首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Is endocytosed cargo transported by vesicular intermediates between early and late endosomes, or does an endosome mature while its cargo remains in place? Current work suggests that the latter takes place within the endosomal system via a process termed Rab conversion.  相似文献   

2.
In many important organisms, including many algae and most fungi, the nuclear envelope does not disassemble during mitosis. This fact raises the possibility that mitotic onset and/or exit might be regulated, in part, by movement of important mitotic proteins into and out of the nucleoplasm. We have used two methods to determine whether tubulin levels in the nucleoplasm are regulated in the fungus Aspergillus nidulans. First, we have used benomyl to disassemble microtubules and create a pool of free tubulin that can be readily observed by immunofluorescence. We find that tubulin is substantially excluded from interphase nuclei, but is present in mitotic nuclei. Second, we have observed a green fluorescent protein/alpha-tubulin fusion in living cells by time-lapse spinning-disk confocal microscopy. We find that tubulin is excluded from interphase nuclei, enters the nucleus seconds before the mitotic spindle begins to form, and is removed from the nucleoplasm during the M-to-G1 transition. Our data indicate that regulation of intranuclear tubulin levels plays an important, perhaps essential, role in the control of mitotic spindle formation in A. nidulans. They suggest that regulation of protein movement into the nucleoplasm may be important for regulating mitotic onset in organisms with intranuclear mitosis.  相似文献   

3.
In Aspergillus nidulans there are three NAD(+)-dependent alcohol dehydrogenases (ADHs) that are capable of utilizing ethanol as a substrate. ADHI is the physiological enzyme of ethanol catabolism and ADHIII is induced under conditions of anaerobiosis. The physiological role of ADHII (structural gene alcB) is unknown. We have measured beta-galactosidase in a transformant with an alcB::lacZ fusion and have shown that alcB is maximally expressed under conditions of carbon starvation. The behavior of the alcB::lacZ transformant suggests a hierarchy of repressing carbon sources characteristic of repression by the general carbon catabolite repressor protein, CreA, but in a creA(d)30 background the transformant shows only partial derepression of beta-galactosidase on 1% glucose compared to the creA+ strain. Our results suggest that, in addition to carbon catabolite repression acting via CreA, a CreA-independent mechanism is involved in induction of alcB on carbon starvation.  相似文献   

4.
We have examined polarity of meiotic gene conversion in the niiA-niaD gene cluster of Aspergillus nidulans in two-point crosses. The type and position of the mutations represented by the niaD alleles and the correlation between the relative frequency of gene conversion and the physical position of these mutations were determined. We show that polarity of meiotic gene conversion is 5′ to 3′ (transcribed strand) within the niaD gene. Additional crosses involving a niiA allele and a niaD allele show little polarity of gene conversion, which suggests that the recombination events leading to restoration of the niaD gene are initiated upstream of the coding region of the niaD gene but within the niiA-niaD gene cluster, possibly within the intergenic promoter region.  相似文献   

5.
The Aspergillus nidulans yA gene is regulated by abaA.   总被引:5,自引:1,他引:4       下载免费PDF全文
  相似文献   

6.
7.
Transformation by integration in Aspergillus nidulans   总被引:26,自引:0,他引:26  
DNA-mediated genetic transformation of Aspergillus nidulans has been achieved by incubating protoplasts from a strain of A. nidulans carrying a deletion in the acetamidase structural gene with DNA of derivatives of plasmid pBR322 containing the cloned structural gene for acetamidase [Hynes et al., Mol. Cell. Biol. 3 (1983) 1430-1439; p3SR2] in the presence of polyethylene glycol and CaCl2. The highest frequency obtained was 25 transformants per microgram of DNA. No enhancement of the transformation frequency was observed when DNAs of plasmids carrying either a fragment of the A. nidulans ribosomal repeat (p3SR2rr) or a fragment containing a possible A. nidulans mitochondrial origin of replication (p3SR2mo) in addition to the acetamidase gene were used. Both pBR322 and acetamidase gene sequences become integrated into the genome of A. nidulans in transformant strains. Integration events into the residual sequences adjacent to the deletion in the acetamidase gene, and probably (for p3SR2rr and p3SR2mo) into the ribosomal repeat unit are described.  相似文献   

