首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fire blight, a plant disease of economic importance caused by Erwinia amylovora, may be controlled by the application of bacteriophages. Here, we provide the complete genome sequences and the annotation of three E. amylovora-specific phages isolated in North America and genomic information about a bacteriophage induced by mitomycin C treatment of an Erwinia tasmaniensis strain that is antagonistic for E. amylovora. The American phages resemble two already-described viral genomes, whereas the E. tasmaniensis phage displays a singular genomic sequence in BLAST searches.  相似文献   

2.
Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight.  相似文献   

3.
The small basic histone-like protein H-NS is known for bacteria to attenuate virulence of several animal pathogens. An hns homologue from E. amylovora was identified by complementing an E. coli hns-mutant strain with a cosmid library from E. amylovora. A 1.6 kb EcoRI-fragment complemented the mucoid phenotype and repressed the ss-glucosidase activity of E. coli PD32. The open reading frame encoding an H-NS-like protein of 134 amino acid was later shown to be located on plasmid pEA29 (McGhee and Jones 2000). A chromosomal hns gene was amplified with PCR consensus primers and localized near galU of E. amylovora. E. amylovora mutants were created by insertion of a resistance cassette, and the intact gene was inserted into a high copy number plasmid for constitutive expression. Purified chromosomal H-NS protein preferentially bound to a DNA fragment from the lsc region and bending was predicted for an adjacent fragment with the rlsB-promoter. Levan production was significantly increased by hns mutations. Synthesis of the capsular exopolysaccharide amylovoran and of levan were reduced, when hns from the E. amylovora plasmid was overexpressed. A mutation in chromosomal hns of E. amylovora increased amylovoran synthesis, and both mutations retarded symptom formation on immature pears.  相似文献   

4.
Extracts prepared from apple seeds contain a factor (AF) capable of agglutinating cells of Erwinia amylovora. In drop agglutination tests, AF is more active in agglutinating an avirulent, acapsular strain of E. amylovora than a virulent, capsular strain. AF precipitates in agar plates with a receptor derived from boiled cells of avirulent acapsular strain and, therefore, can be located during fractionation by rocket electrophoresis. AF was heat-stable and had a pH optimum for agglutination near congruent with3.6 pH. The agglutination activity was not affected by the presence of Mg(2+), Ca(2+), or EDTA. AF was separated into two fractions (AF I and AF II) by elution from a Bio-Gel P-100 column. The precipitin and agglutination activities associated with AF II were found to be present in a positively charged molecule which was sensitive to treatment with protease and trypsin and, hence, presumably resides in a protein. The approximate molecular weight of AF II was determined to be 12,600 daltons. Besides precipitating the receptor derived from cells of avirulent acapsular strain, AF II was capable of precipitating extracellular polysaccharide from cultures of virulent capsular strain, sodium polygalacturonate, and carboxymethylcellulose. These three polymers also inhibited the agglutination activity associated with AF II. AF II could be replaced by poly-l-lysines in both the precipitin and agglutination assays. In addition, in antigen absorption experiments, poly-l-lysines were found to remove the receptors for AF II from the boiled extracts of avirulent acapsular strain. Based on these observations, it is proposed that the activity of AF II resides in a highly positively charged protein which causes agglutination of bacterial cells by interacting on a charge-charge basis with negatively charged components on the surface of the bacterial cells.  相似文献   

5.
The mechanisms by which Erwinia herbicola inhibits Erwinia amylovora , the fire blight pathogen, were investigated. The optimum pH for growth of Erw. amylovora strain Ea273 in nutrient-yeast extract-glucose broth (NYGB) was 7.0 and growth was markedly reduced at pH values below 6.0. In contrast, the growth rates of Erw. herbicola strains Eh141 and Eh112Y were only slightly reduced at pH levels as low as 4.5, relative to pH 6-8. When Ea273 was grown in NYGB in the presence of Eh141 or Eh112Y, the media became acidic and lower populations of Ea273 were recovered, compared with populations from buffered NYGB. Acidification of plant tissue as a consequence of growth of Erw. herbicola did not occur, however, and thus acid-based inhibition of growth in planta is unlikely. The growth rates of nine strains of Erw. herbicola and their abilities to reduce the pH of NYGB did not correlate with their different abilities to prevent development of fire blight incited by Ea273 in a research apple orchard. When grown in mixed culture, Eh114 and Eh112Y grew to higher populations than Ea273 due to depletion of a nitrogen source needed by Ea273. The ability of 12 strains of Erw. herbicola to produce antibiotics inhibitory to Ea273 on a glucose-asparagine medium correlated with the effectiveness of the strains in suppressing fire blight. A crude preparation of the Eh318 antibiotic delayed development of disease in immature pear fruits incited by Ea273 but not by strain Ea273R318, which is resistant in vitro to the Eh318 antibiotic. Cells of Eh318 protected immature pear fruits more effectively from infection by Ea273 than from the resistant strain Ea273R318.  相似文献   

