首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human T cell agar colonies can be grown under PHA stimulation from either mature T cells or their E rosette-negative (E-), OKT3- peripheral blood and bone marrow precursors. Colonies comprise a majority of mature E+, OKT3+ cells and a minor (5 to 10%) population of immature E-, T3-, T8-, T4-, DR+, T10+, RFB1+ cells, which upon replating in subculture, can generate secondary colonies of OKT3+, E+, OKT4+, OKT8+ cells. Secondary colony formation can serve as a test for growth requirement of colony precursors, because it depends on the presence of both PHA and a colony-promoting activity (CPA) recovered in PHA-stimulated B + null or T + adherent cell supernatants. CPA production by B + null cells was not affected by their treatment with OKT3 or D66 (T11-like) monoclonal antibodies (MAB) + complement but was abolished by an anti-HLA-DR MAB + complement. However, B cells sorted by panning with the same anti-HLA-DR MAB did not release CPA, demonstrating the requirement of both B cells and null cells for CPA production. Neither IL 2 nor IL 1 could account for B + null cell-derived CPA.  相似文献   

2.
12-O-Tetradecanoylphorbol-13-acetate (TPA) modulates DNA synthesis and differentiation of normal and malignant human lymphoid cells. Using the reverse plaque forming assay and radioimmunoassay, we showed that nontoxic concentrations of TPA (5 to 10 ng/ml) inhibited Ig secretion of peripheral blood lymphocytes. This inhibition was dependent on T lymphocytes and not monocytes; TPA treatment of the B cell-enriched fraction slightly enhanced Ig secretion. Suppression was evident when the proportion of TPA-pretreated T lymphocytes exceeded 50%. TPA-induced suppressor cells were present in both OKT8+ (suppressor/cytotoxic) and OKT4+ ("helper/inducer") subpopulations. The suppression was diminished but not abolished by the irradiation of T lymphocytes. In addition, TPA treatment modulated the expression of OKT4 antigen, whereas the expression of OKT8, 9.6 (sheep erythrocyte receptors) and surface Ig remained unchanged. Modulation of OKT4 was energy dependent and was not blocked by a maximal saturation of TPA receptors at 4 degrees C. We postulate that TPA-induced suppression of Ig secretion is T cell dependent and is likely to be associated with proliferation and activation of OKT8+ and OKT4+ lymphocytes and the induction of OKT4+ suppressor cells.  相似文献   

3.
Interleukin-4 (IL-4), which was originally identified as a B-cell growth factor, has been shown to produce diverse effects on hemopoietic progenitors. The present study investigated the effects of purified recombinant murine IL-4 on early hemopoetic progenitors in methylcellulose culture. IL-4 supported the formation of blast cell colonies and small granulocyte/macrophage (GM) colonies in cultures of marrow and spleen cells of normal mice as well as spleen cells of mice treated with 150 mg/kg 5-fluorouracil (5-FU) 4 days earlier. When the blast cell colonies were individually picked and replated in cultures containing WEHI-3 conditioned medium and erythropoietin (Ep), a variety of colonies were seen, including mixed erythroid colonies, indicating the multipotent nature of the blast cell colonies supported by IL-4. To test whether or not IL-4 affects multipotent progenitors directly, we replated pooled blast cells in cultures under varying conditions. In the presence of Ep, both IL-3 and IL-4 supported a similar number of granulocyte/erythrocyte/macrophage/megakaryocyte (GEMM) colonies. However, the number of GM colonies supported by IL-4 was significantly smaller than that supported by IL-3. When colony-supporting abilities of IL-4 and IL-3 were compared using day-4 post-5-FU spleen and day-2 post-5-FU marrow cells, IL-4 supported the formation of fewer blast cell colonies than did IL-3. IL-4 and IL-6 revealed synergy in support of colony formation from day 2 post-5-FU marrow cells. These results indicate that murine IL-4 is another direct-acting multilineage colony-stimulating factor (multi-CSF), similar to IL-3, that acts on primitive hemopoietic progenitors.  相似文献   

