首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alzheimer’s disease is characterized pathologically by senile plaques in the brain. The major component of senile plaques is amyloid-β (Aβ), which is cleaved from Alzheimer’s Aβ protein precursor (AβPP). Recently, information regarding the cytoplasmic tail of AβPP has started to emerge, opening up various insights into the physiological roles of AβPP and its pathological role in Alzheimer’s disease. The cytoplasmic domain of AβPP shares the evolutionarily conserved GYENPTY motif, which binds to a number of adaptor proteins containing the phosphotyrosine interaction domain (PID). Among the PID-containing proteins, this article focuses on four groups of adaptor proteins of AβPP: Fe65, X11, mDab1, and c-Jun N-terminal kinase-interacting protein 1b/islet-brain 1. These two authors contributed equally to this study.  相似文献   

2.
The cleavage of amyloid precursor protein (APP) by β- and γ-secretases results in the production of amyloid-β (Aβ) in Alzheimer's disease. We raised two monoclonal antibodies, 2B3 and 2B12, that recognize the β-secretase cleavage site on APP but not Aβ. We hypothesized that these antibodies would reduce Aβ levels via steric hindrance of β-secretase. Both antibodies decreased extracellular Aβ levels from astrocytoma cells, but 2B3 was more potent than 2B12. Levels of soluble sAPPα from the nonamyloidogenic α-secretase pathway and intracellular APP were not affected by either antibody nor were there any effects on cell viability. 2B3 exhibited a higher affinity for APP than 2B12 and its epitope appeared to span the cleavage site, whereas 2B12 bound slightly upstream. Both of these factors probably contribute to its greater effect on Aβ levels. After 60 min incubation at pH 4.0, most 2B3 and 2B12 remained bound to their antigen, suggesting that the antibodies will remain bound to APP in the acidic endosomes where β-secretase cleavage probably occurs. Only 2B3 and 2B12, but not control antibodies, inhibited the cleavage of sAPPα by β-secretase in a cell-free assay where the effects of antibody internalization and intracellular degradation were excluded. 2B3 virtually abolished this cleavage. In addition, levels of C-terminal APP fragments, generated following β-secretase cleavage (βCTF), were significantly reduced in cells after incubation with 2B3. These results strongly suggest that anti-cleavage site IgGs can generically reduce Aβ levels via inhibition of β-secretase by steric hindrance and may provide a novel alternative therapy for Alzheimer's disease.  相似文献   

3.
The amyloid-β precursor protein (APP) was shown to be O-GlcNAcylated 15 years ago, but the effect of this modification on APP processing and formation of the Alzheimer’s disease associated amyloid-β (Aβ) peptide has so far not been investigated. Here, we demonstrate with pharmacological tools or siRNA that O-GlcNAcase and O-GlcNAc transferase regulate the level of O-GlcNAcylated APP. We also show that O-GlcNAcylation increases non-amyloidogenic α-secretase processing, resulting in increased levels of the neuroprotective sAPPα fragment and decreased Aβ secretion. Our results implicate O-GlcNAcylation as a potential therapeutic target for Alzheimer’s disease.  相似文献   

4.
5.
6.
Amyloid plaques are a hallmark of the aging and senile dementia brains, yet their mechanism of origins has remained elusive. A central issue is the regulatory mechanism and identity of α-secretase, a protease responsible for α-processing of amyloid-β precursor protein (APP). A remarkable feature of this enzyme is its high sensitivity to a wide range of cellular stimulators, many of which are agonists for Ca(2+) signaling. This feature, together with previous work in our laboratory, has suggested that calpain, a Ca(2+)-dependent protease, plays a key role in APP α-processing. In this study we report that overexpression of the μ-calpain gene in HEK293 cells resulted in a 2.7-fold increase of the protein levels. Measurements of intracellular calpain enzymatic activity revealed that the calpain overexpressing cells displayed a prominent elevation of the activity compared to wild-type cells. When the cells were stimulated by nicotine, glutamate or phorbol 12,13-dibutylester, the activity increase was even more remarkable and sensitive to calpeptin, a calpain inhibitor. Meanwhile, APP secretion from the calpain overexpressing cells was robustly increased under both resting and stimulated conditions over wild-type cells. Furthermore, cell surface biotinylation experiments showed that μ-calpain was clearly detected among the cell surface proteins. These data together support our view that calpain should be a reasonable candidate for α-secretase for further study. This model is discussed with an interesting fact that three other deposited proteins (tau, spectrin and crystalline) are also the known substrates of calpain. Finally we discuss some current misconceptions in senile dementia research.  相似文献   

7.

