首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Endometriosis is considered as a benign aseptic inflammatory disease, characterised by the presence of ectopic endometrium-like tissue. Its symptoms (mostly pain and infertility) are reported as constant stressors. Corticotropin releasing hormone (CRH) and urocortin (UCN) are neuropeptides, strongly related to stress and inflammation. The effects of CRH and UCN are mediated through CRHR1 and CRHR2 receptors which are implicated in several reproductive functions acting as inflammatory components. However, the involvement of these molecules to endometriosis remains unknown. The aim of this study was to examine the expression of CRHR1 and CRHR2 in endometriotic sites and to compare the expression of CRHR1 and CRHR2 in eutopic endometrium of endometriotic women to that of healthy women. We further compared the expression of CRH, UCN, CRHR1 and CRHR2 in ectopic endometrium to that in eutopic endometrium of women with endometriosis. Endometrial biopsy specimens were taken from healthy women (10 patients) and endometrial and endometriotic biopsy specimens were taken from women with endometriosis (16 patients). Τhe expression of CRH, UCN, CRHR1, and CRHR2 was tested via RT-PCR, immunohistochemistry and Western blotting. This study shows for the first time that CRH and UCN receptor subtypes CRHR1β and CRHR2α are expressed in endometriotic sites and that they are more strongly expressed (p<0.01) in eutopic endometrium of women with endometriosis compared to healthy women endometrium at the mRNA and protein level. CRH, UCN, CRHR1 and CRHR2 mRNA were also more highly expressed in ectopic rather than eutopic endometrium (CRH, UCN, CRHR2α: p<0.01, CRHR1β: p<0.05) and protein (CRH and UCN: p<0.05, CRHR1 and CRHR2: p<0.01) in women with endometriosis. These data indicate that CRH and UCN might play an immunoregulatory role in endometriotic sites by affecting reproductive functions such as decidualization and implantation of women with endometriosis.  相似文献   

4.
Endometriosis is a common chronic gynecologic disorder characterized by the presence and growth of endometrial‐like tissue outside of the uterine cavity. Although the exact etiology remains unclear, epigenetic modifications, such as DNA methylation, are thought to contribute to the pathogenesis of endometriosis. Here, we used the Illumina Human Methylation 450 K BeadChip Array to analyze the genome‐wide DNA methylation profiles of six endometriotic lesions and six eutopic endometria from patients with ovarian endometriosis and six endometria of women without endometriosis. Compared with the eutopic endometria of women with endometriosis, 12,159 differentially methylated CpG sites and 375 differentially methylated promoter regions were identified in endometriotic lesions. GO analyses showed that these putative differentially methylated genes were primarily associated with immune response, inflammatory response, response to steroid hormone stimulus, cell adhesion, negative regulation of apoptosis, and activation of the MAPK activity. In addition, the expression levels of DNMT1, DNMT3A, DNMT3B, and MBD2 in endometriotic lesions and eutopic endometria were significantly decreased compared with control endometria. Our findings suggest that aberrant DNA methylation status in endometriotic lesions may play a significant role in the pathogenesis and progression of endometriosis.  相似文献   

5.
6.
Endometriosis is an inflammatory disease of women of reproductive age featured by the presence of ectopic endometrium and is strongly related to infertility. Galectins, carbonhydrate-binding proteins, have been found to have pro- or anti-inflammatory roles in the reproductive tract and in pathological conditions concerning infertility. Galectin-1, which is expressed at endometrium and decidua, plays a major role in implantation and trophoblast invasion. Also, the neuropeptides, corticotropin releasing hormone (CRH) and urocortin (UCN) and their receptors are expressed in eutopic and ectopic endometrium showing a differential expression pattern in endometriotic women compared to healthy ones. The aim of this study was to examine the galectin-1 expression in endometriotic lesions and compare its expression in eutopic endometrium of endometriotic and healthy women. Furthermore, we examined the effect of CRH and UCN in galectin-1 expression in Ishikawa cell line and macrophages and investigated the implication of CRHR1 in these responses. Eutopic and ectopic endometrium specimens, Ishikawa cell line and mice macrophages were used. Immunohistochemistry and western blot analysis were performed in order to identify galectin-1 expression in ectopic and eutopic endometrium of women with and without endometriosis and the regulatory effect of CRH and UCN on galectin-1 expression. This study presents for the first time that galectin-1 is overexpressed in endometriotic lesions compared to eutopic endometrium of endometriotic women and is more abundantly expressed in eutopic endometrium of disease women compared to healthy ones. Furthermore, it is shown that CRH and UCN upregulate galectin-1 expression in Ishikawa cell line and macrophages and this effect is mediated through CRHR1. These results suggest that galectin-1 might play an important role in endometriosis pathology and infertility profile of women suffering from endometriosis by being at the same time regulated by CRH and UCN interfering in the immune disequilibrium which characterizes this pathological condition.  相似文献   