8.
The optimum pH, temperature and concentration of the substrate, carboxymethyl-cellulose (CMC), for the production of cellulases by Aspergillus nidulans were found to be 3.05, 37°C and 1%, respectively. When grown on CMC under optimum conditions, it produced the three components of the cellulase complex, exo-β-1,4-glucanase, endo-β-1,4-glucanase and β-1,4-glucosidase, both in cell free as well as cell-associated states. The enzyme yields in shake cultures were lower than those obtained during stationary cultivation. Among the defined substrates, lactose emerged as the best inducer for exo-glucanase and endo-glucanase, while β-glucosidase was best induced by pectin. Endo-glucanase production increased significantly when A. nidulans was grown on insoluble delignified lognocellulosic substrates, with the maximum being on paddy straw.It appears that the synthesis of individual components of the cellulase system of A. nidulans may not be regulated in a strictly coordinated manner.  相似文献   

9.
10.
Previously swoA was identified in Aspergillus nidulans as a single locus, temperature-sensitive (ts) mutant aberrant in polarity maintenance. swoA was complemented by transformation with a plasmid genomic library. The sequence of the complementing gene was identical to a previously submitted GenBank sequence for pmtA, a protein O-mannosyltransferase. The pmtA/swoA-2 gene hybridized to three cosmids that are located on chromosome V and the swoA mutation was mitotically mapped to chromosome V. PMTs are endoplasmic reticulum-resident proteins responsible for the first step of O-glycosylation. Structural predictions suggest that PmtA contains seven membrane spans similar to PMTs from Saccharomyces cerevisiae and other organisms. Phylogenetic analysis indicates that PmtA is most closely related to the S. cerevisiae sub-family of PMTs containing Pmt2, Pmt3 and Pmt6. The mutant pmtA/swoA-2 locus contained a lesion that changed Y662 to a stop codon, eliminating the final membrane spanning domain and interrupting a domain essential for function in other PMTs.  相似文献   

11.
Resistance to various inhibitors in Aspergillus nidulans   总被引:3,自引:0,他引:3  
  相似文献   

12.
Genome sequencing analyses revealed that Aspergillus nidulans has orthologous genes to all those of the high-osmolarity glycerol (HOG) response mitogen-activated protein kinase (MAPK) pathway of Saccharomyces cerevisiae. A. nidulans mutant strains lacking sskA, sskB, pbsB, or hogA, encoding proteins orthologous to the yeast Ssk1p response regulator, Ssk2p/Ssk22p MAPKKKs, Pbs2p MAPKK and Hog1p MAPK, respectively, showed growth inhibition under high osmolarity, and HogA MAPK in these mutants was not phosphorylated under osmotic or oxidative stress. Thus, activation of the A. nidulans HOG (AnHOG) pathway depends solely on the two-component signalling system, and MAPKK activation mechanisms in the AnHOG pathway differ from those in the yeast HOG pathway, where Pbs2p is activated by two branches, Sln1p and Sho1p. Expression of pbsB complemented the high-osmolarity sensitivity of yeast pbs2Delta, and the complementation depended on Ssk2p/Ssk22p, but not on Sho1p. Pbs2p requires its Pro-rich motif for binding to the Src-homology3 (SH3) domain of Sho1p, but PbsB lacks a typical Pro-rich motif. However, a PbsB mutant (PbsB(Pro)) with the yeast Pro-rich motif was activated by the Sho1p branch in yeast. In contrast, HogA in sskADelta expressing PbsB(Pro) was not phosphorylated under osmotic stress, suggesting that A. nidulans ShoA, orthologous to yeast Sho1p, is not involved in osmoresponsive activation of the AnHOG pathway. We also found that besides HogA, PbsB can activate another Hog1p MAPK orthologue, MpkC, in A. nidulans, although mpkC is dispensable in osmoadaptation. In this study, we discuss the differences between the AnHOG and the yeast HOG pathways.  相似文献   