4.
The role of OKT4+ and OKT8+ T-cell subsets was studied in lectin-dependent cell-mediated cytotoxicity (LDCC) against adherent HEp-2 human epipharynx carcinoma target cells. LDCC was evaluated by detachment from the monolayer of [3H]thymidine prelabeled HEp-2 cells in a 24-hr assay with a concanavalin A (Con A) dose of 25 microgram/ml at effector:target cell ratios of 5:1, 25:1, and 50:1. Under these conditions but without Con A considerable natural cell-mediated cytotoxicity (NCMC) was not elicited; however, the cytotoxicity was significantly augmented in the presence of Con A (=LDCC) by sheep erythrocyte rosette-forming T lymphocytes and by both OKT4+ and OKT8+ T-cell fractions. LDCC activity by isolated OKT8+ T cells was superior to that by OKT4+ T cells and unfractionated T lymphocytes. By contrast, addition of either OKT4+ or OKT8+ T cells together with unfractionated T lymphocytes, or OKT4+ and OKT8+ T cells mixed at ratios of 1:1, 1:2, and 2:1, to target cells did not result in major differences in comparison of LDCC activities by these mixed effector cell populations with each other or with that by unfractionated T lymphocytes. Parallel studies were carried out to determine the effect of OKT4+ and OKT8+ T-cell subsets on the Con A-induced proliferation of peripheral blood mononuclear cells (PBMC). While OKT8+ T cells inhibited the mitogenic response to Con A, OKT4+ T lymphocytes had no major effect. A higher responsiveness of the OKT8+ to OKT4+ T-cell subset in LDCC to HEp-2 targets and in Con A-induced lymphocyte proliferation is suggested.  相似文献   

5.
We investigated the origin of leukemic progenitors in a case of the simultaneous occurrence of myelomonocytic leukemia and multiple myeloma (IgG-kappa). At presentation, myeloperoxidase and nonspecific esterase-positive myelomonocytic cells had proliferated up to 12.2 x 10(9)/liter in the peripheral blood. Bone marrow cell differentials revealed the coexistence of myelomonocytic cells (30%) and atypical plasmacytoid cells (26%). Myelomonocytic cells in peripheral blood expressed both myeloid antigens (CD11b, CD13, CD14, CD15, CD33) and T/B-lymphoid antigens (CD2, CD4, CD5, CD7, CD10, PCA-1). Bone marrow mononuclear cells (BMMC) could be divided into PCA-1 strongly positive and PCA-1 weakly positive populations, which were considered to represent myeloma cells and myelomonocytic cells, respectively; the former were CD2-positive (CD2+), CD14-, and CD15-, whereas the latter were CD2+, CD14+, and CD15+. Immunohistochemical analysis revealed that, in addition to plasmacytoid cells, a minority of myelomonocytic cells showed a positive reaction for IgG staining, and production of IgG was observed in the culture supernatant of CD14+ myelomonocytic cells in peripheral blood. Southern blot analysis revealed the presence of two identical rearrangement bands of immunoglobulin heavy chain gene in both BMMC containing myeloma cells and myelomonocytic cells and CD14+ myelomonocytic cells in peripheral blood. In a long-term methylcellulose assay, peripheral blood mononuclear cells produced large compact colonies consisting of macrophages and IgG+ plasmacytoid cells (M phi/P colonies), while BMMC produced a different type of colonies consisting of CD14+ myelomonoblasts, macrophages, and IgG+ plasma cells (Mb/M phi/P colonies) in addition to M phi/P colonies. Recloning experiments showed that primary Mb/M phi/P colonies gave rise to both secondary M phi/P and Mb/M phi/P colonies. These observations strongly suggest that common leukemic progenitors provide both myeloma and myelomonocytic leukemia cells, and the mechanism of "lineage infidelity" is probably involved in the development of their "bilineal" differentiation.  相似文献   

