首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The short-wave fluorescence of bidistilled water treated in the cathode and anode chambers of two types of electrolysers made from different materials was investigated by fluorescence spectroscopy. It was shown that the electrochemical treatment of water did not induce intrinsic short-wave flyorescence of catholyte and anolyte in the case of quartz glass electrolyser. The increase observed in the intensity of intrinsic short-wavelength fluorescence of bidistilled water in the catholyte and anolyte of the electrolyser made from technical organic glass was caused by microcontaminations released from electrolyser material in the samples.  相似文献   

2.
The effect of bidistilled modified water obtained by treating bidistilled water with static electric field in the cathode compartment of a diaphragm electrolyzer on the production of tumor necrosis factor and activity of natural killer cells of mice was studied. It was found that bidistilled modified water added to cultured murine macrophages increases the tumor necrosis factor production 2.5-3-fold. A similar degree of stimulation of tumor necrosis factor production was observed after peroral administration of bidistilled modified water for 10-25 days. The activity of natural killer cells under these conditions increased by 150%. The stimulation of these immunity system components responsible for the resistance of the organism to tumors led to a suppression of tumor growth in tumor-bearing mice receiving bidistilled modified water.  相似文献   

3.
Fluorescence spectroscopy was used to study the shortwave fluorescence of bidistilled water treated in the cathode and anode chambers of two types of electrolyzers made of different materials. Electrochemical treatment in the quartz glass electrolyzer did not induce intrinsic fluorescence of the anolyte or catholyte. An increase in the shortwave fluorescence of the anolyte and catholyte was observed in the electrolyzer made of Plexiglass, which was probably due to the release of microcontaminants from components of the electrolyzer.  相似文献   

4.
It was shown that bidistilled modified water substantially enhances the hydrolysis of the peptide the bovine insulin B-chain. The exposure of the peptide to bidistilled modified water for 20 hours at room temperature leads to an almost complete hydrolysis of its molecule into fragments that differ from the initial molecule in elution time from a column in high-performance liquid chromatography.  相似文献   

5.
6.
F J Walker 《Biochemistry》1986,25(20):6305-6311
Protein S, the protein cofactor for activated protein C in the proteolytic inactivation of factor Va, was chemically modified with a mixture of morpholine and formaldehyde. This treatment resulted in the conversion of the gamma-carboxyglutamic acid (Gla) residues of this vitamin K dependent protein to gamma-methyleneglutamic acid. With a 10,000-fold molar excess of morpholine and formaldehyde over protein S it was found that between 10 and 11 Gla residues could be modified. The degree of modification was proportional to the concentration of the modifying reagents used. The modification of as few as two residues resulted in the 70% loss of activity. Calcium inhibited the modification of several residues. In the presence of 3.2 mM calcium ion, a derivative with 2.5 residues modified was prepared that appeared to have full activity. Modification of protein S resulted in the alteration of a number of its properties. The quenching of intrinsic fluorescence by calcium decreased. The quenching effect of terbium ions was also decreased. However, the modified protein and the native protein were equivalent when protein-dependent terbium fluorescence was measured. When modified, protein S would no longer bind to phospholipid vesicles. Finally, the ability of protein S to self-associate was decreased by modification. These findings suggest that the gamma-carboxyglutamic acid residues of protein S may play several roles in the maintenance of structure.  相似文献   

7.
It was shown that weak combined static (42 microT) and low-frequency variable (40 nT; 3-5 Hz) magnetic fields change the intensity of intrinsic fluorescence of some proteins (cytochrome c, bovine serum albumin, horseradish peroxidase, alkaline phosphatase). The effect can be interpreted as a change in the conformational state of the protein in water environment by the action of weak magnetic fields. The dynamics of the process, the concentration dependence, the binding of proteins to the fluorescence probe 1,8-ANS after treatment with magnetic fields, the frequency dependence of these reactions, and the dependence of the effect on the presence of the static constituent of the magnetic field were studied. It was shown that the changes in the intrinsic fluorescence of some enzymes (horseradish peroxidase, alkaline phosphatase) are related to changes in their functional activity. It was found that the effect is partially transferred via a solvent (water, 0.01 M NaCl) preliminarily treated with magnetic field. In the solvent, changes in its intrinsic fluorescence by the action of weak magnetic fields were also registered.  相似文献   

