共查询到20条相似文献,搜索用时 0 毫秒
1.
S Wennstr?m E Landgren P Blume-Jensen L Claesson-Welsh 《The Journal of biological chemistry》1992,267(19):13749-13756
Signal transduction by tyrosine kinase growth factor receptors involves ligand-induced phosphorylation of substrates for the kinase, resulting in mediation of common or receptor-specific biological signals. We have compared signal transduction pathways for the fibroblast growth factor receptor-1 (FGFR-1), the platelet-derived growth factor beta-receptor (PDGFR-beta), and a chimeric FGFR-1 molecule, FGFRchim, in which the FGFR-1 kinase insert was replaced with that of the PDGFR-beta. The different receptors were characterized and found to be functional as ligand-stimulatable kinases, after expression of the respective human cDNAs in porcine aortic endothelial cells. Substrates for the receptors were analyzed by ligand stimulation of [32P]orthophosphate-labeled cells and immunoprecipitation with phosphotyrosine antiserum. A number of phosphoproteins were induced in all the different types of cells, but components specifically induced after stimulation of FGFR-1 and PDGFR-beta expressing cells could also be detected. Examination of receptor-associated substrates by in vitro kinase assays revealed phosphoproteins of 65 and 85 kDa, which were associated with PDGFR-beta and FGFRchim, but not with FGFR-1. The 85-kDa phosphoprotein could correspond to the regulatory subunit of phosphatidylinositol 3' kinase (PI3-K), since phosphatidylinositol 3' kinase activity was detected after ligand stimulation of FGFRchim- and PDGFR-beta- but not FGFR-1-expressing cells. In addition, ligand stimulation of FGFRchim- and PDGFR-beta-expressing cells, but not FGFR-1-expressing cells, led to induction of actin reorganization in the form of circular membrane ruffling. Thus, replacement of a discrete segment of the intracellular domain of the FGFR-1 with the corresponding stretch from the PDGFR-beta resulted in transfer of PDGFR-beta-specific signaling properties to the chimeric molecule. 相似文献
2.
A novel endothelial tyrosine kinase cDNA homologous to platelet-derived growth factor receptor cDNA. 总被引:2,自引:0,他引:2
R Sarzani G Arnaldi R De Pirro P Moretti S Schiaffino A Rappelli 《Biochemical and biophysical research communications》1992,186(2):706-714
Degenerate oligonucleotide primers complementary to the highly conserved subdomains III and VIII of subclass III tyrosine kinase receptors (TKr-III) were utilized to amplify rat aortic cDNA by polymerase chain reaction. Most of the cloned DNA products were rat platelet-derived growth factor receptor beta and macrophage-colony stimulating growth factor receptor cDNAs. Screening of the clones with probes coding for the receptor-specific kinase insert domain allowed the identification of a novel putative TKr-III cDNA, which hybridized with a approximately 6.1 kb mRNA with a distinctive tissue distribution. In situ hybridization on rat tissues and Northern analysis of cultured cells indicate that endothelial cells express a novel putative TKr-III mRNA. 相似文献
3.
Vascular endothelial growth factor can signal through platelet-derived growth factor receptors 总被引:4,自引:0,他引:4
下载免费PDF全文

Vascular endothelial growth factor (VEGF-A) is a crucial stimulator of vascular cell migration and proliferation. Using bone marrow-derived human adult mesenchymal stem cells (MSCs) that did not express VEGF receptors, we provide evidence that VEGF-A can stimulate platelet-derived growth factor receptors (PDGFRs), thereby regulating MSC migration and proliferation. VEGF-A binds to both PDGFRalpha and PDGFRbeta and induces tyrosine phosphorylation that, when inhibited, results in attenuation of VEGF-A-induced MSC migration and proliferation. This mechanism was also shown to mediate human dermal fibroblast (HDF) migration. VEGF-A/PDGFR signaling has the potential to regulate vascular cell recruitment and proliferation during tissue regeneration and disease. 相似文献
4.
