首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sword bean (Entada scandens) is a tree climber that belongs to Mimosoideae, a subfamily of Leguminosae. A potent Kunitz type trypsin inhibitor (ESTI) was purified to homogeneity from Entada scandens seeds by sequential ammonium sulfate precipitation, affinity chromatography on trypsin-Sepharose and DEAE-Sephacel ion-exchange chromatography. ESTI is a single polypeptide chain of 19,766 Da. Both native PAGE as well as isoelectric focusing showed a single inhibitor species with a pI of 7.43. MALDI-TOF analysis also confirmed the monomeric nature. The amino-terminal sequence of ESTI reveals significant homology to the Kunitz-type protease inhibitors of legume plants. ESTI is unique in that it contains a single disulfide bridge, and unlike other inhibitors from Mimosoideae species is a single chain polypeptide. ESTI inhibited bovine trypsin with a stoichiometry of 1:1 and the apparent K(i) was 4.9 x 10(-9) M. In vitro assay showed that ESTI inhibited the midgut proteinase of the fifth instar larvae of Rice moth (Corcyra cephalonica) with an IC(50) of 26.4+/-0.01 nM. ESTI exhibits a mixed type competitive inhibition at lower concentration and pure competitive at higher inhibitor concentrations. Phylogenetic analyses depicted a clear divergence of single disulfide containing inhibitors from other tree legume Kunitz inhibitors. The homology of ESTI to Kunitz inhibitors together with the absence of Bowman-Birk type inhibitors in sword bean further supports the theory that there exists an evolutionary relationship between the families of inhibitors found in Leguminosae.  相似文献   

2.
The major inhibitor of trypsin in seeds of Prosopsis juliflora was purified by precipitation with ammonium sulphate, ion-exchange column chromatography on DEAE- and CM-Sepharose and preparative reverse phase HPLC on a Vydac C-18 column. The protein inhibited trypsin in the stoichiometric ratio of 1:1, but had only weak activity against chymotrypsin and did not inhibit human salivary or porcine pancreatic alpha-amylases. SDS-PAGE indicated that the inhibitor has a Mr of ca 20,000, and IEF-PAGE showed that the pI is 8.8. The complete amino acid sequence was determined by automatic degradation, and by DABITC/PITC microsequence analysis of peptides obtained from enzyme digestions of the reduced and S-carboxymethylated protein with trypsin, chymotrypsin, elastase, the Glu-specific protease from S. aureus and the Lys-specific protease from Lysobacter enzymogenes. The inhibitor consisted of two polypeptide chains, of 137 residues (alpha chain) and 38 residues (beta chain) linked together by a single disulphide bond. The amino acid sequence of the protein exhibited homology with a number of Kunitz proteinase inhibitors from other legume seeds, the bifunctional subtilisin/alpha-amylase inhibitors from cereals and the taste-modifying protein miraculin.  相似文献   

3.
A serine proteinase inhibitor was purified from Delonix regia seeds a Leguminosae tree of the Caesalpinioideae subfamily. The inhibitor named DrTI, inactivated trypsin and human plasma kallikrein with K(i )values 2.19x10(-8) M and 5.25 nM, respectively. Its analysis by SDS-PAGE 10-20% showed that the inhibitor is a protein with a single polypeptide chain of M(r) 22 h Da. The primary sequence of the inhibitor was determined by Edman degradation, thus indicating that it contained 185 amino acids and showed that it belongs to the Kunitz type family; however, its reactive site did not contain Arg or Lys at the putative reactive site (position 63, SbTI numbering) or it was displaced when compared to other Kunitz-type inhibitors.  相似文献   

4.
A trypsin inhibitor from Dimorphandra mollis seeds was isolated to apparent homogeneity by a combination of ammonium sulfate precipitation, gel filtration, ion-exchange and affinity chromatographic techniques. SDS-PAGE analysis gave an apparent molecular weight of 20 kDa, and isoelectric focusing analysis demonstrated the presence of three isoforms. The partial N-terminal amino acid sequence of the purified protein showed a high degree of homology with various members of the Kunitz family of inhibitors. This inhibitor, which inhibited trypsin activity with a Ki of 5.3 x 10(-10) M, is formed by a single polypeptide chain with an arginine residue in the reactive site.  相似文献   