8.
The biological activity of the catholyte and anolyte of bidistilled water in experiments with the germination of wheat grains in the period from March to May has been studied. The activity of solutions, which was characterized by the grain germination index, was high at the beginning of the period, then it gradually decreased and was equal to zero at the middle of the period; at the end of the period it gradually increased almost to initial values. It has been established that the effectiveness of bidistilled water anolyte was as a rule higher than that of catholyte throughout the observation period. At the beginning and end, the stimulating effect of anolyte was 5-5.5 times greater than that of catholyte. The seasonal changes in the biological activity of M 9 medium catholyte were compared with those of bidistilled water anolyte and catholyte. The stimulating effect of M 9 catholyte was estimated by changes in the growth of E. coli cells. The stimulating effect, which was estimated from an increase in the optical density of cell suspension in the initial period at a cultivation temperature of 20 degrees C was 55-60% relative to control (untreated medium). Then it decreased almost to zero in the middle of the period to increase again approximately to the initial values. The assumption has been made that the physicochemical causes of the influence of catholyte and anolyte of bidistilled water on wheat grains and of the culture medium catholyte on E. coli cells are of different nature.  相似文献   

9.
Multifrequency phase-modulation lifetime data were acquired for sarcoplasmic reticulum Ca2+-ATPase. The intrinsic tryptophan fluorescence decay was complex and was fitted either with three exponentials or with bimodal Lorentzian distributions of lifetimes. Ca2+ binding to the high affinity sites in the ATPase produced an increase of 11% in the center of the main component of the bimodal distribution, shifting the lifetime from 4.04 to 4.50 ns. The effects of solvent on the ATPase were studied with the enzyme dissolved in reverse micelles of detergent bis-(2-ethylhexyl)sulfosuccinate in hexane. Increasing amounts of water up to a water/bis-(2-ethylhexyl)sulfosuccinate molar ratio of 4 produced marked changes in the fluorescence emission of the protein. Comparison of data obtained for micellar solutions of tryptophan or ATPase indicated that the tryptophan residues in the protein are protected from exposure to water. Correlation of water effects on emission intensity and lifetimes suggested that interaction with solvent may result in structural changes that cause a mixture of dynamic and static quenching of ATPase intrinsic fluorescence. Evidence for an effect of hydration on the structure of the active site was obtained by measurements of the fluorescence properties of fluorescein isothiocianate-labeled ATPase in reverse micelles.  相似文献   

10.
Protons induce calsequestrin conformational changes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Calsequestrin, a high-capacity, intermediate-affinity, calcium-binding protein present in the lumen of sarcoplasmic reticulum, undergoes extensive calcium-induced conformational changes at neutral pH that cause distinct intrinsic fluorescence changes. The results reported in this work indicate that pH has a marked effect on these calcium-induced intrinsic fluorescence changes, as well as on calorimetric changes produced by the addition of Ca(2+) to calsequestrin. The addition of Ca(2+) at neutral pH produced a marked and cooperative increase in calsequestrin intrinsic fluorescence. In contrast, at pH 6.0 calsequestrin's intrinsic fluorescence was not affected by the addition of Ca(2+), and the same intrinsic fluorescence as that measured in millimolar calcium at neutral pH was obtained. The magnitude and the cooperativity of the calcium-induced intrinsic fluorescence changes decreased as either [H+] or [K+] increased. The evolution of heat production, determined by microcalorimetry, observed upon increasing the molar ratio of Ca(2+) to calsequestrin in 0.15 M KCl, decreased markedly as the pH decreased from pH 8.0 to pH 6.0, indicating that pH modifies the total heat content changes produced by Ca(2+). We propose that protons bind to calsequestrin and induce protein conformational changes that are responsible for the observed proton-induced intrinsic fluorescence and calorimetric changes.  相似文献   

11.
The epsilon-amino groups of ovalbumin were modified with succinic anhydride; as many as 16 lysine residues were succinylated (3-carboxypropionylated). The five succinylated derivatives thus prepared were homogeneous with respect to the extent of chemical modification as shown by electrophoretic and immunological data. Succinylation of the amino groups altered electrophoretic mobility and isoionic pH of ovalbumin in the expected direction. U.v.-absorption and fluorescence spectra suggested changes in the microenvironment of the chromophores in the modified proteins. The difference-spectral results showed greater exposure of tyrosine and tryptophan residues in the succinylated ovalbumin. Increase in susceptibility to tryptic digestion, Stokes radius and intrinsic viscosity of native ovalbumin, which was observed on successive increase in the chemical modification, demonstrated a conformational change that was proportional to the extent of modification. The loss of immunological reactivity caused by chemical modification also indicated a conformational change in succinylated ovalbumin. The fact that the intrinsic viscosity of maximally modified ovalbumin was less than one-third of that for the completely denatured protein in 6M-guanidinium chloride suggested that the modified protein contained significant residual native structure. The latter presumably accommodates some antigenic determinants accounting for 37% residual immunological activity observed with maximally succinylated ovalbumin.  相似文献   