6.
A protease with a molecular mass of 48 kDa is secreted by the fire blight pathogen Erwinia amylovora in minimal medium. We characterized this activity as a metalloprotease, since the enzyme was inhibited by EDTA and o -phenanthroline. A gene cluster was determined to encode four genes connected to protease expression, including a structural gene (prtA) and three genes (prtD, prtE, prtF) for secretion of the protease, which are transcribed in the same direction. The organization of the protease gene cluster in E. amylovora is different from that in other Gram-negative bacteria, such as Erwinia chrysanthemi, Pseudomonas aeruginosa and Serratia marcescens. On the basis of the conservative motif of metalloproteases, PrtA was identified to be a member of the metzincin subfamily of zinc-binding metalloproteases, and was confirmed to be the 48 kDa protease on gels by sequencing of tryptic peptide fragments derived from the protein. The protease is apparently secreted into the external medium through the type I secretion pathway via PrtD, PrtE and PrtF which share more than 90% identity with the secretion apparatus for lipase of S. marcescens. A protease mutant was created by Tn 5 -insertions, and the mutation localized in the prtD gene. The lack of protease reduced colonization of an E. amylovora secretion mutant labelled with the gene for the green fluorescent protein (gfp) in the parenchyma of apple leaves.  相似文献   

7.
Bogs J  Geider K 《Journal of bacteriology》2000,182(19):5351-5358
Sucrose is an important storage and transport sugar of plants and an energy source for many phytopathogenic bacteria. To analyze regulation and biochemistry of sucrose metabolism of the fire blight pathogen Erwinia amylovora, a chromosomal fragment which enabled Escherichia coli to utilize sucrose as sole carbon source was cloned. By transposon mutagenesis, the scr regulon of E. amylovora was tagged, and its nucleotide sequence was determined. Five open reading frames, with the genes scrK, scrY, scrA, scrB, and scrR, had high homology to genes of the scr regulons from Klebsiella pneumoniae and plasmid pUR400. scrB and scrR of E. amylovora were fused to a histidine tag and to the maltose-binding protein (MalE) of E. coli, respectively. ScrB (53 kDa) catalyzed the hydrolysis of sucrose with a K(m) of 125 mM. Binding of a MalE-ScrR fusion protein to an scrYAB promoter fragment was shown by gel mobility shifts. This complex dissociated in the presence of fructose but not after addition of sucrose. Expression of the scr regulon was studied with an scrYAB promoter-green fluorescent protein gene fusion and measured by flow cytometry and spectrofluorometry. The operon was affected by catabolite repression and induced by sucrose or fructose. The level of gene induction correlated to the sucrose concentration in plant tissue, as shown by flow cytometry. Sucrose mutants created by site-directed mutagenesis did not produce significant fire blight symptoms on apple seedlings, indicating the importance of sucrose metabolism for colonization of host plants by E. amylovora.  相似文献   

8.
9.
The aim of this study was to characterize genetically Bulgarian Erwinia amylovora strains using pulsed-field gel electrophoresis (PFGE) analysis. Fifty E. amylovora strains isolated from different hosts, locations, as well as in different years were analysed by PFGE after XbaI, SpeI, and XhoI digestion of the genomic DNA. The strains were distributed into four groups according to their XbaI-generated profile. About 82% of the strains displayed a PFGE profile identical to that of type Pt2. Three strains belonged to the Central Europe Pt1 type. Two new PFGE profiles, not reported so far, were established--one for a strain isolated from Malus domestica and another for all Fragaria spp. strains. The same grouping of the strains was obtained after analysis of the SpeI digestion patterns. On the basis of PFGE profiles, after XbaI and SpeI digestion, a genetic differentiation between the strains associated with subfamily Maloideae and subfamily Rosoideae was revealed. The presence of more than one PFGE profile in the population of E. amylovora in Bulgaria suggests a multiple source of inoculum.  相似文献   