Background

sAPPα released after α secretase cleavage of Amyloid Precursor Protein (APP) has several functions including the stimulation of neurite outgrowth although detailed morphometric analysis has not been done. Two domains involved in this function have been described and are present in sAPPβ released at the first step of amyloid peptide cleavage, raising the possibility that sAPPβ could also stimulate neurite outgrowth. We investigated the morphological effects of sAPPα and sAPPβ on primary neurons and identified a key signaling event required for the changes observed.

Methodology/Principal Findings

Final concentrations of 50 to 150 nM bacterial recombinant sAPPα or sAPPβ added to primary neuronal cultures after 1 day in vitro decreased cell adhesion 24 hours later and primary dendrite length 96 hours later. 150 nM sAPPα and sAPPβ induced a similar increase of axon outgrowth, although this increase was already significant at 100 nM sAPPα. These morphological changes induced by sAPPs were also observed when added to differentiated neurons at 5 days in vitro. Real time PCR and immunocytochemistry showed that sAPPα and sAPPβ stimulated Egr1 expression downstream of MAPK/ERK activation. Furthermore, in primary neurons from Egr1 −/− mice, sAPPs affected dendritic length but did not induce any increase of axon length.

Conclusion/Significance

sAPPα and sAPPβ decrease cell adhesion and increase axon elongation. These morphological changes are similar to what has been observed in response to heparan sulfate. The sAPPα/sAPPβ stimulated increase in axon growth requires Egr1 signaling. These data suggest that sAPPβ is not deleterious per se. Since sAPPβ and sAPPα are present in the embryonic brain, these two APP metabolites might play a role in axon outgrowth during development and in response to brain damage.  相似文献   

8.
Aggregation of the amyloid-β peptide (Aβ) into toxic oligomers and amyloid fibrils is linked to the development of Alzheimer’s disease (AD). Mutations of the BRICHOS chaperone domain are associated with amyloid disease and recent in vitro data show that BRICHOS efficiently delays Aβ42 oligomerization and fibril formation. We have generated transgenic Drosophila melanogaster flies that express the Aβ42 peptide and the BRICHOS domain in the central nervous system (CNS). Co-expression of Aβ42 and BRICHOS resulted in delayed Aβ42 aggregation and dramatic improvements of both lifespan and locomotor function compared with flies expressing Aβ42 alone. Moreover, BRICHOS increased the ratio of soluble:insoluble Aβ42 and bound to deposits of Aβ42 in the fly brain. Our results show that the BRICHOS domain efficiently reduces the neurotoxic effects of Aβ42, although significant Aβ42 aggregation is taking place. We propose that BRICHOS-based approaches should be explored with an aim towards the future prevention and treatment of AD.KEY WORDS: Amyloid, Alzheimer’s disease, Protein misfolding, Chaperone  相似文献   

9.
The overproduction and extracellular buildup of amyloid-β peptide (Aβ) is a critical step in the etiology of Alzheimer’s disease. Recent data suggest that intracellular trafficking is of central importance in the production of Aβ. Here we use a neuronal cell line to examine two structurally similar clathrin assembly proteins, AP180 and CALM. We show that RNA interference-mediated knockdown of AP180 reduces the generation of Aβ1-40 and Aβ1-42, whereas CALM knockdown has no effect on Aβ generation. Thus AP180 is among the traffic controllers that oversee and regulate amyloid precursor protein processing pathways. Our results also suggest that AP180 and CALM, while similar in their domain structures and biochemical properties, are in fact dedicated to separate trafficking pathways in neurons.  相似文献   

10.
11.
PITPs [PI (phosphatidylinositol) transfer proteins] bind and transfer PI between intracellular membranes and participate in many cellular processes including signalling, lipid metabolism and membrane traffic. The largely uncharacterized PITP RdgBβ (PITPNC1; retinal degeneration type B β), contains a long C-terminal disordered region following its defining N-terminal PITP domain. In the present study we report that the C-terminus contains two tandem phosphorylated binding sites (Ser(274) and Ser(299)) for 14-3-3. The C-terminus also contains PEST sequences which are shielded by 14-3-3 binding. Like many proteins containing PEST sequences, the levels of RdgBβ are regulated by proteolysis. RdgBβ is degraded with a half-life of 4 h following ubiquitination via the proteasome. A mutant RdgBβ which is unable to bind 14-3-3 is degraded even faster with a half-life of 2 h. In vitro, RdgBβ is 100-fold less active than PITPα for PI transfer, and RdgBβ proteins (wild-type and a mutant that cannot bind 14-3-3) expressed in COS-7 cells or endogenous proteins from heart cytosol do not exhibit transfer activity. When cells are treated with PMA, the PITP domain of RdgBβ interacts with the integral membrane protein ATRAP (angiotensin II type I receptor-associated protein; also known as AGTRAP) causing membrane recruitment. We suggest that RdgBβ executes its function following recruitment to membranes via its PITP domain and the C-terminal end of the protein could regulate entry to the hydrophobic cavity.  相似文献   