5.
Earlier, the purification of a 21.4 kDa protein with trypsin inhibitory activity from seeds of Murraya koenigii has been reported. The present study, based on the amino acid sequence deduced from both cDNA and genomic DNA, establishes it to be a miraculin-like protein and provides crystal structure at 2.9 Å resolution. The mature protein consists of 190 amino acid residues with seven cysteines arranged in three disulfide bridges. The amino acid sequence showed maximum homology and formed a distinct cluster with miraculin-like proteins, a soybean Kunitz super family member, in phylogenetic analyses. The major differences in sequence were observed at primary and secondary specificity sites in the reactive loop when compared to classical Kunitz family members. The crystal structure analysis showed that the protein is made of twelve antiparallel β-strands, loops connecting β-strands and two short helices. Despite similar overall fold, it showed significant differences from classical Kunitz trypsin inhibitors.  相似文献   

6.
The major trypsin inhibitor from seeds of Jobs' tears (Coix lachryma-jobi) was purified by heat treatment, fractional precipitation with (NH4)2SO4, ion-exchange chromatography on DEAE-Sepharose, gel-filtration on Sephadex G-75 and preparative reverse-phase HPLC. The complete amino acid sequence was determined by analysis of peptides derived from the reduced and S-carboxymethylated protein by digestion with trypsin, chymotrypsin and the S. aureus V8 protease. The polypeptide contained 64 amino acids with a high content of cysteine. The sequence exhibited strong homology with a number of Bowman-Birk inhibitors from legume seeds and similar proteins recently isolated from wheat and rice.  相似文献   

7.
Swartzia pickellii is a Leguminosae that belongs to the Caesalpinioideae sub-family the Swartzia pickellii Trypsin Inhibitor (SWTI), a serine proteinase inhibitor was isolated from its seeds. SWTI is a single polypeptide chain protein and it's structure has 174 amino acid residues, it homologous to other Kunitz plant inhibitors, however shows some major differences: it contains only one disulfide bridge, instead two which are usually found in plant Kunitz inhibitors, and the SWTI reactive site does not contain the usual Arg or Lys residues at the putative reactive site (position 65). A glycosylation site was detected at Asn38 with 1188 kDa carbohydrate portion. The primary structure micro heterogeneity was found combining the sequence determination and mass spectrometry. Three forms of SWTI were actually defined: two glycosylated forms a 20,204 kDa (Arg 165) and 20,185 kDa (His 165) and one deglycosylated form 19,016 kDa (Arg 165), all of them contain a Met residue at position 130.  相似文献   

8.
The primary sequence of trypsin inhibitor-2 (WBTI-2) fromPsophocarpus tetragonolobus (L.) DC seeds was determined. This inhibitor consists of a single polypeptide chain of 182 amino acids, including four half-cystine residues, and an N-terminal residue of pyroglutamic acid. The sequence of WBTI-2 showed 57% identity to the basic trypsin inhibitor (WBTI-3) and 50% identity to the chymotrypsin inhibitor (WBCI) of winged bean, and 54% identity to the trypsin inhibitor DE-3 fromErythrina latissima seed. The similarity to the soybean Kunitz trypsin inhibitor (40%) and the other Kunitz-type inhibitors fromAdenanthera pavonina (30%) and wheat (26%) was much lower. Sequence comparisons indicate that thePsophocarpus andErythrina inhibitors are more closely related to each other than to other members of the Kunitz inhibitor family.  相似文献   