13.
Adaptation involves the successive substitution of beneficial mutations by selection, a process known as an adaptive walk. Gradualist models of adaptation, which assume that all mutations are small relative to the distance to a fitness optimum, predict that adaptive walks should be longer when the founding genotype is less well adapted. More recent work modeling adaptation as a sequence of moves in phenotype or genotype space predicts, by contrast, much shorter adaptive walks irrespective of the fitness of the founding genotype. Here, we provide what is, to the best of our knowledge, the first direct test of these alternative models, measuring the length of adaptive walks in evolving lineages of fungus that differ initially in fitness. Contrary to the gradualist view, we show that the length of adaptive walks in the fungus Aspergillus nidulans is insensitive to starting fitness and involves just two mutations on average. This arises because poorly adapted populations tend to fix mutations of larger average effect than those of better-adapted populations. Our results suggest that the length of adaptive walks may be independent of the fitness of the founding genotype and, moreover, that poorly adapted populations can quickly adapt to novel environments.  相似文献   

14.
Sterigmatocystin (ST) and aflatoxin are carcinogenic end point metabolites derived from the same biochemical pathway, which is found in several Aspergillus spp. Recently, an ST gene cluster, containing approximately 25 distinct genes that are each proposed to function specifically in ST biosynthesis, has been identified in Aspergillus nidulans. Each of these structural genes is named stc (sterigmatocystin) followed by a consecutive letter of the alphabet. We have previously described stcU (formerly verA) as encoding a keto-reductase required for the conversion of versicolorin A to ST. We now describe a second A. nidulans gene, stcS (formerly verB), that is located within 2 kb of stcU in the ST gene cluster. An stcS-disrupted strain of A. nidulans, TSS17, was unable to produce ST and converted ST/aflatoxin precursors to versicolorin A rather than ST, indicating that stcS functions at the same point in the pathway as stcU. Genomic sequence analysis of stcS shows that it encodes a cytochrome P-450 monooxygenase and constitutes a novel P-450 family, CYP59. Assuming that StcU activity mimics that of similar P-450s, it is likely that StcU catalyzes one of the proposed oxidation steps necessary to convert versicolorin A to ST. These results constitute the first genetic proof that the conversion of versicolorin A to ST requires more than one enzymatic activity.  相似文献   

15.
To explore the structural basis for the essential role of calmodulin (CaM) in Aspergillus nidulans, we have compared the biochemical and in vivo properties of A. nidulans CaM (AnCaM) with those of heterologous CaMs. Neither Saccharomyces cerevisiae CaM (ScCaM) nor a Ca2+ binding mutant of A. nidulans CaM (1234) interacts appreciably with A. nidulans CaM binding proteins by an overlay assay or activates two essential CaMKs, CMKA and CMKB. In contrast, although vertebrate CaM (VCaM) binds a spectrum of proteins similar to that for AnCaM, it is unable to fully activate CMKA and CMKB, displaying a higher KCaM and reduced Vmax for both enzymes. In correlation with the biochemical analysis, neither ScCaM nor 1234 can support A. nidulans growth in the absence of the endogenous protein, whereas VCaM only partially complements the absence of wild-type CaM. Analysis of VCaM and AnCaM chimeras demonstrates that amino acid variations in both N- and C-terminal domains contribute to the inability of VCaM to activate CMKB, but differences in the N terminus are largely responsible for the reduced activity towards CMKA. In vivo, the chimeric molecules support growth equivalently, but only to levels intermediate between those of VCaM and AnCaM, suggesting that the reduced ability to activate the CaMKs is not solely responsible for the inability of VCaM to complement the absence of the wild-type protein. Thus, not only is Ca2+ binding required for CaM function in A. nidulans, but the essential in vivo functions of A. nidulans CaM are uniquely sensitive to the subtle amino acid variations present in vertebrate CaM.  相似文献   