10.
Erwinia amylovora and Erwinia pyrifoliae cause fire blight and black-shoot blight, respectively, in apples and pears. E. pyrifoliae is less pathogenic and has a narrower host range than that of E. amylovora. Fire blight and black-shoot blight exhibit similar symptoms, making it difficult to distinguish one bacterial disease from the other. Molecular tools that differentiate fire blight from black-shoot blight could guide in the implementation of appropriate management strategies to control both diseases. In this study, a primer set was developed to detect and distinguish E. amylovora from E. pyrifoliae by conventional polymerase chain reaction (PCR). The primers produced amplicons of different sizes that were specific to each bacterial species. PCR products from E. amylovora and E. pyrifoliae cells at concentrations of 104 cfu/ml and 107 cfu/ml, respectively, were amplified, which demonstrated sufficient primer detection sensitivity. This primer set provides a simple molecular tool to distinguish between two types of bacterial diseases with similar symptoms.  相似文献   

11.
Phages able to infect the fire blight pathogen Erwinia amylovora were isolated from apple, pear, and raspberry tissues and from soil samples collected at sites displaying fire blight symptoms. Among a collection of 50 phage isolates, 5 distinct phages, including relatives of the previously described phages phiEa1 and phiEa7 and 3 novel phages named phiEa100, phiEa125, and phiEa116C, were identified based on differences in genome size and restriction fragment pattern. phiEa1, the phage distributed most widely, had an approximately 46-kb genome which exhibited some restriction site variability between isolates. Phages phiEa100, phiEa7, and phiEa125 each had genomes of approximately 35 kb and could be distinguished by their EcoRI restriction fragment patterns. phiEa116C contained an approximately 75-kb genome. phiEa1, phiEa7, phiEa100, phiEa125, and phiEa116C were able to infect 39, 36, 16, 20, and 40, respectively, of 40 E. amylovora strains isolated from apple orchards in Michigan and 8, 12, 10, 10, and 12, respectively, of 12 E. amylovora strains isolated from raspberry fields (Rubus spp.) in Michigan. Only 22 of 52 strains were sensitive to all five phages, and 23 strains exhibited resistance to more than one phage. phiEa116C was more effective than the other phages at lysing E. amylovora strain Ea110 in liquid culture, reducing the final titer of Ea110 by >95% when added at a ratio of 1 PFU per 10 CFU and by 58 to 90% at 1 PFU per 10(5) CFU.  相似文献   

12.
Phages able to infect the fire blight pathogen Erwinia amylovora were isolated from apple, pear, and raspberry tissues and from soil samples collected at sites displaying fire blight symptoms. Among a collection of 50 phage isolates, 5 distinct phages, including relatives of the previously described phages Ea1 and Ea7 and 3 novel phages named Ea100, Ea125, and Ea116C, were identified based on differences in genome size and restriction fragment pattern. Ea1, the phage distributed most widely, had an approximately 46-kb genome which exhibited some restriction site variability between isolates. Phages Ea100, Ea7, and Ea125 each had genomes of approximately 35 kb and could be distinguished by their EcoRI restriction fragment patterns. Ea116C contained an approximately 75-kb genome. Ea1, Ea7, Ea100, Ea125, and Ea116C were able to infect 39, 36, 16, 20, and 40, respectively, of 40 E. amylovora strains isolated from apple orchards in Michigan and 8, 12, 10, 10, and 12, respectively, of 12 E. amylovora strains isolated from raspberry fields (Rubus spp.) in Michigan. Only 22 of 52 strains were sensitive to all five phages, and 23 strains exhibited resistance to more than one phage. Ea116C was more effective than the other phages at lysing E. amylovora strain Ea110 in liquid culture, reducing the final titer of Ea110 by >95% when added at a ratio of 1 PFU per 10 CFU and by 58 to 90% at 1 PFU per 105 CFU.  相似文献   

13.
14.
15.
The plant pathogen Erwinia pyrifoliae has been classified as a separate species from Erwinia amylovora based in part on differences in molecular properties. In this study, these and other molecular properties were examined for E. pyrifoliae and for additional strains of E. amylovora, including strains from brambles (Rubus spp.). The nucleotide composition of the internal transcribed spacer (ITS) region was determined for six of the seven 16S-23S rRNA operons detected in these species with a 16S rRNA gene probe. Each species contained four operons with a tRNA(Glu) gene and two with tRNA(Ile) and tRNA(Ala) genes, and analysis of the operons from five strains of E. amylovora indicated a high degree of ITS variability among them. One tRNA(Glu)-containing operon from E. pyrifoliae Ep1/96 was identical to one in E. amylovora Ea110, but three tRNA(Glu) operons and two tRNA(Ile) and tRNA(Ala) operons from E. pyrifoliae contained unique nucleotide changes. When groEL sequences were used for species-specific identification, E. pyrifoliae and E. amylovora were the closest phylogenetic relatives among a set of 12 bacterial species. The placement of E. pyrifoliae distinct from E. amylovora corroborated molecular hybridization data indicating low DNA-DNA similarity between them. Determination of the nucleotide sequence of plasmid pEP36 from E. pyrifoliae Ep1/96 revealed a number of presumptive genes that matched genes previously found in pEA29 from E. amylovora and similar organization for the genes and origins of replication. Also, pEP36 and pEA29 were incompatible with clones containing the reciprocal origin regions. Finally, the ColE1-like plasmid pEP2.6 from strain Ep1/96 contained sequences found in small plasmids in E. amylovora strains IL-5 and IH3-1.  相似文献   