9.
A highly stable and potent trypsin inhibitor was purified to homogeneity from the seeds of Putranjiva roxburghii belonging to Euphorbiaceae family by acid precipitation, cation-exchange and anion-exchange chromatography. SDS-PAGE analysis, under reducing condition, showed that protein consists of a single polypeptide chain with molecular mass of approximately 34 kDa. The purified inhibitor inhibited bovine trypsin in 1:1 molar ratio. Kinetic studies showed that the protein is a competitive inhibitor with an equilibrium dissociation constant of 1.4x10(-11) M. The inhibitor retained the inhibitory activity over a broad range of pH (pH 2-12), temperature (20-80 degrees C) and in DTT (up to100 mM). The complete loss of inhibitory activity was observed above 90 degrees C. CD studies, at increasing temperatures, demonstrated the structural stability of inhibitor at high temperatures. The polypeptide backbone folding was retained up to 80 degrees C. The CD spectra of inhibitor at room temperature exhibited an alpha, beta pattern. N-terminal amino acid sequence of 10 residues did not show any similarities to known serine proteinase inhibitors, however, two peptides obtained by internal partial sequencing showed significant resemblance to Kunitz-type inhibitors.  相似文献   

10.
A trypsin inhibitor (ACTI) was isolated and purified from the seeds of Acacia confusa by gel filtration, and trypsin-Sepharose 4B column affinity chromatography. The molecular weight of ACTI was found to be 21,000 +/- 1,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and amino acid composition analysis. ACTI contained four half-cystine and no methionine residues, and was rich in aspartic acid, glutamic acid, glycine, leucine, and lysine residues. The native trypsin inhibitor was composed of two polypeptide chains, and it inhibited trypsin and alpha-chymotrypsin stoichiometrically at the molar ratio of 1:1 and 2:1, respectively. The amino-terminal sequence analysis of the A. confusa trypsin inhibitor A and B chains revealed a more extensive homology with Acacia elata and silk tree trypsin inhibitors, and a less extensive homology with Kunitz soybean trypsin inhibitor.  相似文献   

11.
Plant protease inhibitors (PIs) are elements of a common plant defense mechanism induced in response to herbivores. The fall armyworm, Spodoptera frugiperda, a highly polyphagous lepidopteran pest, responds to various PIs in its diet by expressing genes encoding trypsins. This raises the question of whether the PI‐induced trypsins are also inhibited by other PIs, which we posed as the hypothesis that Inga laurina trypsin inhibitor (ILTI) inhibits PI‐induced trypsins in S. frugiperda. In the process of testing our hypothesis, we compared its properties with those of selected PIs, soybean Kunitz trypsin inhibitor (SKTI), Inga vera trypsin inhibitor (IVTI), Adenanthera pavonina trypsin inhibitor (ApTI), and Entada acaciifolia trypsin inhibitor (EATI). We report that ILTI is more effective in inhibiting the induced S. frugiperda trypsins than SKTI and the other PIs, which supports our hypothesis. ILTI may be more appropriate than SKTI for studies regarding adaptive mechanisms to dietary PIs.  相似文献   

12.
A 20 kDa bifunctional inhibitor of the microbial proteinase, subtilisin, and the alpha-amylase from the larvae of the red flour beetle (Tribolium castaneum) was purified from bran of rice seeds by saline extraction, precipitation with ammonium sulphate, ion-exchange chromatography on DEAE-Cellulose and Toyopearl CM-650, and preparative HPLC on Vydac C18. The complete primary structure was determined by automatic degradation of the intact, reduced and S-alkylated protein, and by manual DABITC/PITC micro-sequencing of peptides obtained from the protein following separate enzymic digestions with trypsin, pepsin, chymotrypsin, elastase and the protease from S. aureus V8. The protein sequence, which contained 176 residues, showed strong homology with similar bifunctional inhibitors previously isolated from wheat and barley which are related to the Kunitz family of proteinase inhibitors from legume seeds.  相似文献   