Insulin-like growth factor I (IGF-I) is a well-established mitogen in human breast cancer cells. We show here that human breast cancer MCF-7 cells, which were prevented from attaching to the substratum and were floating in medium, responded to IGF-I and initiated DNA synthesis. The addition of IGF-I to floating cells induced activation of protein kinase B (PKB)/Akt, as to cells attached to the substratum. In addition, mitogen-activated protein kinase (MAPK)/extracellular response kinase (ERK) and its upstream kinases, ERK kinase (MEK) and Raf-1, were activated by IGF-I in floating cells. While the IGF-I-induced activation of PKB/Akt was inhibited by PI3-K inhibitor LY294002 but not by MEK inhibitor PD98059, the activation of both MEK and ERK by IGF-I was inhibited by both. These findings suggest that the IGF-I signal that leads to stimulation of DNA synthesis of MCF-7 cells is transduced to ERK through PI3-K, only when they are anchorage-deficient. 相似文献
5.
Tyrosine mutations within the alpha platelet-derived growth factor receptor kinase insert domain abrogate receptor-associated phosphatidylinositol-3 kinase activity without affecting mitogenic or chemotactic signal transduction. 总被引:8,自引:10,他引:8
下载免费PDF全文

J C Yu M A Heidaran J H Pierce J S Gutkind D Lombardi M Ruggiero S A Aaronson 《Molecular and cellular biology》1991,11(7):3780-3785
A phosphatidylinositol-3 (PI-3) kinase activity of unknown biological function associates with tyrosine kinase-containing proteins, including a number of growth factor receptors after ligand stimulation. In the beta platelet-derived growth factor (beta PDGF) receptor, phosphorylation of a specific tyrosine residue within the kinase insert domain was required for its interaction with this enzyme. We show that substitutions of phenylalanine for tyrosine residue 731 or 742 within the kinase insert domain of the alpha PDGF receptor do not impair PDGF-induced tyrosine phosphorylation of the receptor or of an in vivo substrate, phospholipase C-gamma. Moreover, phosphatidylinositol turnover in response to ligand stimulation is unaffected. However, both lesions markedly impair receptor association with PI-3 kinase. Antiphosphotyrosine antibody-recoverable PI-3 kinase was also dramatically reduced in PDGF-stimulated cells expressing either mutant receptor. Since neither mutation abolished PDGF-induced mitogenesis or chemotaxis, we conclude that alpha PDGF receptor-associated PI-3 kinase activity is not required for either of these major PDGF signalling functions. 相似文献
6.
Two unusual sequence organizations were found within the beta-globin locus of the cow. Each was a composite, consisting of closely linked Alu-type repeats with a short stretch of genomic non-repetitive sequence, called a lagan, sandwiched between. One lagan was found 3' to the fetal globin gene, while the second lay between the adult globin gene and a globin pseudogene. Southern blot analysis indicated that both lagans appeared twice within the cow haploid genome, with the second copies lying outside the cow beta-globin locus. One of these non-globin locus homologues was cloned and subjected to sequence analysis. Comparison of the DNA sequence data showed that the lagan-Alu composite was transposed as a unit. The lagan 3' to the cow fetal globin gene contains the recognition site for a sequence specific DNA binding factor. This factor was present in extracts from fetal, but not from adult cow tissues. 相似文献
7.
Deletion of the kinase insert sequence of the platelet-derived growth factor beta-receptor affects receptor kinase activity and signal transduction. 总被引:13,自引:4,他引:13
下载免费PDF全文

L Severinsson B Ek K Mellstr?m L Claesson-Welsh C H Heldin 《Molecular and cellular biology》1990,10(2):801-809
A characteristic feature of the platelet-derived growth factor (PDGF) beta-receptor is the presence of an insert sequence in the protein tyrosine kinase domain. A receptor mutant which lacks the entire insert of 98 amino acids was expressed in CHO cells, and its functional characteristics were compared with those of the wild-type receptor. The mutant receptor bound PDGF-BB with high affinity and mediated internalization and degradation of the ligand with efficiency similar to that of the wild-type receptor but did not transduce a mitogenic signal. It was found to display a decreased autophosphorylation after ligand stimulation and had a decreased ability to phosphorylate exogenous substrates; phosphofructokinase was not phosphorylated at all, whereas a peptide substrate was phosphorylated, albeit at a lower rate compared with phosphorylation by the wild-type receptor. Furthermore, the mutant receptor did not mediate actin reorganization but mediated an increase in c-fos expression. The data indicate that the insert in the kinase domain of the PDGF beta-receptor is important for the substrate specificity or catalytic efficiency of the kinase; the deletion of the insert interferes with the transduction of some, but not all, of the signals that arise after activation of the receptor. 相似文献
8.