16.
Structure of the sidechain of lipopolysaccharide from Erwinia amylovora T   总被引:1,自引:0,他引:1  
The sidechain of lipopolysaccharide from Erwinia amylovora T was composed of D-fucose, D-galactose and D-glucose in equimolar proportions. Using NMR spectroscopy, methylation analysis, mass spectrometry, Smith degradation and optical rotation data, the repeat unit was shown to have the following most probable structure: (formula; see text)  相似文献   

17.
It is known that bacteria contain inhibitors of lysozyme activity. The recently discovered Escherichia coli inhibitor of vertebrate lysozyme (Ivy) and its potential interactions with several goose-type (g-type) lysozymes from fish were studied using functional enzyme assays, comparative homology modelling, protein–protein docking, and molecular dynamics simulations. Enzyme assays carried out on salmon g-type lysozyme revealed a lack of inhibition by Ivy. Detailed analysis of the complexes formed between Ivy and both hen egg white lysozyme (HEWL) and goose egg white lysozyme (GEWL) suggests that electrostatic interactions make a dominant contribution to inhibition. Comparison of three dimensional models of aquatic g-type lysozymes revealed important insertions in the β domain, and specific sequence substitutions yielding altered electrostatic surface properties and surface curvature at the protein–protein interface. Thus, based on structural homology models, we propose that Ivy is not effective against any of the known fish g-type lysozymes. Docking studies suggest a weaker binding mode between Ivy and GEWL compared to that with HEWL, and our models explain the mechanistic necessity for conservation of a set of residues in g-type lysozymes as a prerequisite for inhibition by Ivy.  相似文献   

18.
Several analytical techniques such as gas chromatography–mass spectrometry, proton transfer reaction–mass spectrometry and laser photoacoustic detection, were used to characterize the volatiles emitted by Erwinia amylovora and other plant-pathogenic bacteria. Diverse volatiles were found to be emitted by the different bacterial species examined. The distinct blend of volatiles produced by bacteria allowed their identification using an electronic nose (e-nose). The present study reports the discrimination of E. amylovora, the fire blight pathogen, from other plant-associated bacteria using an e-nose based on metal oxide semiconductor sensors. Two different approaches were used for bacterial identification. The first one was the direct comparison of the odorous profiles of unknown bacterial isolates with four selected reference species. The second approach was the use of previously developed databases representing the odorous variability among several bacterial species. Using these two strategies, the e-nose successfully identified the isolates in 87.5 and 62.5% of the cases, respectively. Finally, the profiling of the volatiles emitted by E. amylovora lead to identify some metabolic markers with a potential biological activity in vitro.  相似文献   

19.
Aims: The germination‐arrest factor (GAF) produced by Pseudomonas fluorescens WH6, and identified as 4‐formylaminooxyvinylglycine, specifically inhibits the germination of a wide range of grassy weeds. This study was undertaken to determine whether GAF has antimicrobial activity in addition to its inhibitory effects on grass seed germination. Methods and Results: Culture filtrate from Ps. fluorescens WH6 had little or no effect on 17 species of bacteria grown in Petri dish lawns, but the in vitro growth of Erwinia amylovora, the causal agent of the disease of orchard crops known as fire blight, was strongly inhibited by the filtrate. The anti‐Erwinia activity of WH6 culture filtrate was shown to be due to its GAF content, and a commercially available oxyvinylglycine, 4‐aminoethoxyvinylglycine (AVG), exhibited anti‐Erwinia activity similar to that of GAF. The effects of GAF on Erwinia were reversed by particular amino acids. Conclusions: The biological properties of GAF include a rather specific antimicrobial activity against Erw. amylovora. This may be a general property of oxyvinylglycines as AVG exhibited similar activity. The ability of particular amino acids to reverse GAF inhibition is consistent with a potential effect of this compound on the activity of aminotransferases. Significance and Impact of the Study: The results presented here demonstrate a novel antimicrobial activity of oxyvinylglycines and suggest that GAF and/or GAF‐producing bacteria may have potential for the control of fire blight.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号