6.
We analyzed the release of activities capable of stimulating the in vitro growth of human hemopoietic progenitor cells by long-term cultured T cell growth factor (TCGF)-dependent human T lymphocytes. Seven cell lines tested produced colony-stimulating activity (CSA) as well as burst-promoting activity (BPA). The CSA stimulated primarily the growth of the cells forming colonies after 14 days of incubation. In addition the supernatants from these seven T-cell lines showed the ability to induce the in vitro growth of mixed granulocyte, erythroid, megakaryocyte, macrophage colonies (CFU-GEMM). The release of hemopoietic factors did not depend on the presence of accessory cells or phytohemagglutinin or serum during the incubation for factor production. In six of the T cell lines the majority of the cells were reactive to the OKT 8 monoclonal antibody (MoAb), whereas one cell line contained mostly OKT 4+ cells. Suppressor activity was detected in three tested OKT 8+ cell lines, while the one OKT 4+ displayed helper activity. All cell lines produced hemopoietic factors with equal efficiency. These results indicate that factors affecting human hematopoiesis are produced by normal T lymphocytes in long-term culture and this property is not related to the helper or suppressor activity of the cultured cells.  相似文献   

7.
The expanded T cell populations of 10 patients with either T gamma lymphocytosis (five patients) or proven chronic T cell malignancy (five patients) were analyzed with respect to functional activity in vitro, including proliferative responses to mitogens, cytotoxic activity (killer [K] and natural killer [NK] cell activity), and regulatory activity on pokeweed mitogen- (PWM) induced immunoglobulin (Ig) synthesis (help and suppression) in comparison with marker phenotypes. In each of the five patients with T gamma lymphocytosis, only one out of three functionally distinct cell types was found: T gamma-K cells, T gamma-S cells, or T gamma-NK/K cells, which mediated K-cell activity, suppressive activity, and both NK and K cell activity, respectively. An expanded T gamma-K cell population was demonstrated in three patients with neutropenia with or without recurrent infections. T gamma-S cells were found in a patient with severe hypogammaglobulinemia, and T gamma-NK/K cells in one patient with asymptomatic lymphocytosis. T gamma-K and T gamma-S cells had a similar surface-marker profile (E+ or E-, Fc gamma+, OKT1-3+4-8+I1-M1-), whereas that of T gamma-NK/K cells was different (E+, Fc gamma+, OKT1-3-4-8-I1+M1+). Longitudinal studies of three untreated patients with T gamma-K lymphocytosis showed that the abnormalities were persistent but not progressive. In contrast, five patients with chronic T cell malignancy (two with T-CLL, two with cutaneous T cell lymphoma [CTCL], and one with T-PLL) all had progressive disease. The neoplastic cells in these cases were E+, Fc gamma-OKT1+4+6- with variable expression of the OKT3 and OKT8 markers. The only functional activity observed in these cells was suppressive activity by OKT3-4+8- cells from a patient with CTCL.  相似文献   

8.
Mast cells have been proposed to originate from diverse sources, including connective tissues, macrophages, T lymphocytes, and hemopoietic cells. Evidence for a hemopoietic origin of mast cells includes the presence of mast cell precursors in spleen colonies and the presence of mast cells in hemopoietic colonies in culture. Here we report a detailed analysis of mouse spleen mixed hemopoietic colonies containing mast cells. All of the colonies in cultures plated at low cell densities were individually removed for analysis by May-Grunwald-Giemsa staining on day 15 of culture. Examination of five dishes which contained a total of 82 colonies showed 16 pure mast cell colonies and 36 mixed mast cell colonies. Sixteen different combinations of cell types were seen and were not distinguishable from each other in situ. The most diverse type of mixed colony contained macrophages (m), neutrophils (n), eosinophils (e), mast cells (Mast), megakaryocytes (M), erythroid cells (E), and blast cells. The clonal origin of mixed mast cell colonies was established by the replating of single cells obtained from blast cell colonies. Individual cells were removed with a micromanipulator, replated, and allowed to grow for 15 days. Cytospin preparations of 10 such colonies showed diverse combinations of cell lineages which were seen in the different types of mixed mast cell colonies described above. Replating studies of mixed mast cell colonies were carried out and a high incidence of replating was seen. Approximately one half of these colonies formed only mast cell colonies upon replating. Further studies showed that pure mast cell colonies could be serially replated four to five times. The replating efficiency of cells in the primary mast cell colonies varied over a wide range (2.5–44%) with an average replating efficiency of 13%. The data also revealed that cells containing metachromatic granules possess significant proliferative capacity. From these studies of pure and mixed mast cell colonies, we concluded (1) that mast cells are in wide variety of types of mixed colonies and that the in situ identification of mixed colonies is unreliable, (2) that mast cells are derived from pluripotent hemopoietic stem cells, and (3) that mast cells with metachromatic granules can have a high proliferating ability.  相似文献   

