共查询到20条相似文献,搜索用时 15 毫秒
1.
Counterflow centrifugation with continuous monitoring of the output for cell number and cell scatter was used to separate low density (d less than 1.070 g/ml) human bone marrow cells in two fractions: one containing the majority of small size lymphocytes and the other the majority of the larger sized committed progenitor cells. The recovery of the pluripotent stem cells (CFU-GEMM) in the large cell fraction was complete. The mitogenic reactivity of this putative stem cell fraction had decreased to 6% and 11%, of the original value as measured with phytohemagglutinin stimulation and one way mixed lymphocytic culture respectively. Counterflow centrifugation offers a physical separation technique, by which the majority of the immunoreactive cells can be separated from the pluripotent hematopoietic stem cells. 相似文献
3.
Cancer stem cells (CSCs) are capable of continuous proliferation and self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. CSCs are considered derived from normal stem cells affected by the tumor microenvironment although the mechanism of development is not clear yet. In 2007, Yamanaka's group succeeded in generating Nanog mouse induced pluripotent stem (miPS) cells, in which green fluorescent protein (GFP) has been inserted into the 5'-untranslated region of the Nanog gene. Usually, iPS cells, just like embryonic stem cells, are considered to be induced into progenitor cells, which differentiate into various normal phenotypes depending on the normal niche. We hypothesized that CSCs could be derived from Nanog miPS cells in the conditioned culture medium of cancer cell lines, which is a mimic of carcinoma microenvironment. As a result, the Nanog miPS cells treated with the conditioned medium of mouse Lewis lung carcinoma acquired characteristics of CSCs, in that they formed spheroids expressing GFP in suspension culture, and had a high tumorigenicity in Balb/c nude mice exhibiting angiogenesis in vivo. In addition, these iPS-derived CSCs had a capacity of self-renewal and expressed the marker genes, Nanog, Rex1, Eras, Esg1 and Cripto, associated with stem cell properties and an undifferentiated state. Thus we concluded that a model of CSCs was originally developed from miPS cells and proposed the conditioned culture medium of cancer cell lines might perform as niche for producing CSCs. The model of CSCs and the procedure of their establishment will help study the genetic alterations and the secreted factors in the tumor microenvironment which convert miPS cells to CSCs. Furthermore, the identification of potentially bona fide markers of CSCs, which will help the development of novel anti-cancer therapies, might be possible though the CSC model. 相似文献
4.
Introduction (1) Human embryonic stem (ES) cells are pluripotent but are difficult to be used for therapy because of immunological, oncological and ethical barriers. (2) Pluripotent cells exist in vivo, i.e., germ cells and epiblast cells but cannot be isolated without sacrificing the developing embryo. (3) Reprogramming to pluripotency is possible from adult cells using ectopic expression of OKSM and other integrative and non-integrative techniques. (4) Hurdles to overcome include i.e stability of the phenotype in relation to epigenetic memory. Sources of data We reviewed the literature related to reprogramming, pluripotency and fetal stem cells. Areas of agreement (1) Fetal stem cells present some advantageous characteristics compared with their neonatal and postnatal counterparts, with regards to cell size, growth kinetics, and differentiation potential, as well as in vivo tissue repair capacity. (2) Amniotic fluid stem cells are more easily reprogrammed to pluripotency than adult fibroblast. (3) The parental population is heterogeneous and present an intermediate phenotype between ES and adult somatic stem cells, expressing markers of both. Areas of controversy (1) It is unclear whether induced pluripotent stem (iPS) derived from amniotic fluid stem cells are fully or partially reprogrammed. (2) Optimal protocols to ensure highest efficiency and phenotype stability remains to be determined. (3) The “level” of reprogramming, fully vs partial, of iPS derived from amniotic fluid stem cells remain to be determined. Growing points Banking of fully reprogrammed cells may be important both for (1) autologous and allogenic applications in medicine, and (2) disease modeling. 相似文献
6.