7.
A Nose  K Tsuji  M Takeichi 《Cell》1990,61(1):147-155
Cadherins are a group of homophilic intercellular adhesion molecules; each member of this family exhibits binding specificity. Here, we attempted to map the sites for the specificities of these molecules by analyzing adhesives selectivities of the cells that express chimeric and point-mutated E- and P-cadherin. The results showed that the amino-terminal 113 amino acid region is essential to determine the specificities, and within this region we could identify especially important sites in which amino acid substitutions altered the binding specificity of cadherins. We also found that the epitopes for antibodies capable of blocking cadherin action are located in this amino-terminal region.  相似文献   

8.
Classical cadherins mediate cell-cell adhesion through calcium-dependent homophilic interactions and are activated through cleavage of a prosequence in the late Golgi. We present here the first three-dimensional structure of a classical cadherin prosequence, solved by NMR. The prototypic prosequence of N-cadherin consists of an Ig-like domain and an unstructured C-terminal region. The folded part of the prosequence-termed prodomain-has a striking structural resemblance to cadherin "adhesive" domains that could not have been predicted from the amino acid sequence due to low sequence similarities. Our detailed structural and evolutionary analysis revealed that prodomains are distant relatives of cadherin "adhesive" domains but lack all the features known to be important for cadherin-cadherin interactions. The presence of an additional "nonadhesive" domain seems to make it impossible to engage homophilic interactions between cadherins that are necessary to activate adhesion, thus explaining the inactive state of prodomain-bearing cadherins.  相似文献   

9.
Ca2+-dependent cell--cell adhesion molecules, termed cadherins, are classified into subclasses with different tissue distributions and distinct cell--cell binding specificities. We report the cloning of cDNA encoding a cadherin present in the placenta which is called P-cadherin. The deduced sequence encodes a polypeptide of 822 amino acids with the characteristic features of integral membrane proteins. A computer search of the amino acid sequence homology of P-cadherin against itself showed that this molecule contains internal repeats in the extracellular domain. Comparison of the primary structure of P-cadherin with that of the epithelial cadherin (E-cadherin) showed that there is 58% homology in their amino acid sequences. These results provide evidence for our hypothesis that cadherins constitute a gene family.  相似文献   

10.
Cadherins are Ca-dependent homophilic cell-cell adhesion molecules which are responsible for correct location of cells and tissue integrity. They are critical for development and maintenance of epithelial architecture. Aberrantly expressed cadherins are known to be involved in malignant transformation of different types of tissues. In this study, we show the expression of a short truncated 50 kDa form of the N-terminal part of P-cadherin in seven melanoma cell lines compared to melanocytes and keratinocytes. In vitro protein analysis on cell culture supernatant as well as immunohistochemistry of primary and metastatic melanoma tissue revealed the expression of this short form of P-cadherin. Furthermore, analysis showed that this short 50 kDa form of P-cadherin is secreted by melanoma cells in contrast to the membrane bound form in melanocytes. Analysis on mRNA level detected only exon 1 to 10 of P-cadherin resulting in the 50 kDa form missing the transmembrane and cytoplasmatic region. Genomic sequence analysis did not show any mutations in melanoma cells neither in the exons nor in the exon-intron boundaries. Furthermore, there was no loss of exons 11-16 on the genomic level. Functionally, the secreted form of P-cadherin could play a role as regulator of the homophilic interaction between P-cadherin molecules by antagonizing their biological role acting as a dominant negative form to interrupt cell-cell attachment.  相似文献   