9.
L-Leucyl-L-leucine methyl ester (Leu-Leu-OMe), a dipeptide condensation product of L-leucine methyl ester generated by human monocytes (M phi) or polymorphonuclear leukocytes, eliminates all natural killer cell (NK) function from mixed lymphocyte populations. In the present studies, the specificity of the action of Leu-Leu-OMe was examined. It was found that a variety of tissue culture cells and tumor lines of nonlymphoid origin were completely resistant to any demonstrable Leu-Leu-OMe-mediated toxicity. Furthermore, the erythroleukemia line K562, the T cell line Molt-4, the B cell lines HS-Sultan and Daudi, and EBV-transformed B cell lines were unaffected by concentrations of this compound that completely eliminated NK cells. Similarly, the vast majority of OKT4+ lymphocytes manifested no significant toxicity after Leu-Leu-OMe exposure. Furthermore, they retained the capacity to proliferate normally in response to allogeneic cells as well as the ability to provide help for the generation of immunoglobulin-secreting cells (ISC). However, Leu-Leu-OMe caused partial depletion of OKT8+ cells from mixed populations of lymphocytes. After such exposure, the remaining OKT8+ cells were still capable of proliferating in mixed lymphocyte cultures, but the suppressive effect of these cells on ISC generation was abolished. Furthermore, both precursors and activated effectors of cytotoxic T lymphocyte (CTL) and activated NK-like activity generated in mixed lymphocyte cultures were eliminated by exposure to low concentrations of Leu-Leu-OMe. Indeed, both OKT4+ and OKT8+ CTL were eliminated by Leu-Leu-OMe. In addition, both peripheral blood M phi and U937 cells, a human cell line with many M phi-like characteristics, were sensitive to Leu-Leu-OMe-mediated toxicity, although only at two- to fivefold higher concentrations than those completely eliminating NK cells. These findings indicate that Leu-Leu-OMe has selective toxicity for NK cells, CTL, and M phi without adverse effects on a variety of other lymphoid or nonlymphoid cell types.  相似文献   

10.
In our previous paper, we demonstrated that anti-D44 MAb can, in the presence of complement, eliminate all the allocytotoxicity generated during a mixed lymphocyte reaction without affecting the alloproliferative response. As approximately 70% of CD4+ cells and 30% of CD8+ will be stained with anti-D44 MAb, we researched the functional role of the D44+ and D44- cells in each of these T cell subsets in the PWM-induced antibody response. We found that most of the helper activity for immunoglobulin (Ig) synthesis was mediated by CD4+ D44+ lymphocytes and that virtually all the suppressive activity was mediated by CD8+ D44- lymphocytes. Surprisingly enough, we noticed that the low level of Ig synthesis induced in B cells by CD4+ D44- lymphocytes could be strongly amplified by the addition of radiosensitive CD8+ lymphocytes, suggesting coexisting opposite immunoregulatory functions within the CD8+ T cell subset. These results, together with previous data, indicate that anti-D44 MAb subdivides T cells into subpopulations with distinct functional repertoires: a CD4+ D44+ helper subpopulation, a CD8+ D44+ cytotoxic subpopulation, and a CD8+ D44- suppressor subpopulation.  相似文献   

11.
The autologous mixed lymphocyte reaction (MLR) is thought to be part of a regulatory role of T cells on B cell function. OKT4+, but not OKT8+, cells can proliferate in response to autologous non-T cells. Moreover, the OKT4+ cell population activated early in the course of autologous MLR functioned as inducer cells for the differentiation of B cells, whereas later in the response, the activated OKT4+ cells were particularly enriched in suppressor cells. A part of the autologous MLR appears to be an important pathway for the activation of feedback suppression mechanisms among cells contained within the OKT4+ populations. Patients with systemic lupus erythematosus (SLE) were studied with regard to the following OKT4+ cell functions in vitro after activation in the autologous MLR: a) proliferative response, and b) helper and suppressor activities for differentiation of B cells. A marked reduction in the proliferative response of OKT4+ cells was observed in SLE patients. SLE OKT4+ cells activated in the autologous MLR could function as helper cells but could not exert any suppressor activity. This OKT4+ cell abnormality was present regardless of the disease activity, and occurred in the absence of autoantibodies including anti-T cell antibodies. Instead, SLE anti-T cell antibodies could preferentially eliminate cells bearing the OKT8+ phenotype characteristic of suppressor cells in populations of normal T cells. These results suggest that the defect in the suppressor circuits among OKT4+ cell populations is intrinsic to SLE lymphocytes and that the OKT8+ suppressor T cell defect is caused by antibodies produced by the B cells of SLE patients.  相似文献   