BackgroundDopamine neurons derived from induced pluripotent stem cells have been widely studied for the treatment of Parkinson's disease. However, various difficulties remain to be overcome, such as tumor formation, fragility of dopamine neurons, difficulty in handling large numbers of dopamine neurons, and immune reactions. In this study, human induced pluripotent stem cell-derived precursors of dopamine neurons were encapsulated in agarose microbeads. Dopamine neurons in microbeads could be handled without specific protocols, because the microbeads protected the fragile dopamine neurons from mechanical stress. MethodshiPS cells were seeded on a Matrigel-coated dish and cultured to induce differentiation into a dopamine neuronal linage. On day 18 of culture, cells were collected from the culture dishes and seeded into U-bottom 96-well plates to induce cell aggregate formation. After 5 days, cell aggregates were collected from the plates and microencapsulated in agarose microbeads. The microencapsulated aggregates were cultured for an additional 45 days to induce maturation of dopamine neurons. ResultsApproximately 60% of all cells differentiated into tyrosine hydroxylase-positive neurons in agarose microbeads. The cells released dopamine for more than 40 days. In addition, microbeads containing cells could be cryopreserved. ConclusionhiPS cells were successfully differentiated into dopamine neurons in agarose microbeads. General significanceAgarose microencapsulation provides a good supporting environment for the preparation and storage of dopamine neurons. 相似文献
7.
Human pluripotent stem cells(hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are promising sources for hematopoietic cells due to their unlimited growth capacity and the pluripotency. Dendritic cells(DCs), the unique immune cells in the hematopoietic system, can be loaded with tumor specific antigen and used as vaccine for cancer immunotherapy. While autologous DCs from peripheral blood are limited in cell number, hPSC-derived DCs provide a novel alternative cell source which has the potential for large scale production. This review summarizes recent advances in differentiating hPSCs to DCs through the intermediate stage of hematopoietic stem cells. Step-wise growth factor induction has been used to derive DCs from hPSCs either in suspension cultureof embryoid bodies(EBs) or in co-culture with stromal cells. To fulfill the clinical potential of the DCs derived from hPSCs, the bioprocess needs to be scaled up to produce a large number of cells economically under tight quality control. This requires the development of novel bioreactor systems combining guided EB-based differentiation with engineered culture environment. Hence, recent progress in using bioreactors for hPSC lineage-specific differentiation is reviewed. In particular, the potential scale up strategies for the multistage DC differentiation and the effect of shear stress on hPSC differentiation in bioreactors are discussed in detail. 相似文献
8.
Human induced pluripotent stem cells (iPSCs) are potential renewable sources of hepatocytes for drug development and cell therapy. Differentiation of human iPSCs into different developmental stages of hepatic cells has been achieved and improved during the last several years. We have recently demonstrated the liver engraftment and regenerative capabilities of human iPSC-derived multistage hepatic cells in vivo. Here we describe the in vitro and in vivo activities of hepatic cells derived from patientspecific iPSCs, including multiple lines established from either inherited or acquired liver diseases, and discuss basic and clinical applications of these cells for disease modeling, drug screening and discovery, gene therapy and cell replacement therapy.Key words: induced pluripotent stem cells (iPSCs), hepatic differentiation, liver ngraftment, disease modeling, drug testing, alpha-1 antitrypsin, liver cirrhosis, hepatocellular carcinoma, cell therapy 相似文献
9.
Microglia are known to play essential roles in the development, progression and treatment of diverse neurodegenerative diseases in the central nervous system, including the retina, brain and spinal cord. Recently, brain-induced microglia-like cells (iMGs) have been generated from human pluripotent stem cells (hPSCs); however, retinal microglia have yet to be developed in vitro. In this study, by mimicking in vivo microglial development, we established a simplified approach to differentiate hPSCs into high purity (>90%) iMGs. The iMGs express microglia-specific markers, release cytokines upon stimulation, and are capable of phagocytizing bacteria. When co-cultured with three-dimensional human retinal organoids (hROs), iMGs migrated into the hROs, tended to differentiate into resident retinal microglia, and simultaneously induced apoptosis in some neural cells. Notably, the resident iMGs in the hROs formed sparse web-like structures beneath the photoreceptor cell layer, resembling microglia’s orientation in human retina. In conclusion, we developed a simplified and efficient method to generate microglia from human pluripotent stem cells, and we report the first derivation of retinaresident microglia in vitro, providing a new source of human retinal microglia for developmental and disease studies and regenerative therapeutics. 相似文献
10.