12.
The full repertoire of regulatory interactions utilized by human cells to control expression of amyloid-β precursor protein (APP) is still undefined. We investigated here the contribution of microRNA (miRNA) to this regulatory network. Several bioinformatic algorithms predicted miR-101 target sites within the APP 3′-untranslated region (3′-UTR). Using reporter assays, we confirmed that, in human cell cultures, miR-101 significantly reduced the expression of a reporter under control of APP 3′-UTR. Mutation of predicted site 1, but not site 2, eliminated this reporter response. Delivery of miR-101 directly to human HeLa cells significantly reduced APP levels and this effect was eliminated by co-transfection with a miR-101 antisense inhibitor. Delivery of a specific target protector designed to blockade the interaction between miR-101 and its functional target site within APP 3′-UTR enhanced APP levels in HeLa. Therefore, endogenous miR-101 regulates expression of APP in human cells via a specific site located within its 3′-UTR. Finally, we demonstrate that, across a series of human cell lines, highest expression of miR-101 levels was observed in model NT2 neurons.  相似文献   

13.
14.
Summary The Kunitz-type protease inhibitor is one of the serine protease inhibitors. It is found in blood, saliva, and all tissues in mammals. Recently, a Kunitz-type sequence was found in the protein sequence of the amyloid precursor protein (APP). It is known that APP accumulates in the neuritic plaques and cerebrovascular deposits of patients with Alzheimer's disease. Collagen type VI in chicken also has an insertion of a Kunitz-type sequence. To elucidate the evolutionary origin of these insertion sequences, we constructed a phylogenetic tree by use of all the available sequences of Kunitz-type inhibitors. The tree shows that the ancestral gene of the Kunitz-type inhibitor appeared about 500 million years ago. Thereafter, this gene duplicated itself many times, and some of the duplicates were inserted into other protein-coding genes. During this process, the Kunitz-type sequence in the present APP gene diverged from its ancestral gene about 270 million years ago and was inserted into the gene soon after duplication. Although the function of the insertion sequences is unknown, our molecular evolutionary analysis shows that these insertion sequences in APP have an evolutionarily close relationship with the inter--trypsin inhibitor or trypstatin, which inhibits the activity of tryptase, a novel membrane-bound serine protease in human T4+ lymphocytes.Offprint requests to: T. Gojobori  相似文献   

15.
A subset of non-steroidal anti-inflammatory drugs modulates the γ cleavage site in the amyloid precursor protein (APP) to selectively reduce production of Aβ42. It is unclear precisely how these γ-secretase modulators (GSMs) act to preferentially spare Aβ40 production as well as Notch processing and signaling. In an effort to determine the substrate requirements in NSAID/GSM activity, we determined the effects of sulindac sulfide and flurbiprofen on γ-cleavage of artificial constructs containing several γ-secretase substrates. Using FLAG-tagged constructs that expressed extracellularly truncated APP, Notch-1, or CD44, we found that these substrates have different sensitivities to sulindac sulfide. γ-Secretase cleavage of APP was altered by sulindac sulfide, but CD44 and Notch-1 were either insensitive or only minimally altered by this compound. Using chimeric APP constructs, we observed that the transmembrane domain (TMD) of APP played a pivotal role in determining drug sensitivity. Substituting the APP TMD with that of APLP2 retained the sensitivity to γ-cleavage modulation, but replacing TMDs from Notch-1 or ErbB4 rendered the resultant molecules insensitive to drug treatment. Specifically, the GXXXG motif within APP appeared to be critical to GSM activity. Consequently, the modulatory effects on γ-cleavage appears to be substrate-dependent. We hypothesize that the substrate present in the γ-secretase complex influences the conformation of the complex so that the binding site of GSMs is either stabilized or less favorable to influence the cleavage of the respective substrates.  相似文献   

16.
Alzheimer disease (AD) is characterized by the amyloidogenic processing of the amyloid precursor protein (APP), culminating in the accumulation of amyloid-β peptides in the brain. The enzymatic action of the β-secretase, BACE1 is the rate-limiting step in this amyloidogenic processing of APP. BACE1 cleavage of wild-type APP (APPWT) is inhibited by the cellular prion protein (PrPC). Our recent study has revealed the molecular and cellular mechanisms behind this observation by showing that PrPC directly interacts with the pro-domain of BACE1 in the trans-Golgi network (TGN), decreasing the amount of BACE1 at the cell surface and in endosomes where it cleaves APPWT, while increasing BACE1 in the TGN where it preferentially cleaves APP with the Swedish mutation (APPSwe). PrPC deletion in transgenic mice expressing the Swedish and Indiana familial mutations (APPSwe,Ind) failed to affect amyloid-β accumulation, which is explained by the differential subcellular sites of action of BACE1 toward APPWT and APPSwe. This, together with our observation that PrPC is reduced in sporadic but not familial AD brain, suggests that PrPC plays a key protective role against sporadic AD. It also highlights the need for an APPWT transgenic mouse model to understand the molecular and cellular mechanisms underlying sporadic AD.  相似文献   