12.
The 10D1 Ag is a 90-kDa homodimeric molecule specifically expressed on a subpopulation of human T cells, and is involved in an alternative pathway of T cell activation. In the present study, we have examined the expression and function of the 10D1 Ag on human thymocytes. Three-color FMF analysis showed that the 10D1 Ag was highly expressed on minor but distinct subpopulations of double-negative and CD4 single-positive thymocytes, and weakly on a part of double-positive thymocytes, but not on CD8 single-positive thymocytes. In double-negative thymocytes, the vast majority of 10D1+ cells were immature thymocytes of CD7+2+3- phenotype. Interestingly, 10D1 mAb could induce the proliferation of CD4 single-positive thymocytes in the presence of goat anti-mouse Ig to cross-link the 10D1 Ag. The treatment of thymocytes with OKT4 mAb plus C but not with OKT8 mAb plus C totally abrogated the proliferative response induced by 10D1 mAb, indicating that the 10D1-responsible thymocytes were of CD4+8- phenotype. This 10D1 mAb-induced thymocyte proliferation was perfectly dependent on the endogenous IL-2/IL-2R system since a complete inhibition was observed with anti-IL-2 and anti-IL-2R mAb. The proliferating CD4 single positive thymocytes predominantly expressed the IL-2R alpha (p55) but not a detectable level of the IL-2R beta (p75). These results indicate that, although the 10D1 Ag can be detected on the CD7+2+3-4-8- thymocytes, its functional expression is restricted to a minor more mature CD4+ thymocyte population as well as in peripheral blood T cells, and the implications of these findings are discussed.  相似文献   

13.
Surface phenotypic markers and the function of lymphocytes in patients affected with the X-linked lymphoproliferative syndrome (XLP) were studied. This syndrome is characterized by a defective response to infection with Epstein Barr virus (EBV). Normal numbers of B and T cells were detected with anti-Ig and monoclonal OKT3 antisera, respectively. T cell subset values, however, were persistently altered: cells reacting with OKT8 were significantly elevated in five of nine patients, accompanied by a slight decrease in the percentage of OKT4-positive cells, leading to abnormally low OKT4 to OKT8 ratios. One patient had a high OKT4 to OKT8 ratio due to low number of OKT8-positive cells. Lymphocytes from patients showed normal proliferation after stimulation with T and B cell mitogens. In contrast, Ig synthesis by lymphocytes after stimulation with B cell mitogens was markedly deficient: low or undetectable levels of one or all classes of Ig were detected, whereas cell lines established from EBV-infected B lymphocytes from patients produced normal quantities of Ig. These studies imply immune regulatory impairments in the patient with XLP.  相似文献   