13.
Native Inga laurina (Fabaceae) trypsin inhibitor (ILTI) was tested for anti-insect activity against Diatraea saccharalis and Heliothis virescens larvae. The addition of 0.1% ILTI to the diet of D. saccharalis did not alter larval survival but decreased larval weight by 51%. The H. virescens larvae that were fed a diet containing 0.5% ILTI showed an 84% decrease in weight. ILTI was not digested by the midgut proteinases of either species of larvae. The trypsin levels were reduced by 55.3% in the feces of D. saccharalis and increased by 24.1% in the feces of H. virescens. The trypsin activity in both species fed with ILTI was sensitive to the inhibitor, suggesting that no novel proteinase resistant to ILTI was induced. Additionally, ILTI exhibited inhibitory activity against the proteinases present in the larval midgut of different species of Lepidoptera. The organization of the ilti gene was elucidated by analyzing its corresponding genomic sequence. The recombinant ILTI protein (reILTI) was expressed and purified, and its efficacy was evaluated. Both native ILTI and reILTI exhibited a similar strong inhibitory effect on bovine trypsin activity. These results suggest that ILTI presents insecticidal properties against both insects and may thus be a useful tool in the genetic engineering of plants.  相似文献   

14.
Four proteinase inhibitors, A-II, A-III, B-I, and B-II, were isolated from seeds of Albizzia julibrissin (silk tree) of the subfamily Mimosoideae, which is often regarded as the most primitive group of the Leguminosae plants. They were all of the high-molecular weight type (21,600 for A-II and A-III, and 19,000 for B-I and B-II), and composed of two polypeptide chains, linked together by a disulfide bond. A-II (A-III) inhibited bovine trypsin and alpha-chymotrypsin probably at an identical site. B-I (BII) inactivated bovine alpha-chymotrypsin and porcine elastase. Sequence analyses of A-II and B-II revealed a considerable homology with soybean trypsin inhibitor (Kunitz) but suggested the presence of an about 20-amino acid insertion in the A-II molecule.  相似文献   

15.
Four protein protease inhibitors (I, II, III, IV) having low molecular weights (10 600-6500) and basic isoelectric points were isolated by affinity chromatography from bovine spleen. Inhibitor IV was identified as the basic pancreatic trypsin inhibitor (Kunitz inhibitor); the presence and distribution of components I, II and III vary in the different bovine organs. Spleen inhibitors I, II, III and IV were purified by ion-exchange chromatography; they form 1:1 complexes with trypsin and inhibit enzymatic activity of trypsin, chymotrypsin and kallikrein. Inhibitors I, II and III contain carbohydrate moieties (7-4%) covalently bound to the polypeptide chain. Specific basic pancreatic trypsin inhibitor antiserum has shown the complete identity between inhibitor IV and the basic pancreatic trypsin inhibitor, while partial cross-reactivity between the basic pancreatic trypsin inhibitor and inhibitors I, II and III can be seen from a double immunodiffusion test.  相似文献   

16.
Two new polypeptide components which exhibited an analgesic effect in experiments on mice were isolated from the Heteractis crispa sea tropical anemone by the combination of chromatographic methods. The APHC2 and APHC3 new polypeptides consisted of 56 amino acid residues and contained six cysteine residues. Their complete amino acid sequence was determined by the methods of Edman sequencing, mass spectrometry, and peptide mapping. An analysis of the primary structure of the new peptides allowed for their attribution to a large group of trypsin inhibitors of the Kunitz type. An interesting biological function of the new polypeptides was their analgesic effect on mammals, which is possibly realized via the modulation of the activity of the TRPV1 receptor and was not associated with the residual inhibiting activity towards trypsin and chymotrypsin. The analgesic activity of the APHC3 polypeptide was measured on the hot plate model of acute pain and was significantly higher than that of APHC2. Methods of preparation of the recombinant analogues were created for both polypeptides.  相似文献   

17.
He YY  Liu SB  Lee WH  Qian JQ  Zhang Y 《Peptides》2008,29(10):1692-1699
Snake venom Kunitz/BPTI members are good tools for understanding of structure-functional relationship between serine proteases and their inhibitors. A novel dual Kunitz/BPTI serine proteinase inhibitor named OH-TCI (trypsin- and chymotrypsin-dual inhibitor from Ophiophagus hannah) was isolated from king cobra venom by three chromatographic steps of gel filtration, trypsin affinity and reverse phase HPLC. OH-TCI is composed of 58 amino acid residues with a molecular mass of 6339Da. Successful expression of OH-TCI was performed as the maltose-binding fusion protein in E. coli DH5alpha. Much different from Oh11-1, the purified native and recombinant OH-TCI both had strong inhibitory activities against trypsin and chymotrypsin although the sequence identity (74.1%) between them is very high. The inhibitor constants (K(i)) of recombinant OH-TCI were 3.91 x 10(-7) and 8.46 x10(-8)M for trypsin and chymotrypsin, respectively. To our knowledge, it was the first report of Kunitz/BPTI serine proteinase inhibitor from snake venom that had equivalent trypsin and chymotrypsin inhibitory activities.  相似文献   