17.
Alternative splicing of the Alzheimer's amyloid beta protein precursor (ABPP) message leads to the production of several variants of this precursor polypeptide. Two of these variants contain a domain that is highly homologous to members of the Kunitz class of protease inhibitors. In order to initiate a study of the physiological role of this domain, we have produced active ABPP Kunitz inhibitor by constructing and expressing a synthetic gene in E. coli. Nerve growth factor (NGF) deficiency has been suggested as a possible cause of the neural degeneration characteristic of Alzheimer's disease, and trypsin and gamma-NGF are the two enzymes that have been shown to be capable of processing beta-NGF precursor to active, mature beta-NGF in vitro, therefore, the specificity of purified recombinant ABPP Kunitz inhibitor was analyzed with respect to these two proteases. Binding of isolated ABPP Kunitz domain both to trypsin (Ki,app less than 10 nM and to gamma-NGF (Ki,app = 300 nM) was observed. This difference in binding to the two proteases correlates with the approximately 20-fold higher rate observed for in vitro processing of the beta-NGF precursor by trypsin compared to processing by gamma-NGF, indicating that perhaps the inhibitor mimics the interaction of the beta-NGF precursor with proteases. The kallikrein actually responsible for beta-NGF precursor processing in vivo is unknown, but these results suggest that it is capable of being significantly inhibited by exposure to the ABPP Kunitz domain.  相似文献   

18.
Accumulation of amyloid-β peptides (Aβ) in the brain is a common pathological feature of Alzheimer disease (AD). Aggregates of Aβ are neurotoxic and appear to be critically involved in the neurodegeneration during AD pathogenesis. Accumulation of Aβ could be caused by increased production, as indicated by several mutations in the amyloid precursor protein or the γ-secretase components presenilin-1 and presenilin-2 that cause familial early-onset AD. However, recent data also indicate a decreased clearance rate of Aβ in AD brains. We recently demonstrated that Aβ undergoes phosphorylation by extracellular or cell surface-localized protein kinase A, leading to increased aggregation. Here, we provide evidence that phosphorylation of monomeric Aβ at Ser-8 also decreases its clearance by microglial cells. By using mass spectrometry, we demonstrate that phosphorylation at Ser-8 inhibited the proteolytic degradation of monomeric Aβ by the insulin-degrading enzyme, a major Aβ-degrading enzyme released from microglial cells. Phosphorylation also decreased the degradation of Aβ by the angiotensin-converting enzyme. In contrast, Aβ degradation by plasmin was largely unaffected by phosphorylation. Thus, phosphorylation of Aβ could play a dual role in Aβ metabolism. It decreases its proteolytic clearance and also promotes its aggregation. The inhibition of extracellular Aβ phosphorylation, stimulation of protease expression and/or their proteolytic activity could be explored to promote Aβ degradation in AD therapy or prevention.  相似文献   

19.

Background  

The amyloid precursor protein (APP) is transported via the secretory pathway to the cell surface, where it may be cleaved within its ectodomain by α-secretase, or internalized within clathrin-coated vesicles. An alternative proteolytic pathway occurs within the endocytic compartment, where the sequential action of β- and γ-secretases generates the amyloid β protein (Aβ). In this study, we investigated the effects of modulators of endocytosis on APP processing.  相似文献   

20.
Alzheimer’s disease is the fourth biggest killer in developed countries. Amyloid precursor protein (APP) plays a central role in the development of the disease, through the generation of a peptide called Aβ by proteolysis of the precursor protein. APP can function as a metalloprotein and modulate copper transport via its extracellular copper binding domain (CuBD). Copper binding to this domain has been shown to reduce Aβ levels and hence a molecular understanding of the interaction between metal and protein could lead to the development of novel therapeutics to treat the disease. We have recently determined the three-dimensional structures of apo and copper bound forms of CuBD. The structures provide a mechanism by which CuBD could readily transfer copper ions to other proteins. Importantly, the lack of significant conformational changes to CuBD on copper binding suggests a model in which copper binding affects the dimerisation state of APP leading to reduction in Aβ production. We thus predict that disruption of APP dimers may be a novel therapeutic approach to treat Alzheimer’s disease. Australian Society for Biophysics Special Issue: Metals and Membranes in Neuroscience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号