14.
To better understand the immunologic effects of lymphoid irradiation (LI), blood levels of T cell subsets were sequentially monitored in 15 patients before, during, and after irradiation treatment for Hodgkin's disease. Blood levels of all lymphocytes, T cells, and T cell subsets (defined by OKT4 and OKT8) fell dramatically and in similar proportions during early therapy, reaching levels less than 20 to 25% of control by the completion of mantle irradiation, and continuing at very depressed levels through the completion of therapy. Blood levels of OKT8-reactive (OKT8+) cells returned to pretreatment levels (402 +/- 38/mm3 vs 360 +/- 32/mm3 pretreatment) between 6 to 8 mo after LI, whereas blood levels of OKT4-reactive (OKT4+) cells returned to only 42% of previous values (242 +/- 22/mm3 vs 584 +/- 34/mm3 pretreatment) over the same period. The pre-LI ratio of OKT4+ to OKT8+ cells was 1.85 +/- 0.24 and fell to 0.65 +/- 0.05 between 6 to 8 mo after LI. During the recovery period, discrepancies of 208 +/- 32 cells/mm3 (3 to 5 months post LI) and 198 +/- 32 cells/mm3 (6 to 8 mo post LI) developed between the blood levels of OKT3+ cells and the sum of OKT4+ and OKT8+ cells. This suggests the emergence of OKT4+/OKT3-, OKT8+/OKT3-, and/or OKT4+/OKT8+ cells. In five patients, the sum of OKT4+ and OKT8+ cells was compared with the number of cells simultaneously co-stained by OKT4 and OKT8. It appeared that a significant proportion of the cells were OKT4+/OKT3- and OKT8+/OKT3- lymphocytes. We concluded that LI is similarly cytotoxic to peripheral blood T cell subpopulations. The reversed ratio after LI is a result of a slower repopulation of the peripheral blood by OKT4+ cells relative to OKT8+ cells. T cells after LI show a high degree of antigenic immaturity. It is postulated that the bone marrow that lies outside the fields of treatment and contains predominantly immature OKT8+/OKT3- cells is a major source of T cells repopulating the peripheral blood after LI.  相似文献   

15.
Monoclonal antibodies (mAb's) recognizing the CD3 T-cell differentiation antigen induced the generation of suppressor cells. These cells inhibited (1) proliferative responses of human peripheral blood mononuclear cells (PBMC) to PHA and allogeneic cells in mixed leukocyte culture; (2) proliferative responses of purified E-rosette-negative cells to Staphylococcus aureus Cowans I; and (3) de novo immunoglobulin synthesis and secretion in the pokeweed mitogen (PWM)-induced differentiation system. Monoclonal antibodies recognizing other T-cell differentiation antigens (anti-Leu 2a, anti-Leu 3a, and anti-Leu 5) did not induce the generation of suppressor cells, even at very high antibody concentrations. Statistically significant differences were not observed in the ability of the OKT3 and anti-Leu 4 mAb's to induce suppressor cells. Monocytes were not required for the generation of anti-CD3-induced suppressor cells. F(ab')2 fragments of the OKT3 mAb's were equally effective when compared with intact antibody molecules in inducing suppressor cells, although they did not induce proliferative responses. Proliferation was not required for the induction of suppressor cells. Irradiation (2500 rad) of PBMC before incubation with the anti-CD3 mAb did not affect the generation of suppressor cells. Furthermore, anti-CD3-induced suppressor cells were radioresistant. Addition of recombinant IL-2 to the cultures of responding cells and suppressor cells did not reverse the suppression. In vitro treatment of anti-CD3-induced suppressor cells with either the OKT4 mAb plus complement or the OKT8 mAb plus complement partially decreased the suppression of proliferative responses of PBMC to PHA or allogeneic cells in mixed lymphocytes culture. However, treatment with both OKT4 and OKT8 mAb's plus complement or the OKT11 mAb plus complement completely abolished the suppression. These results suggest that the suppressor cells are of the T11+T4+T8- and T11+T4-T8+ phenotypes. In other experiments, T4+T8- and T8+T4- cells were isolated from PBMC treated for 48 hr with anti-CD3 mAbs. Both these two populations significantly inhibited proliferative responses of autologous PBMC to PHA and de novo immunoglobulin synthesis and secretion by mixtures of purified T4 and B cells from normal donors, in the PWM-induced differentiation system. These results demonstrate that anti-CD3-induced suppressor cells are of the T4 or T8 phenotype. Treatment of purified T4+T8- and T8+T4- cells with anti-CD3 mAb's resulted in the generation of suppressor cells, suggesting that the precursors of the anti-CD3-induced suppressor cells can belong to either of these two populations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Summary The reactivity with monoclonal antibodies (MoAbs) specific for myelomonocytic cells and the expression of a particular esterase isoenzyme were analyzed in 159 cases of acute myeloid leukemias. The incidence of positivity of 16 MoAbs (MCS-2, MCS-1, OKM1, My-1, Leu-M1, Leu-M3, CA-2-38, MY4, MY7, MY8, MY9, VIM-D2, VIM-D5, Mo1, Mo2, 63D3) was studied using the indirect immunofluorescence technique. A carboxylic esterase isoenzyme which can be inhibited completely and selectively by sodium fluoride (NaF) was demonstrated by isoelectric focusing on horizontal polyacrylamide gels. This NaF-sensitive isoenzyme indicated the monocytic origin of the blast cells as it is specific for this cell lineage. Prior to the immunological-isoenzymatic analysis all cases were categorized into two subtypes according to morphological criteria of the FAB classification system: 147 cases of AML (FAB M1-3) and 12 cases of AMMoL/AMoL (FAB M4/5). However, 15 out of 147 cases of AML expressed the NaF-sensitive isoenzyme and were therefore assigned to the group AMMoL/AMoL. Likewise, 1 case, diagnosed morphologically as AMMoL, was negative for this marker isoenzyme and was assigned to the other leukemia subtype. The incidence of reactivity varied widely for the MoAbs tested regarding the overall results on all cases and the positivity on cases of either AML or AMMoL/AMoL. The MoAbs were grouped into four classes depending on the pattern of reactivity with myeloblastic or monoblastic or both subtypes of acute myeloid leukemia. The MoAbs MCS-2, MY7, Leu-M1, and MY9 detected the vast majority of cases with either myelocytic or monocytic involvement (group-I: pan-myelomonocytic reactivity). The MoAbs MCS-1, OKM1, VIM-D5, and Mo1 showed a predominance in their staining pattern for monocytic variants, but were also positive on a substantial percentage of nonmonocytic cases (group-II: predominantly reactive with monocytic, but also myelocytic cases). The MoAbs Leu-M3, MY4, VIM-D2, Mo2, and MY8 reacted with the large majority of AMMoL/AMoL cases and with a small number of AML cases (group-III: monocyte-specific reactivity). The MoAbs of group-I are useful in differentiating acute lymphoid from acute myeloid leukemias. The MoAbs of group-III, and to a lower extent those of group-II, will be of considerable value in the subtyping of acute myeloid leukemias. The results show that (1) accuracy of leukemia classification might not always be achieved by morphology alone, but that immunological and biochemical aspects should be included as well, and (2) several MoAbs are very useful tools for classification and subtyping of acute myeloid leukemias.  相似文献   