11.
Cadherins are homophilic cell surface adhesion proteins, some of which mediate interactions between maternal and foetal tissues during mammalian pregnancy. David Haig suggested that these proteins may exhibit 'green-beard gene' effects, whereby the nature of binding between identical alleles in mother and foetus leads to differential levels of resource transfer. The selfish effects of such self-recognizing alleles should, however, be suppressed over evolutionary time by unlinked genes, which is expected to lead to antagonistic coevolution between placentally expressed cadherins and unlinked modifiers. Such molecular coevolution should leave a signature of positive selection, with high ratios of non-synonymous to synonymous amino acid substitution. We present evidence that three placentally expressed cadherin genes, E-cadherin, P-cadherin and VE-cadherin, have been subject to positive selection. By contrast, a 'control' cadherin that is not expressed in the placenta, H-cadherin, showed no evidence of selection. These results provide support for the hypothesis that the cadherin genes involved in maternal-foetal interactions have been subject to green-beard-effect mutations over the course of evolutionary history, leading to antagonistic coevolution with suppressing elements from the parliament of genes.  相似文献   

12.
《The Journal of cell biology》1986,103(6):2649-2658
The Ca2+-dependent cell adhesion molecules, termed cadherins, were previously divided into two subclasses, E- and N-types, with different adhesive specificity. In this study, we identified a novel class of cadherin, termed P-cadherin, using a visceral endoderm cell line PSA5- E. This cadherin was a 118,000-D glycoprotein and distinct from E- and N-cadherins in immunological specificity and molecular mass. In accord with these findings, cells with P-cadherin did not cross-adhere with cells with E-cadherin. P-Cadherin first appeared in developing mouse embryos in the extraembryonic ectoderm and the visceral endoderm at the egg cylinder stage and later was expressed in various tissues. The placenta and the uterine decidua most abundantly expressed this cadherin. The expression of P-cadherin was transient in many tissues, and its permanent expression was limited to certain tissues such as the epidermis, the mesothelium, and the corneal endothelium. When the tissue distribution of P-cadherin was compared with that of E-cadherin, we found that: each cadherin displayed a unique spatio-temporal pattern of expression; P-cadherin was co-expressed with E-cadherin in local regions of various tissues; and onset or termination of expression of P- cadherin was closely associated with connection or segregation of cell layers, as found with other cadherins. These results suggested that differential expression of multiple classes of cadherins play a role in implantation and morphogenesis of embryos by providing cells with heterogenous adhesive specificity.  相似文献   

13.
The aim of the present study was to evaluate the expression of the neo-angiogenic marker endoglin and its localization in tissues of normal and endometriotic patients as well as to compare it with one new angiogenic marker candidate - S100A13. Human recombinant S100A13 and endoglin 35mer synthetic peptide of the intracellular domain were used for the production of rabbit polyclonal antisera. The antisera were characterized for specificity, using immunoenzyme assay (ELISA), Western blot and immunohistochemistry. Formalin-fixed, paraffin-embedded tissue sections from normal endometrium, adenomyosis, ovarian endometriosis, eutopic endometrium from different endometriotic specimens were tested by immunohistochemistry. No endoglin specific staining was observed on the microvessels of the normal endometrium. In adenomyosis and ovarian endometriosis, the expression pattern was different - endoglin was expressed in all microvessels, with an even stronger expression in the myometrial compartment. Weak endoglin-positive staining was detected in the microvessels of eutopic endometrium specimens from different endometriosis cases. In comparison to endoglin, S100A13 exhibited a moderate expression in endometrial glands of normal endometrium, but strong expression in endometriotic specimens. No S100A13 extensive staining of the microvessels was observed in normal endometrium, while in endometriosis, it exhibited very intense staining in microvascular endothelia and less intense in the perivascular area of middle to large-sized vessels. This study for the first time shows over-expression of S100A13 in endometriosis. These data show that the expression of endoglin and S100A13 corresponds to the activation of the endothelial cells in the process of endometriotic angiogenesis, suggesting a beneficial role for these two molecules as markers for actively progressing endometriotic process.  相似文献   