R A Mooney G G Freund B A Way K L Bordwell 《The Journal of biological chemistry》1992,267(33):23443-23446
Tyrosine phosphorylation is a mechanism of signal transduction shared by many growth factor receptors and oncogene products. Phosphotyrosine phosphatases (PTPases) potentially modulate or counter-regulate these signaling pathways. To test this hypothesis, the transmembrane PTPase CD45 (leukocyte common antigen) was expressed in the murine cell line C127. Hormone-dependent autophosphorylation of the platelet-derived growth factor (PDGF) and insulin-like growth factor-1 (IGF-1) receptors was markedly reduced in cells expressing the transmembrane PTPase. Tyrosine phosphorylation of other PDGF-dependent phosphoproteins (160, 140, and 55 kDa) and IGF-1-dependent phosphoproteins (145 kDa) was similarly decreased. Interestingly, the pattern of growth factor-independent tyrosine phosphorylations was comparable in cells expressing the PTPase and control cells. This suggests a selectivity or accessibility of the PTPase limited to a subset of cellular phosphotyrosyl proteins. The maximum mitogenic response to PDGF and IGF-1 in cells expressing the PTPase was decreased by 67 and 71%, respectively. These results demonstrate that a transmembrane PTPase can both affect the tyrosine phosphorylation state of growth factor receptors and modulate proximal and distal cellular responses to the growth factors. 相似文献
9.
The phosphotyrosine interaction domain of Shc binds an LXNPXY motif on the epidermal growth factor receptor. 总被引:8,自引:8,他引:8
下载免费PDF全文

A G Batzer P Blaikie K Nelson J Schlessinger B Margolis 《Molecular and cellular biology》1995,15(8):4403-4409
Shc is an SH2 domain protein that is tyrosine phosphorylated in cells stimulated with a variety of growth factors and cytokines. Once phosphorylated, Shc binds the Grb2-Sos complex, leading to Ras activation. Shc can interact with tyrosine-phosphorylated proteins by binding to phosphotyrosine in the context of an NPXpY motif, where pY is a phosphotyrosine. This is an unusual binding site for an SH2 domain protein whose binding specificity is usually controlled by residues carboxy terminal, not amino terminal, to the phosphotyrosine. Recently we identified a second region in Shc, named the phosphotyrosine interaction (PI) domain, and we have found it to be present in a variety of other cellular proteins. In this study we used a dephosphorylation protection assay, competition analysis with phosphotyrosine-containing synthetic peptides, and epidermal growth factor receptor (EGFR) mutants to determine the binding sites of the PI domain of Shc on the EGFR. We demonstrate that the PI domain of Shc binds the LXNPXpY motif that encompasses Y-1148 of the activated EGFR. We conclude that the PI domain imparts to Shc its ability to bind the NPXpY motif. 相似文献
10.
Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. 总被引:30,自引:28,他引:30
下载免费PDF全文

P Hu B Margolis E Y Skolnik R Lammers A Ullrich J Schlessinger 《Molecular and cellular biology》1992,12(3):981-990
One of the immediate cellular responses to stimulation by various growth factors is the activation of a phosphatidylinositol (PI) 3-kinase. We recently cloned the 85-kDa subunit of PI 3-kinase (p85) from a lambda gt11 expression library, using the tyrosine-phosphorylated carboxy terminus of the epidermal growth factor (EGF) receptor as a probe (E. Y. Skolnik, B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger, Cell 65:83-90, 1991). In this study, we have examined the association of p85 with EGF and platelet-derived growth factor (PDGF) receptors and the tyrosine phosphorylation of p85 in 3T3 (HER14) cells in response to EGF and PDGF treatment. Treatment of cells with EGF or PDGF markedly increased the amount of p85 associated with EGF and PDGF receptors. Binding assays with glutathione S-transferase (GST) fusion proteins demonstrated that either Src homology region 2 (SH2) domain of p85 is sufficient for binding to EGF and PDGF receptors and that receptor tyrosine autophosphorylation is required for binding. Binding of a GST fusion protein expressing the N-terminal SH2 domain of p85 (GST-N-SH2) to EGF and PDGF receptors was half-maximally inhibited by 2 and 24 mM phosphotyrosine (P-Tyr), respectively, suggesting that the N-SH2 domain interacts more stably with PDGF receptors than with EGF receptors. The amount of receptor-p85 complex detected in HER14 cells treated with EGF or PDGF. Growth factor treatment also increased the amount of p85 found in anti-PDGF-treated HER14 cells, suggesting that the vast majority of p85 in the anti-P-Tyr fraction is receptor associated but not phosphorylated on tyrosine residues. Only upon transient overexpression of p85 and PDGF receptor did p85 become tyrosine phosphorylated. These are consistent with the hypothesis that p85 functions as an adaptor molecule that targets PI 3-kinase to activated growth factor receptors. 相似文献
11.