17.
OKT3 monoclonal antibody, a human T cell mitogen, induced interferon production by cultured mononuclear cells at 10(-11) M concentrations. Interferon was secreted only under conditions wherein OKT3 was mitogenic, and production was correlated with cell proliferation. Thus, like mitogenesis, interferon secretion reached a peak 3 days after OKT3 stimulation, was inhibited by a factor(s) in human serum, and required 1000 times higher concentrations of Fab and F(ab')2 fragments of OKT3 for induction. The interferon was most likely of "gamma" (immune) type, because pH 2 and 56 degrees C treatments denatured it, whereas anti-alpha or -beta interferon antibodies did not. Mononuclear cells were fractionated into subpopulations that contained OKT4+ cells (helper/inducer T cells), OKT8+ cells (cytotoxic/suppressor T cells), and OKM1+ cells (monocytes) by combining sheep red blood cell rosetting and complement-mediated lysis using monoclonal antibodies against specific cell types. Both OKT4+ and OKT8+ cells proliferated upon OKT3 stimulation with the absolute requirement of OKM1+ cells. However, OKT4+ cells plus OKM1+ cells were necessary for the secretion of interferon. Studies with selective pretreatments with mitomycin C suggested that gamma-interferon was secreted by the OKT4+ cells and that the OKM1+ population subserved an accessory function.  相似文献   