18.
Three Bowman-Birk type inhibitors (HGGI-I, II and III), which appear in the cotyledons of 120 h germinated horsegram (Dolichos biflorus) seeds have been purified to homogeneity by size-exclusion chromatography and ion-exchange chromatography. HGGI-I, HGGI-II and HGGI-III differ from each other and from the dormant seed inhibitors in amino acid composition, molecular size and charge. The amino-terminal sequence analyses indicate that these inhibitors are derived from the isoinhibitors of the dormant seed by a limited proteolysis and not by de novo synthesis. These inhibitors differ from each other at their amino-terminus. HGGI-II identical to HGGI-I except for the loss of a single amino-terminal aspartyl residue, where as HGGI-III shows the loss of a pentapeptide. All the three inhibitors are potent competitive inhibitors of trypsin and chymotrypsin. The dissociation constants (K(i)s) for trypsin inhibition indicate that amino-terminal tail of the inhibitors play a role in trypsin binding probably through electrostatic interaction.  相似文献   

19.
Mesotrypsin is an isoform of trypsin that is uniquely resistant to polypeptide trypsin inhibitors and can cleave some inhibitors rapidly. Previous studies have shown that the amyloid precursor protein Kunitz protease inhibitor domain (APPI) is a specific substrate of mesotrypsin and that stabilization of the APPI cleavage site in a canonical conformation contributes to recognition by mesotrypsin. We hypothesized that other proteins possessing potential cleavage sites stabilized in a similar conformation might also be mesotrypsin substrates. Here we evaluated a series of candidate substrates, including human Kunitz protease inhibitor domains from amyloid precursor-like protein 2 (APLP2), bikunin, hepatocyte growth factor activator inhibitor type 2 (HAI2), tissue factor pathway inhibitor-1 (TFPI1), and tissue factor pathway inhibitor-2 (TFPI2), as well as E-selectin, an unrelated protein possessing a potential cleavage site displaying canonical conformation. We find that Kunitz domains within APLP2, bikunin, and HAI2 are cleaved by mesotrypsin with kinetic profiles of specific substrates. TFPI1 and TFPI2 Kunitz domains are cleaved less efficiently by mesotrypsin, and E-selectin is not cleaved at the anticipated site. Cocrystal structures of mesotrypsin with HAI2 and bikunin Kunitz domains reveal the mode of mesotrypsin interaction with its canonical substrates. Our data suggest that major determinants of mesotrypsin substrate specificity include sequence preferences at the P1 and P′2 positions along with conformational stabilization of the cleavage site in the canonical conformation. Mesotrypsin up-regulation has been implicated previously in cancer progression, and proteolytic clearance of Kunitz protease inhibitors offers potential mechanisms by which mesotrypsin may mediate pathological effects in cancer.  相似文献   

20.
A new trypsin inhibitor (CPTI) has been isolated from Crotalaria paulina seeds. Purification of the inhibitor was carried out by gel filtration, ion-exchange chromatography, and subsequent reversed-phase HPLC. The presence of a single polypeptide chain, with a molecular mass of 20 kDa and isoelectric point 4.0, was detected. The trypsin inhibitor had a Ki value of 4.5 x 10(-8) M and was capable of acting on human, bovine, and porcine trypsin and weakly on bovine chymotrypsin. Amino acid analysis showed that CPTI has a high content of aspartate, glutamate, leucine, serine, and glycine, having 177 amino acid residues in its composition. These data suggest that the protein belongs to the Kunitz-type trypsin inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号