Platelet-derived growth factor. III. Identification of a platelet-derived growth factor receptor by affinity labeling 总被引:17,自引:0,他引:17
Two homobifunctional cross-linking reagents have been used to cross-link 125I-platelet-derived growth factor (PDGF) to a cell surface component with an approximate Mr = 164,000 that has many characteristics of a specific PDGF receptor. Excess unlabeled PDGF competed for labeling of this component, while high concentrations of fibroblast growth factor, insulin, epidermal growth factor, low density lipoprotein or acetylated low density lipoprotein had no effect. Preincubation of cells with 125I-PDGF at 37 degrees C reduced specific 125I-PDGF binding (down regulation) and produced a parallel decrease in the amount of the 164,000-dalton receptor available for labeling. The 164,000-dalton component contains at least some protein that is accessible to trypsin in the extracellular medium. A complex of comparable Mr is seen on all PDGF-responsive cell types examined, but not on a nonresponsive cell type. 125I-PDGF does not become covalently cross-linked to this component in the absence of a cross-linking reagent. 相似文献
12.
Dimerization of B-type platelet-derived growth factor receptors occurs after ligand binding and is closely associated with receptor kinase activation 总被引:49,自引:0,他引:49
C H Heldin A Ernlund C Rorsman L R?nnstrand 《The Journal of biological chemistry》1989,264(15):8905-8912
Platelet-derived growth factor (PDGF) was found to induce dimerization of purified B-type PDGF receptors, as analyzed by sodium dodecyl sulfate gel electrophoresis after covalent cross-linking using disuccinimidyl suberate. PDGF-BB was 20-fold more effective than PDGF-AB; PDGF-AA was without effect. The dimerization was dose-dependent and was maximal at 0.5-2 micrograms/ml PDGF-BB; at higher concentrations dimerization was less abundant. This indicates that dimerization occurred when one PDGF-BB molecule bound two receptor molecules. The dimerization correlated to activation of the tyrosine kinase of the receptor, determined as autophosphorylation, but was not dependent on phosphorylation reactions because it occurred also in the absence of ATP. Furthermore, dimerization of the receptor correlated with the ability to phosphorylate phosphofructokinase, an exogenous substrate. The complex of ligand and receptor dimer was stable; it resisted electrophoresis under nondenaturing conditions, as well as gel chromatography. The present data indicate that intermolecular mechanisms are involved in signal transduction from the external ligand binding domain to the internal effector domains of the B-type PDGF receptor. 相似文献
13.
Chiarugi P Cirri P Taddei ML Giannoni E Fiaschi T Buricchi F Camici G Raugei G Ramponi G 《The Journal of biological chemistry》2002,277(40):37331-37338
Low molecular weight phosphotyrosine phosphatase (LMW-PTP) is an enzyme involved in platelet-derived growth factor-induced mitogenesis and cytoskeleton rearrangement. Our previous results demonstrated that LMW-PTP is able to bind and dephosphorylate activated platelet-derived growth factor receptor (PDGF-r), thus inhibiting cell proliferation. Here we revisit the role of LMW-PTP on activated PDGF-r dephosphorylation. We demonstrate that LMW-PTP preferentially acts on cell surface PDGF-r, excluding the internalized activated receptor pool. Many phosphotyrosine phosphatases act by site-selective dephosphorylation on several sites of PDGF-r, but until now, there has been no evidence of a direct involvement of a specific phosphotyrosine phosphatase in the dephosphorylation of the 857 kinase domain activation tyrosine. Here we report that LMW-PTP affects the kinase activity of the receptor through the binding and dephosphorylation of Tyr-857 and influences many of the signal outputs from the receptor. In particular, we demonstrate a down-regulation of phosphatidylinositol 3-kinase, Src homology phosphatase-2, and phospholipase C-gamma1 binding but not of MAPK activation. In addition, we report a slight action of LMW-PTP on Tyr-716, which directs MAPK activation through Grb2 binding. On the basis of these results, we propose a key role for LMW-PTP in PDGF-r down-regulation through the dephosphorylation of the activation loop Tyr-857, thus determining a general negative regulation of all downstream signals, with the exception of those elicited by internalized receptors. 相似文献
14.