18.
We investigated the immunological status of seven normal, control Mangabey monkeys and 23 Mangabey monkeys experimentally inoculated with Mangabey-origin Mycobacterium leprae. Clinically, these monkeys were divided into three broad groups: a recently inoculated group, a resistant group, and a susceptible group. The resistant group included 11 monkeys, seven of which showed no clinical sign of disease to date and four of which had shown local disease that partially regressed spontaneously. The susceptible group included eight monkeys, five of which have disseminated disease and three with local but stable disease. When peripheral blood mononuclear cells of these monkeys were cultured with Dharmendra-type human lepromin, one of seven normal monkeys, four of four of the recently inoculated group, seven of 10 resistant monkeys, and three of eight susceptible monkeys showed significant responses. In this experimental monkey model, we studied possible regulatory mechanisms by using OKT4- and OKT8-enriched lymphocytes, and Fc receptor-positive (FcR+) and FcR- monocyte (M phi) subsets. The OKT4+ subset was the main lepromin-responsive cell type. High percentages of OKT8+ cells showed a good negative correlation with the lymphoproliferative responses of T-enriched cells supplemented with unfractionated M phi. But the depletion of OKT8+ cells could not increase the response of nonresponding monkeys' lymphocytes. The resistant group and susceptible group did not differ in their percentages of OKT8+ cells. Because OKT8+ cells negatively regulate the response of lymphocytes and OKT4+ cells are the main responding cells, OKT8+ cells are phenotypically and functionally suppressor cells and OKT4+ cells are the helper/inducer cell population in this system. The FcR- M phi population mainly includes antigen-presenting activity, but high percentages of FcR- M phi showed a significant negative correlation with lymphoproliferative responses in the resistant group. A weak but significant lymphocyte response to Dharmendra lepromin was obtained by depleting FcR+ M phi from cultures of some susceptible monkeys, whereas lymphocytes of other susceptible monkeys remained unresponsive to lepromin. By these criteria, we could find an array of immunological defects in monkeys with experimental leprosy. The data suggest that some immunological defects may exist in the OKT4+ lymphocytes or FcR- M phi of leprosy monkeys.  相似文献   

19.
We recently identified two types of mast cell colonies derived from murine peritoneal cells: type 1 and type 2. Type 1 mast cell colonies consisted of berberine sulfate(+)- safranin(+) connective tissue-type mast cells (CTMC) and were derived from mature CTMC in the heaviest fraction obtained by Percoll density gradient centrifugation. In contrast, type 2 mast cell colonies consisted of alcian blue(+)- berberine sulfate(-)- safranin(-) mucosal mast cells (MMC) and were derived from immature progenitors in low density fractions. We replated a total of 60 type 1 and 60 type 2 mast cell colonies and examined their capability for producing secondary colonies. Although all of the primary colonies yielded secondary colonies, the replating efficiencies of individual colonies varied over a wide range. Cumulative distributions of secondary colonies from both type 1 and type 2 primary colonies could be fitted well by gamma distributions obtained by computer simulation. These findings are in agreement with the stochastic model for CTMC- and MMC proliferation. Cytological analyses of secondary colonies from primary type 1 colonies revealed heterogeneous distributions of alcian blue(+)- safranin(-)- berberine sulfate(-) mast cells, suggesting that transdifferentiation from mature CTMC to safranin(-)- berberine sulfate(-) mast cells is also governed by stochastic mechanisms.  相似文献   

20.
A mAb, 10D1, was obtained by fusing spleen cells from BALB/c mice immunized with a CD3/TCR- human T cell line, P12/ichikawa, to mouse myeloma cells, P3X63-Ag8-653. 10D1 mAb is specific for T cells in that it reacted with all the T cell lines tested, but not with B or myeloid cell lines. A small fraction of normal peripheral blood T cells, preferentially CD4+, was also reactive with 10D1 mAb. Biochemical studies revealed that 10D1 mAb recognizes a disulfide-linked homodimeric molecule composed of 90-kDa polypeptide. 10D1 mAb induced a substantial proliferation of peripheral blood T cells when cross-linked with goat anti-mouse Ig antibody. The elimination of CD4+ cells totally abrogated the proliferative response induced by 10D1 mAb, whereas the elimination of CD8+ cells rather enhanced it. The proliferative response of peripheral blood T cells induced by 10D1 mAb was almost completely inhibited after modulation of the CD3/TCR complex with anti-CD3 mAb. In addition, a prompt increase in intracellular [Ca2+] was observed in a CD3+ T cell line, Jurkat but not in its surface CD3- mutant when 10D1 mAb was added. These results indicate that the 10D1 molecule is involved in a novel pathway of human CD4+ T cell activation, which is associated with the CD3/TCR-mediated pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号