12.
Fluorescence studies were carried out on a purified preparation of the ADP/ATP carrier protein solubilized in 3-laurylamido-N-N-dimethylpropylaminoxide. The intrinsic fluorescence of the protein was modified upon addition of ADP and ATP and specific inhibitory ligands (carboxyatractyloside and bongkrekic acid). The fluorescence was transitorily enhanced by micromolar concentrations of ADP or ATP. The rise in fluorescence lasted for 10 sec at 25°C. It was suppressed by carboxyatractyloside and on the contrary enhanced by bongkrekic acid. These data were interpreted as reflecting conformational changes probably related to the functioning of the ADP/ATP carrier. Mg++ inhibited the ADP- or ATP-induced rise in fluorescence, indicating that the free forms (and not the Mg++ complexed forms) of ADP and ATP are the true substrates for the ADP/ATP carrier.  相似文献   

13.
O A Bizzozero  M B Lees 《Biochemistry》1986,25(22):6762-6768
The effect of covalently bound fatty acid on the conformation of the myelin proteolipid protein has been studied by ultraviolet and intrinsic fluorescence spectroscopy. With dimethyl sulfoxide used as a perturbant, the exposure of Trp and Tyr residues in various mixtures of chloroform-methanol was evaluated by difference spectroscopy of the proteolipid protein (APL) and its chemically deacylated form (d-APL). The fraction of chromophoric groups exposed increased with the proportion of chloroform with 25% of the groups exposed in 1:2 chloroform-methanol and 98% in 3:1 chloroform-methanol. These conformational changes correlate well with changes in intrinsic viscosity. Values for the deacylated form were indistinguishable from those of the acylated protein, suggesting that fatty acids do not affect protein conformation in organic solvents. In water, UV difference spectroscopy indicated that the number of Tyr and Trp groups exposed in both APL and d-APL was relatively small and was independent of the molecular size of the perturbant. However, differences in the environment of the Trp groups in the two forms of the protein could be demonstrated by intrinsic fluorescence. When the protein was excited at 295 nm, the maximum emission wavelength for the acylated protein was 330 nm, whereas it was 335 nm for the deacylated form. Furthermore, the Trp groups in d-APL were more easily quenched by acrylamide than in APL, indicating that they were more exposed, or in a more hydrophilic environment, following deacylation. Protein aggregation appears to be independent of the presence of fatty acids, suggesting that the fluorescence differences between APL and d-APL are related to factors other than aggregation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Thermal inactivation of glucose-6-phosphate dehydrogenase (G6PDH) and its conjugates with progesterone containing 3, 7 and 35 molecules of the modifier was studied in bidistilled water over a temperature range 35-47 degrees. At different temperatures and initial concentrations of the enzyme and its modified forms, thermal inactivation is described by the equation of the first order up to a significant degree of enzyme deactivation. The effective Kin values are decreased with the increase of the native G6PDH concentration and changed in a complicated manner with the increase of the conjugate concentration depending on the enzyme modification degree, which reflects a great role of the enzyme hydrophobicity in its inactivation. The role of hydrophobicity of the modified G6PDH in changes of its specific activity is discussed.  相似文献   

15.
The formation of hydrogen peroxide in catholytes and anolytes of electrochemically activated solutions: bidistilled water and solutions of sodium chloride and nutrition medium M9 was studied. The concentration of hydrogen peroxide was determined by the method of enhanced chemiluminescence in a system peroxidase-luminol-p-iodophenol. It was shown that the concentration of hydrogen peroxide depends on the ionic content of the solution and varies from a few fractions of a micromole in catholytes of bidistilled water and sodium chloride solutions (10(-5) divided by 10(-2) M) to 20-25 microM in catholytes of medium M9. The concentration of H2O2 in anolytes of various solutions was 15-20 times lower than in the corresponding catholytes and was equal to a few nanomoles in bidistilled water and a few micromoles in medium M9. The biological activity of the catholyte of medium M9 was determined from changes in the growth of E. coli cells. It was found that this catholyte stimulates the cell growth. The stimulating effect was 20-25% and did not change after the decomposition of hydrogen peroxide in the catholyte by catalase. The addition of H2O2 at the corresponding concentration to the inactivated nutrient medium produced no stimulating effect. These data suggest that hydrogen peroxide formed in the catholyte of nutrient medium M9 does not affect its biological activity.  相似文献   