15.
R Zippel E Sturani L Toschi L Naldini L Alberghina P M Comoglio 《Biochimica et biophysica acta》1986,881(1):54-61
Antibodies against the synthetic hapten azobenzyl phosphonate which specifically crossreact with phosphotyrosine have been produced and used to detect the proteins phosphorylated in tyrosine following exposure of intact quiescent Swiss 3T3 fibroblasts to the platelet-derived growth factor (PDGF). Western blotting of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-fractionated proteins followed by decoration with phosphotyrosine antibodies and 125I-labeled protein A have been used. The major tyrosine-phosphorylated component was a 170 kDa protein. The following lines of evidence suggest that this protein is the PDGF receptor in its tyrosine-phosphorylated form: (a) both proteins have the same (170 kDa) molecular weight; (b) the phosphorylated 170 kDa protein was detectable only in cell lines bearing the PDGF receptor; (c) the phosphorylation of the 170 kDa protein required PDGF and was dose-dependent. Kinetic studies showed that the phosphorylation of the receptor was maximal after 5-10 min at 37 degrees C and was followed by a rapid decrement of the band. The loss of the 170 kDa component was not prevented by inhibitors of membrane internalization and of lysosomal proteinases, while it was inhibited by lowering the temperature to 5 degrees C. In PDGF-stimulated cells, phosphotyrosine antibodies detected also a minor 36 kDa component phosphorylated at tyrosine. 相似文献
16.
Jeff S. Kruk Maryam S. Vasefi Hui Liu John J. Heikkila Michael A. Beazely 《Cellular signalling》2013,25(1):133-143
In the absence of ligand, certain growth factor receptors can be activated via G-protein coupled receptor (GPCR) activation in a process termed transactivation. Serotonin (5-HT) receptors can transactivate platelet-derived growth factor (PDGF) β receptors in smooth muscle cells, but it is not known if similar pathways occur in neuronal cells. Here we show that 5-HT can transiently increase the phosphorylation of PDGFβ receptors through 5-HT1A receptors in a time- and dose-dependent manner in SH-SY5Y neuroblastoma cells. 5-HT also transactivates PDGFβ receptors in primary cortical neurons. This transactivation pathway is pertussis-toxin sensitive and Src tyrosine kinase-dependent. This pathway is also dependent on phospholipase C activity and intracellular calcium signaling. Several studies involving PDGFβ receptor transactivation by GPCRs have also demonstrated a PDGFβ receptor-dependent increase in the phosphorylation of ERK1/2. Yet in SH-SY5Y cells, 5-HT treatment causes a PDGFβ receptor-independent increase in ERK1/2 phosphorylation. This crosstalk between 5-HT and PDGFβ receptors identifies a potentially important signaling link between the serotonergic system and growth factor signaling in neurons. 相似文献
17.
Two types of PDGF receptors have been cloned and sequenced. Both receptors are transmembrane glycoproteins with a ligand-stimulatable tyrosine kinase site. We have shown earlier that ligand-induced activation of the beta-type PDGF receptor is due to the conversion of the monomeric form of the receptor to the dimeric form [Bishayee et al. (1989) J. Biol. Chem. 264, 11699-11705]. In the present studies, we have established the ligand-binding specificity of two receptor types and extended it further to investigate the ligand-induced association state of the alpha-receptor and the role of alpha-receptor in the activation of beta-receptor. These studies were conducted with cells that express one or the other type of PDGF receptor as well as with cells that express both types of receptors. Moreover, ligand-binding characteristics of the receptor were confirmed by immunoprecipitation of the receptor-125I-PDGF covalent complex with type-specific anti-PDGF receptor antibodies. These studies revealed that all three isoforms of PDGF bind to alpha-receptor, and such binding leads to dimerization as well as activation of the receptor. In contrast, beta-receptor can be activated only by PDGF BB and not by PDGF AB or PDGF AA. However, by using antipeptide antibodies that are specific for alpha- or beta-type PDGF receptor, we demonstrated that in the presence of alpha-receptor, beta-receptor kinase can be activated by PDGF AB. We present here direct evidence that strongly suggests that such PDGF AB induced activation of beta-receptor is due to the formation of a noncovalently linked alpha-beta receptor heterodimer. 相似文献
18.