14.
Cadherin cell adhesion molecules are major determinants of tissue patterning which function in cooperation with the actin cytoskeleton. In the context of stable adhesion, cadherin/catenin complexes are often envisaged to passively scaffold onto cortical actin filaments. However, cadherins also form dynamic adhesive contacts during wound healing and morphogenesis. Here actin polymerization has been proposed to drive cell surfaces together, although F-actin reorganization also occurs as cell contacts mature. The interaction between cadherins and actin is therefore likely to depend on the functional state of adhesion. We sought to analyze the relationship between cadherin homophilic binding and cytoskeletal activity during early cadherin adhesive contacts. Dissecting the specific effect of cadherin ligation alone on actin regulation is difficult in native cell-cell contacts, due to the range of juxtacrine signals that can arise when two cell surfaces adhere. We therefore activated homophilic ligation using a specific functional recombinant protein. We report the first evidence that E-cadherin associates with the Arp2/3 complex actin nucleator and demonstrate that cadherin binding can exert an active, instructive influence on cells to mark sites for actin assembly at the cell surface.  相似文献   

15.
Classical cadherins form parallel cis-dimers that emanate from a single cell surface. It is thought that the cis-dimeric form is active in cell-cell adhesion, whereas cadherin monomers are likely to be inactive. Currently, cis-dimers have been shown to exist only between cadherins of the same type. Here, we show the specific formation of cis-heterodimers between N- and R-cadherins. E-cadherin cannot participate in these complexes. Cells coexpressing N- and R-cadherins show homophilic adhesion in which these proteins coassociate at cell-cell interfaces. We performed site- directed mutagenesis studies, the results of which support the strand dimer model for cis-dimerization. Furthermore, we show that when N- and R-cadherins are coexpressed in neurons in vitro, the two cadherins colocalize at certain neural synapses, implying biological relevance for these complexes. The present study provides a novel paradigm for cadherin interaction whereby selective cis-heterodimer formation may generate new functional units to mediate cell-cell adhesion.  相似文献   

16.
Phylogenetic analysis of the cadherin superfamily.   总被引:4,自引:0,他引:4  
Cadherins are a multigene family of proteins which mediate homophilic calcium-dependent cell adhesion and are thought to play an important role in morphogenesis by mediating specific intercellular adhesion. Different lines of experimental evidence have recently indicated that the site responsible for mediating adhesive interactions is localized to the first extracellular domain of cadherin. Based upon an analysis of the sequence of this domain, I show that cadherins can be classified into three groups with distinct structural features. Furthermore, using this sequence information a phylogenetic tree relating the known cadherins was assembled. This is the first such tree to be published for the cadherins. One cadherin subtype, neural cadherin (N-cadherin), shows very little sequence divergence between species, whereas all other cadherin subtypes show more substantial divergence, suggesting that selective pressure upon this domain may be greater for N-cadherin than for other cadherins. Phylogenetic analysis also suggests that the gene duplications which established the main branches leading to the different cadherin subtypes occurred very early in their history. These duplications set the stage for the diversified superfamily we now observe.  相似文献   

17.
Cadherins: actin with the cytoskeleton to form synapses   总被引:8,自引:0,他引:8  
Bamji SX 《Neuron》2005,47(2):175-178
Classic cadherins are calcium-dependent homophilic cell adhesion molecules that are enriched at synapses and thought to function in target recognition and adhesion at synaptic junctions. This brief review highlights evidence that cadherins and their associated catenins play a role in directing the development of pre- and postsynaptic specializations. In particular, the question of whether cadherin regulation of the actin cytoskeleton at discrete contact sites translates into the assembly of synaptic compartments will be explored.  相似文献   

