and endosomes requires cytosolic and endosomal proteins, but does not show a nucleotide-dependence, and is partially N-ethylmaleimide sensitive. We also demonstrate that the lipidated form of the autophagosomal protein LC3 is dispensable for this fusion event.  相似文献   

16.
Many mycobacteria are intramacrophage pathogens that reside within nonacidified phagosomes that fuse with early endosomes but do not mature to phagolysosomes. The mechanism by which mycobacteria block this maturation process remains elusive. To gain insight into whether fusion with early endosomes is required for mycobacteria-mediated inhibition of phagosome maturation, we investigated how perturbing the GTPase cycles of Rab5 and Rab7, GTPases that regulate early and late endosome fusion, respectively, would affect phagosome maturation. Retroviral transduction of the constitutively activated forms of both GTPases into primary murine macrophages had no effect on Mycobacterium avium retention in an early endosomal compartment. Interestingly, expression of dominant negative Rab5, Rab5(S34N), but not dominant negative Rab7, resulted in a significant increase in colocalization of M. avium with markers of late endosomes/lysosomes and increased mycobacterial killing. This colocalization was specific to mycobacteria since Rab5(S34N) expressing cells showed diminished trafficking of endocytic tracers to lysosomes. We further demonstrated that maturation of M. avium phagosomes was halted in Rab5(S34N) expressing macrophages supplemented with exogenous iron. These findings suggest that fusion with early endosomes is required for mycobacterial retention in early phagosomal compartments and that an inadequate supply of iron is one factor in mycobacteria's inability to prevent the normal maturation process in Rab5(S34N)-expressing macrophages.  相似文献   

17.
18.
Membrane tethering, the process of mediating the first contact between membranes destined for fusion, requires specialized multisubunit protein complexes and Rab GTPases. In the yeast endolysosomal system, the hexameric HOPS tethering complex cooperates with the Rab7 homolog Ypt7 to promote homotypic fusion at the vacuole, whereas the recently identified homologous CORVET complex acts at the level of late endosomes. Here, we have further functionally characterized the CORVET-specific subunit Vps8 and its relationship to the remaining subunits using an in vivo approach that allows the monitoring of late endosome biogenesis. In particular, our results indicate that Vps8 interacts and cooperates with the activated Rab5 homolog Vps21 to induce the clustering of late endosomal membranes, indicating that Vps8 is the effector subunit of the CORVET complex. This clustering, however, requires Vps3, Vps16, and Vps33 but not the remaining CORVET subunits. These data thus suggest that the CORVET complex is built of subunits with distinct activities and potentially, their sequential assembly could regulate tethering and successive fusion at the late endosomes.  相似文献   

19.

Background  

An important role in the evolution of intracellular trafficking machinery in eukaryotes played small GTPases belonging to the Rab family known as pivotal regulators of vesicle docking, fusion and transport. The Rab family is very diversified and divided into several specialized subfamilies. We focused on the VII functional group comprising Rab7 and Rab9, two related subfamilies, and analysed 210 sequences of these proteins. Rab7 regulates traffic from early to late endosomes and from late endosome to vacuole/lysosome, whereas Rab9 participates in transport from late endosomes to the trans-Golgi network.  相似文献   

20.
Current models for sorting in the endosomal compartment suggest that endosomal geometry plays a significant role as membrane-bound proteins accumulate in tubular regions for recycling, and lumenal markers accumulate in large vacuolar portions for delivery to lysosomes. Rab5, a small molecular weight GTPase, functions in the formation and maintenance of the early/sorting endosome. Overexpression of the constitutively active form, Rab5(Q79L), leads to enhanced endosome fusion resulting in the enlargement of early endosomes. Using an adenoviral expression system to regulate the time and level of Rab5(Q79L) overexpression in HeLa cells, we find that although endosomes are dramatically enlarged, the rates of transferrin receptor-mediated endocytosis and recycling are unaffected. Moreover, despite the enlarged endosome phenotype, neither the rate of internalization of a fluid phase marker nor the rate of recycling of a bulk lipid marker were affected. These results suggest that GTP hydrolysis by Rab5 is rate-limiting for endosome fusion but not for endocytic trafficking and that early endosome geometry may be a less critical determinant of sorting efficiencies than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号