16.
Particulate aluminum oxides (alumina) were examined as supports for the immobilization of the proteolytic enzyme papain. Two alumina supports termed C1 and CPC were derivatized using organic phosphate linkers to create free carboxyl groups using a two-step process. Papain binding to these derivatized aluminas was performed using the water soluble carbodiimide 1-ethyl-3-(dimethylaminopropyl) carbodiimide. Reactions were optimal at 10 mM carbodiimide. The immobilized protein showed similar kinetic constants when compared to the solution protein. The pH dependence and thermal stability were essentially identical. The immobilized papain showed a blue shift in the intrinsic fluorescence emission maxima. Papain modified with the active site-specific fluorescent probe acrylodan showed overlapping emission maxima. These results are interpreted as retention of the hydrophobic environment of the active site with a perturbation in the structure of the rest of the protein caused by its association with the negatively charged surface. (c) 1992 John Wiley & Sons, Inc.  相似文献   

17.
Methylglyoxal is a metabolic byproduct that is elevated in diabetic tissue. We examined the effects of methylglyoxal on cytosolic aspartate aminotransferase (cAAT), which is an enzyme previously shown to be modified by glyceraldehyde, acrolein, and ribose 5-phosphate. In the present study we observed that methylglyoxal caused real-time changes in tryptophan (intrinsic) fluorescence. Millimolar concentrations of methylglyoxal predominately decreased the fluorescence emission at 388 nm. While micromolar concentrations also decreased emission at 388 nm, low levels of methylglyoxal caused a prominent redshift in the wavelength of maximal emission. The changes in intrinsic fluorescence reflect definable changes in protein topography. These observations are consistent with a change in conformation that is more compact than that of native cAAT, suggesting that intramolecular cross-links (i.e., lysine-lysine) or hydrophobic pockets (i.e., carboxyethyl-lysines) were formed. Methylglyoxal also inhibited activity, and the inhibition correlated with the methylglyoxal-induced change in protein conformation.  相似文献   

18.
The interaction of 12 substituted phenol, three aminophenol and four substituted aniline derivatives with the corn protein zein was studied on zein-coated silica and alumina stationary phases by high-performance liquid chromatography using bidistilled water as mobile phase. Solutes were eluted from the zein-coated supports with different retention times indicating that they bind to the protein with different forces. They were more strongly retained on silica-based than on alumina-based support proving that the original adsorptive character of the support remains even after impregnation. The retention of solutes on both zein-coated stationary phases significantly depended on the steric and electronic parameters of solutes and was independent of the calculated and measured lipophilicity parameters, indicating that hydrophobic forces are not included in the interaction of zein with these class of solutes. It has been concluded that the interaction is governed by steric and electrostatic forces.  相似文献   

19.
Polycyclic aromatic hydrocarbons are among the most threatening pollutants widely present in the environment. Simple and economic methods of continuous monitoring of these compounds in real time are not yet available, although becoming increasingly needed. Odorant-binding proteins (OBPs) present unique characteristics of thermal and chemical stability for building robust, reliable, and inexpensive biosensors for such molecules. To investigate this possibility, we have engineered the pig OBP, whose three-dimensional structure has been resolved, introducing a tryptophan residue in the core of the binding pocket, as a fluorescence reporter for the presence of bound ligands. Binding affinities of several polyaromatic hydrocarbons to mutagenically modified OBPs were measured in competitive binding assays. Moreover, the presence of aromatic ligands was also successfully monitored in the modified OBPs by recording the quenching of intrinsic fluorescence of the protein. These data indicate that OBPs bind several aromatic polycyclic compounds with good affinities, that the specificity of these proteins can be easily modified by changing specific amino acid residues and that the introduction of a tryptophan residue in the binding site allows monitoring of aromatic ligands using direct fluorescence measurements.  相似文献   

20.
The highly hydrophobic myelin Folch-Pi apoprotein can be solubilized in organic as well as in aqueous media. In order to understand the molecular organization changes consecutive to changes in the solvent medium, the environment of intrinsic probes and extrinsic labels has been studied by fluorescence and accessibility to some reagents. In acqueous solution, only two tryptophan residues per protein molecule of 23,500 molecular weight have been shown to fluoresce, and their fluorescence characterisitics indicate an hydrophobic and/or constrained environment. Two ANS binding sites have also been observed having a high quenching effect on the intrinsic chromophore fluorescence. A large accessibility has been evidenced for the protein sulfhydryl groups in chloroform-methanol 2:1 (v/v), both by kinetic study of the protein reaction with a specific reagent, N-(1-anilino-naphtyl-4) maleimide, and by the fluorescence characteristics of this probe once linked to the protein. The free sulfhydryl groups were still reactive in acqueous solution, but extrinsic fluorescence of the labelled apoprotein transferred from chloroform-methanol 2:1 (v/v) into water gave evidence of constraints on the probe or on its environment. Such constraints may contribute to the solubilization in acqueous solution of this highly hydrophobic protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号