18.
Epidermis is a self-renewing, multilayered tissue composed primarily of keratinocytes. The epidermal keratinocyte follows a terminal differentiation pathway that under normal circumstances is tightly linked to its position within the epidermis and culminates in the formation of the protective barrier (stratum corneum) that constitutes the outermost layer of skin. Strong but pliant adhesive mechanisms are essential for normal functioning of the epidermis. In the epidermis, adhesion is mediated primarily by four structures: hemidesmosomes and focal adhesions, which function in cell-matrix adhesion, and desmosomes and adherens junctions, which function in cell-cell adhesion. In this review we concentrate on the transmembrane components of these structures, which are thought to mediate directly the adhesive function. Members of the integrin family of adhesion molecules comprise the transmembrane components of hemidesmosomes and focal adhesions, although hemidesmosomes also have a second, unrelated transmembrane molecule known as 'bullous pemphigoid antigen 2'. Members of the cadherin family are the transmembrane constituents of desmosomes and adherens junctions. Desmosomes consistently contain two types of cadherins (desmoglein and desmocollin), while adherens junctions may contain only one type of cadherin (E- or P-cadherin). Expression of most of the transmembrane components varies with the position of the keratinocyte within the epidermis and thus may reflect the degree of epidermal differentiation. All of the integrin subunits have been localized predominantly to the basal layer. In contrast, the cadherins show very complex expression patterns throughout the epidermis. Desmogleins and desmocollins (the desmosomal cadherins) are each encoded by three genes, and the expression of each gene is limited to certain epidermal layers. With respect to the cadherins of the adherens junction, it has been shown that E-cadherin is present throughout the epidermis, while P-cadherin is limited to the basal layer. Interestingly, these complex expression patterns of integrins and cadherins within the epidermis may not simply be passive events in differentiation; rather, evidence is accumulating that adhesion molecules can exert a dynamic role in epidermal differentiation/stratification. For example, decreased adhesion to extracellular matrix, induced by changes in one or more integrins, appears to be a signal that induces certain differentiation-related events. Even more profound effects on epidermal morphogenesis have been demonstrated for the cadherins. E- and/or P-cadherin is required not only to initiate normal intercellular junction formation but also for the subsequent development of a stratified epithelium. Thus, the findings to date with both integrins and cadherins suggest that adhesion molecules may function not just as direct mediators of adhesion, but also as regulators of epidermal stratification, differentiation, and morphogenesis.  相似文献   

19.
Classical and atypical cadherins mediate calcium-dependent cell adhesion and play an important role in morphogenetic processes. We have shown, previously, N- and E-cadherin expression in the rat ovary. This expression, however, was not associated with specific follicle-restructuring events such as antrum formation and segregation of mural from cumulus granulosa cells suggesting that other cadherins may serve this function. In this study, RT-PCR and immunostaining techniques showed that three other cadherins are expressed throughout prepubertal ovarian development in the rat: one classical (P-) cadherin, and two atypical (K- and OB-) cadherins. RT-PCR analysis of isolated ovarian tissue compartments (granulosa cells and the residual ovarian tissue) agreed with the immunostaining results. Immunostaining showed P- and K-cadherin expression by granulosa, as well as thecal/interstitial cells, and also in oocytes of primordial follicles. P-cadherin expression was absent in oocytes of follicles in later stages of development compared to K-cadherin, which was found in oocytes at all stages of folliculogenesis. P-, K-, and OB-cadherin were expressed by the ovarian surface epithelial cells of neonatal animals but only P- and OB-cadherin expression were maintained in these cells in 25 day-old animals. Cellular OB-cadherin staining was absent in follicles at all stages of development and its expression was restricted to the ovarian hilar region and portions of the stroma. In summary, cadherin expression and distribution profiles changed during ovarian growth and folliculogenesis suggesting a role for cadherins in organizational and morphogenetic processes within the developing rat ovary.  相似文献   

20.
Classic cadherins represent a family of calcium-dependent homophilic cell–cell adhesion molecules. They confer strong adhesiveness to animal cells when they are anchored to the actin cytoskeleton via their cytoplasmic binding partners, catenins. The cadherin/catenin adhesion system plays key roles in the morphogenesis and function of the vertebrate and invertebrate nervous systems. In early vertebrate development, cadherins are involved in multiple events of brain morphogenesis including the formation and maintenance of the neuroepithelium, neurite extension and migration of neuronal cells. In the invertebrate nervous system, classic cadherin-mediated cell–cell interaction plays important roles in wiring among neurons. For synaptogenesis, the cadherin/catenin system not only stabilizes cell–cell contacts at excitatory synapses but also assembles synaptic molecules at synaptic sites. Furthermore, this system is involved in synaptic plasticity. Recent studies on the role of individual cadherin subtypes at synapses indicate that individual cadherin subtypes play their own unique role to regulate synaptic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号