Human induced pluripotent stem cells (iPSCs) are potential renewable sources of hepatocytes for drug development and cell therapy. Differentiation of human iPSCs into different developmental stages of hepatic cells has been achieved and improved during the last several years. We have recently demonstrated the liver engraftment and regenerative capabilities of human iPSC-derived multistage hepatic cells in vivo. Here we describe the in vitro and in vivo activities of hepatic cells derived from patient specific iPSCs, including multiple lines established from either inherited or acquired liver diseases, and discuss basic and clinical applications of these cells for disease modeling, drug screening and discovery, gene therapy and cell replacement therapy. 相似文献
11.
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), with focal T lymphocytic infiltration and damage of myelin and axons. The underlying mechanism of pathogenesis remains unclear and there are currently no effective treatments. The development of neural stem cell (NSC) transplantation provides a promising strategy to treat neurodegenerative disease. However, the limited availability of NSCs prevents their application in neural disease therapy. In this study, we generated NSCs from induced pluripotent stem cells (iPSCs) and transplanted these cells into mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. The results showed that transplantation of iPSC-derived NSCs dramatically reduced T cell infiltration and ameliorated white matter damage in the treated EAE mice. Correspondingly, the disease symptom score was greatly decreased, and motor ability was dramatically rescued in the iPSC-NSC-treated EAE mice, indicating the effectiveness of using iPSC-NSCs to treat MS. Our study provides pre-clinical evidence to support the feasibility of treating MS by transplantation of iPSC-derived NSCs. 相似文献
14.
Postnatal T-suppressor cells have been detected in a number of experimental systems. They have been shown to inhibit humoral responses, proliferation in a mixed-lymphocyte reaction and the induction of killer cells. The suppressor function observed in the postnatal mouse does not appear to be antigen specific and its ontogeny may be influenced by other cell types and by serum factors such as α-fetoprotein. We have detected a nonadherent, radioresistant splenic T cell present in neonatal mice ranging in age from 1 to 9 days which can nonspecifically suppress killer cell induction. This suppressor cell must be cultured in vitro in order to function, but it does not require alloantigen to be induced. Adult spleen cells tested in the same system yield antigen-specific T-cell suppression. Our results suggest that the nonspecific suppressor detectable in 1- to 9-day-old mice disappears in adult life, and is replaced by antigen-specific suppressors. The biological role of these suppressors is discussed. 相似文献
15.
A pluripotent, karyotypically normal, male culture line ESC-BLC 1 of embryonal stem cells was established from delayed mouse blastocysts of strain 129/ter Sv. The cell line was isolated after cultivation of inner cell mass cells on X-irradiated feeder layer of mouse embryonal fibroblasts. The pluripotent status of the cell line was confirmed by in vivo and in vitro differentiation. For in vivo differentiation, cells were injected subcutaneously into syngeneic mice. The resulting tumors contained various tissues, derivatives of all three primary germ layers. In vitro cultivated pluripotent stem cells differentiated into endoderm-like, neuronal-like and tubular structures. Determination of alkaline phosphatase in cell line ESC-BLC 1 yielded a high specific activity; G-banding of metaphases revealed a normal, male karyotype. 相似文献
16.
To identify cell-surface markers specific to human cardiomyocytes, we screened cardiovascular cell populations derived from human embryonic stem cells (hESCs) against a panel of 370 known CD antibodies. This screen identified the signal-regulatory protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population. Cell sorting with an antibody against SIRPA allowed for the enrichment of cardiac precursors and cardiomyocytes from hESC/hiPSC differentiation cultures, yielding populations of up to 98% cardiac troponin T-positive cells. When plated in culture, SIRPA-positive cells were contracting and could be maintained over extended periods of time. These findings provide a simple method for isolating populations of cardiomyocytes from human pluripotent stem cell cultures, and thereby establish a readily adaptable technology for generating large numbers of enriched cardiomyocytes for therapeutic applications. 相似文献
18.