Two different subunits associate to create isoform-specific platelet-derived growth factor receptors 总被引:71,自引:0,他引:71
R A Seifert C E Hart P E Phillips J W Forstrom R Ross M J Murray D F Bowen-Pope 《The Journal of biological chemistry》1989,264(15):8771-8778
Recent evidence has demonstrated that there is more than one form of platelet-derived growth factor (PDGF) receptor and that these receptors differ in their specificity for the multiple isoforms of PDGF. We present evidence that high affinity binding of PDGF requires association of two different receptor subunits: an alpha-subunit that can bind either a B- or an A-chain of PDGF, and a beta-subunit that can bind only a B-chain. The alpha- and beta-subunits appear to be similar in size but can be distinguished by binding specificity and by an antireceptor monoclonal antibody, PR7212, which recognizes only the beta-subunit. In the absence of PDGF, these subunits either exist separately or form rapidly reversible complexes. In the presence of PDGF, receptor subunits of appropriate specificity interact with a PDGF molecule to form a high affinity complex. Both the absolute and relative numbers of these two PDGF receptor subunits vary on different cell types and correspond to differences in the mitogenic sensitivity of cells to the different PDGF isoforms. 相似文献
19.
W J Bielanski J P Keogh S L Wang J Liu S J Konturek A Slomiany B L Slomiany 《Biochemistry international》1991,25(3):419-427
The ability of transforming growth factor-alpha (TGF-alpha) to interact with the gastric mucosal epidermal growth factor (EGF) receptor was investigated using a mucosal membrane preparation. TGF-alpha inhibited specific binding of [125I]EGF to its receptor, but the IC50 for TGF-alpha was at least 100 fold greater than that observed for unlabeled EGF. Cross-linking studies revealed no attachment of [125I]TGF-alpha to EGF-receptor size components, and the unlabeled TGF-alpha was only weakly effective in inhibiting cross-linking of [125I]EGF to the 170 kDa receptor. However, when the cytosolic fraction was reconstituted with the membrane preparation, an enhancement in binding of [125I]TGF-alpha to the EGF receptor occurred in a manner dependent on the concentration of cytosolic protein. Hence the binding characteristics of TGF-alpha to the EGF receptor in gastric mucosa are different from those for EGF. 相似文献
20.
Alderton F Rakhit S Kong KC Palmer T Sambi B Pyne S Pyne NJ 《The Journal of biological chemistry》2001,276(30):28578-28585
Here we provide evidence to show that the platelet-derived growth factor beta receptor is tethered to endogenous G-protein-coupled receptor(s) in human embryonic kidney 293 cells. The tethered receptor complex provides a platform on which receptor tyrosine kinase and G-protein-coupled receptor signals can be integrated to produce more efficient stimulation of the p42/p44 mitogen-activated protein kinase pathway. This was based on several lines of evidence. First, we have shown that pertussis toxin (which uncouples G-protein-coupled receptors from inhibitory G-proteins) reduced the platelet-derived growth factor stimulation of p42/p44 mitogen-activated protein kinase. Second, transfection of cells with inhibitory G-protein alpha subunit increased the activation of p42/p44 mitogen-activated protein kinase by platelet-derived growth factor. Third, platelet-derived growth factor stimulated the tyrosine phosphorylation of the inhibitory G-protein alpha subunit, which was blocked by the platelet-derived growth factor kinase inhibitor, tyrphostin AG 1296. We have also shown that the platelet-derived growth factor beta receptor forms a tethered complex with Myc-tagged endothelial differentiation gene 1 (a G-protein-coupled receptor whose agonist is sphingosine 1-phosphate) in cells co-transfected with these receptors. This facilitates platelet-derived growth factor-stimulated tyrosine phosphorylation of the inhibitory G-protein alpha subunit and increases p42/p44 mitogen-activated protein kinase activation. In addition, we found that G-protein-coupled receptor kinase 2 and beta-arrestin I can associate with the platelet-derived growth factor beta receptor. These proteins play an important role in regulating endocytosis of G-protein-coupled receptor signal complexes, which is required for activation of p42/p44 mitogen-activated protein kinase. Thus, platelet-derived growth factor beta receptor signaling may be initiated by G-protein-coupled receptor kinase 2/beta-arrestin I that has been recruited to the platelet-derived growth factor beta receptor by its tethering to a G-protein-coupled receptor(s). These results provide a model that may account for the co-mitogenic effect of certain G-protein-coupled receptor agonists with platelet-derived growth factor on DNA synthesis. 相似文献