16.
Mitochondria are essential organelles for the oxidative energy metabolism in eukaryotic cells. Determinants of mitochondrial morphology as well as the machinery underlying their subcellular distribution are not well understood. In this study we constructed an Aspergillus nidulans strain, in which mitochondria are stained with the green-fluorescent protein (GFP) to visualize them and study their behavior in vivo (http://www.uni-marburg. de/mpi/movies/mitochondria/mitochondria.html). Mitochondria form a complex membranous system in the cytoplasm consisting of interconnected tubular structures. Mitochondrial tubes separate frequently or produce small organelles that migrate some distance with velocities of up to 15 microm/min before they fuse again with the reticulum. Experiments using cytochalasin A as an anti-cytoskeletal drug revealed that a functional actin cytoskeleton is crucial for mitochondrial morphology and the dynamic behavior of the mitochondrial network. Movement of organelles along actin filaments requires actin-dependent motor proteins, such as myosin. We found that MyoA, a class I myosin motor of A. nidulans involved in vesicle migration, is not responsible for mitochondrial movement.  相似文献   

17.
The Cu-ATPase ATP7A (MNK) is localized in the trans-Golgi network (TGN) and relocalizes in the plasma membrane via vesicle-mediated traffic following exposure of the cells to high concentrations of copper. Rab proteins are organelle-specific GTPases, markers of different endosomal compartments; their role has been recently reviewed (Trends Cell Biol. 11(2001) 487). In this article we analyze the endosomal pathway of trafficking of the MNK protein in stably transfected clones of CHO cells, expressing chimeric Rab5-myc or Rab7-myc proteins, markers of early or late endosome compartments, respectively. We demonstrate by immunofluorescence and confocal and electron microscopy techniques that the increase in the concentration of copper in the medium (189 microM) rapidly induces a redistribution of the MNK protein from early sorting endosomes, positive for Rab5-myc protein, to late endosomes, containing the Rab7-myc protein. Cell fractionation experiments confirm these results; i.e., the MNK protein is recruited to the endosomal fraction on copper stimulation and colocalizes with Rab5 and Rab7 proteins. These findings allow the first characterization of the vesicles involved in the intracellular routing of the MNK protein from the TGN to the plasma membrane, a key mechanism allowing appropriate efflux of copper in cells grown in high concentrations of the metal.  相似文献   

18.
Upon phagocytosis, Legionella pneumophila translocates numerous effector proteins into host cells to perturb cellular metabolism and immunity, ultimately establishing intracellular survival and growth. VipD of L. pneumophila belongs to a family of bacterial effectors that contain the N-terminal lipase domain and the C-terminal domain with an unknown function. We report the crystal structure of VipD and show that its C-terminal domain robustly interferes with endosomal trafficking through tight and selective interactions with Rab5 and Rab22. This domain, which is not significantly similar to any known protein structure, potently interacts with the GTP-bound active form of the two Rabs by recognizing a hydrophobic triad conserved in Rabs. These interactions prevent Rab5 and Rab22 from binding to downstream effectors Rabaptin-5, Rabenosyn-5 and EEA1, consequently blocking endosomal trafficking and subsequent lysosomal degradation of endocytic materials in macrophage cells. Together, this work reveals endosomal trafficking as a target of L. pneumophila and delineates the underlying molecular mechanism.  相似文献   

19.
Regulation of conidiation by light in Aspergillus nidulans   总被引:1,自引:0,他引:1  
Light regulates several aspects of the biology of many organisms, including the balance between asexual and sexual development in some fungi. To understand how light regulates fungal development at the molecular level we have used Aspergillus nidulans as a model. We have performed a genome-wide expression analysis that has allowed us to identify >400 genes upregulated and >100 genes downregulated by light in developmentally competent mycelium. Among the upregulated genes were genes required for the regulation of asexual development, one of the major biological responses to light in A. nidulans, which is a pathway controlled by the master regulatory gene brlA. The expression of brlA, like conidiation, is induced by light. A detailed analysis of brlA light regulation revealed increased expression after short exposures with a maximum after 60 min of light followed by photoadaptation with longer light exposures. In addition to brlA, genes flbA-C and fluG are also light regulated, and flbA-C are required for the correct light-dependent regulation of the upstream regulator fluG. We have found that light induction of brlA required the photoreceptor complex composed of a phytochrome FphA, and the white-collar homologs LreA and LreB, and the fluffy genes flbA-C. We propose that the activation of regulatory genes by light is the key event in the activation of asexual development by light in A. nidulans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号