Malignant lymphomas occurring in patients with AIDS are usually derived from the B-cell lineage while T-cell malignant lymphomas are very rare in these patients. We report a HIV seropositive 29-year-old homosexual man in whom cervical lymph node biopsy showed an atypical lymphoproliferative process. On morphological and paraffin section immunohistochemical grounds the possibility of Hodgkin's disease (HD) mixed cellularity was initially suggested, but frozen section immunohistochemical studies revealed that the cellular infiltrate exhibited an aberrant pan T immunophenotype and consequently the diagnosis of peripheral T-malignant lymphomas (T-ML) was made. However, genotypic studies would be required to definitely confirm this diagnosis, in such cases. In our case, varying numbers of small and medium-sized cells were positive for both Leu 3/CD4 and Leu 2/CD8 whereas some large cells reacted only with Leu 3/CD4 antibody. Some medium-sized, large and giant cells showed cytoplasmic positivity for Leu M1/CD15. Furthermore, the positivity of many large and giant cells with the activation markers BerH2/CD30, Ki-1/CD30, Tac/CD25 and HLA-DR suggested an activation state for these cells. Our findings emphasize the usefulness of frozen section immunohistochemical methods in order to investigate the spectrum of lymphoid malignancies occurring in HIV seropositive patients, and confirm results of previous studies which stressed the diagnostic difficulties that may appear in distinguishing HD from peripheral T-ML. 相似文献
19.
Advanced age is associated with decreased stem cell activity. However, the effect of aging on the differentiation capacity of induced pluripotent stem (iPS) cells into cardiovascular cells has not been fully clarified. We investigated whether iPS cells derived from young and old mice are equally capable of differentiating into vascular progenitor cells, and whether these cells regulate vascular responses in vivo. iPS cells from mouse embryonic fibroblasts (young) or 21 month-old mouse bone marrow (old) were used. Fetal liver kinase-1 positive (Flk-1(+)) cells, as a vascular progenitor marker, were induced after 3 to 4 days of culture from iPS cells derived from young and old mice. These Flk-1(+) cells were sorted and shown to differentiate into VE-cadherin(+) endothelial cells and α-SMA(+) smooth muscle cells. Tube-like formation was also successfully induced in both young and old murine Flk-1(+) cells. Next, hindlimb ischemia was surgically induced, and purified Flk-1(+) cells were directly injected into ischemic hindlimbs of nude mice. Revascularization of the ischemic hindlimb was significantly accelerated in mice transplanted with Flk-1(+) cells derived from iPS cells from either young or old mice, as compared to control mice as evaluated by laser Doppler blood flowmetry. The degree of revascularization was similar in the two groups of ischemic mice injected with iPS cell-derived Flk-1(+) cells from young or old mice. Transplantation of Flk-1(+) cells from both young and old murine iPS cells also increased the expression of VEGF, HGF and IGF mRNA in ischemic tissue as compared to controls. iPS cell-derived Flk-1(+) cells differentiated into vascular progenitor cells, and regulated angiogenic vascular responses both in vitro and in vivo. These properties of iPS cells derived from old mice are essentially the same as those of iPS cells from young mice, suggesting the functionality of generated iPS cells themselves to be unaffected by aging. 相似文献
20.
Vaccination of BALB/c mice with dendritic cells (DCs) loaded with the lysate of induced vascular progenitor (iVP) cells derived from murine-induced pluripotent stem (iPS) cells significantly suppressed the tumor of CMS-4 fibrosarcomas and prolonged the survival of CMS-4-inoculated mice. This prophylactic antitumor activity was more potent than that of immunization with DCs loaded with iPS cells or CMS-4 tumor cells. Tumors developed slowly in mice vaccinated with DCs loaded with iVP cells (DC/iVP) and exhibited a limited vascular bed. Immunohistochemistry and a tomato-lectin perfusion study demonstrated that the tumors that developed in the iVP-immunized mice showed a marked decrease in tumor vasculature. Immunization with DC/iVP induced a potent suppressive effect on vascular-rich CMS-4 tumors, a weaker effect on BNL tumors with moderate vasculature, and nearly no effect on C26 tumors with poor vasculature. Treatment of DC/iVP-immunized mice with a monoclonal antibody against CD4 or CD8, but not anti-asialo GM1, inhibited the antitumor activity. CD8 + T cells from DC/iVP-vaccinated mice showed significant cytotoxic activity against murine endothelial cells and CMS-4 cells, whereas CD8 + T cells from DC/iPS-vaccinated mice did not. DNA microarray analysis showed that the products of 29 vasculature-associated genes shared between genes upregulated by differentiation from iPS cells into iVP cells and genes shared by iVP cells and isolated Flk-1 + vascular cells in CMS-4 tumor tissue might be possible targets in the immune response. These results suggest that iVP cells from iPS cells could be used as a cancer vaccine targeting tumor vascular cells and tumor cells. 相似文献
|