首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied activity patterns of long‐legged bats, Macrophyllum macrophyllum (Phyllostomidae), in the Barro Colorado Nature Monument, Panamá, using radio‐telemetry. Activity of four males and five females equipped with radio‐transmitters were monitored for 4–7 entire nights each between April and July 2002. Bats exhibited maximum activity around dusk and high activity during the night. Males and females foraged for equal amounts of time in continuous flight (mean: 7 min, maximum 1 h) with interspersed resting phases (mean: 15 min, maximum 3 h). Activity of M. macrophyllum was sensitive to several factors. Time of emergence and return to day roost were correlated with time of sunset and sunrise, respectively. Maximum bat activity coincided with high abundance of aerial insects. Finally, heavy rain caused bats to reduce or cease flight activity. Direct observations and field video recordings support the assumption that M. macrophyllum employs two distinct foraging modes: trawling of insects from and capture of aerial insects at low heights above water. Combination of foraging modes gives M. macrophyllum high flexibility and efficiency in prey search. Activity, foraging mode, and morphology, which are similar to trawling bats from other families, distinguish M. macrophyllum from all other phyllostomid species and grant it access to open habitat above water, a habitat no other phyllostomid bat has conquered.  相似文献   

2.
《新西兰生态学杂志》2011,30(2):273-278
The Wellington tree weta, Hemideina crassidens, is a harem-polygynous nocturnal insect whose males defend and mate groups of females residing in cavities in trees. In this study I examined sexual differences in gallery use (number of galleries occupied per unit time), distance travelled per night and activity patterns after sunset. In addition, I investigated how gallery size affected each of these variables. On average, males and females did not differ in the number of galleries visited per night, or in the distance they travelled per night; however, adult males were more likely to be seen earlier in the night than later. Although males and females did not differ in their gallery use or distance travelled, adult males occupied a significantly greater number of galleries and travelled greater distances per night at sites with small galleries than did males at sites with large galleries. These results suggest that habitat structure of a forest patch influences intrasexual tree weta behaviour.  相似文献   

3.
The outflying and homeflying activity pattern of a colony of the Indian pygmy bat Pipistrellus mimus occupying a tunnel was studied under natural conditions. Before leaving the tunnel for foraging, the bats made circling flights outside to sample the environmental light conditions. The onset and end of activity was related to the times of sunset and sunrise respectively. The onset of flight during evening commenced after sunset from mid-September to mid-April, before sunset during the rest of the year. Onset of activity occurred at higher light intensities compared to light intensities prevailing during the return flight to the roost in the morning. The duration of activity time showed a curvilinear relationship with the duration of the night. The phase relationship between onset and end of activity, and sunset and sunrise, showed marked seasonal variations in the values of Ψonset, Ψend, and Ψmidpoint. However, such changes in the phase angle properties did not obey Aschoff's seasonal rule. Based upon the data obtained on the onset and end of activity patterns for five species of bats, including the data from this study, we report that P. mimus is the earliest to set out for foraging in the evening and among the last to return home in the morning. This might be due to dusk and dawn peaks in activity of the prey insects.  相似文献   

4.
Nocturnal migration of Reed Warblers Acrocephalus scirpaceus was studied by trapping with 'high nets' on the Courish Spit (Eastern Baltic) during spring 1998–2000. In spring, Reed Warblers left the stopover site between 45 and 240 min after sunset (median 84 min), although 85% of birds took off between 45 and 120 min after sunset. Birds did not arrive until the fifth hour after sunset; 67% of birds ended their nocturnal flights in the penultimate hour before sunrise, i.e. at dawn. At the moment of migratory departure, the average Reed Warbler body mass was 12.79 ± 0.66 g ( n  = 60). Average body mass of birds ending migratory flight was 11.69 ± 0.67 g ( n  = 18). The difference was highly significant. However, more than half of the birds completed migratory flights with a considerable fuel load, and some even had energy stores sufficient for a migratory flight on the next night. The spring migratory strategy of Reed Warblers over Central and Northern Europe probably includes a succession of short migratory flights (4–6 h) during several subsequent nights with 1-day stopovers.  相似文献   

5.
Efforts to restore ponderosa pine ecosystems to open, park‐like conditions that predominated prior to European‐American settlement result in altered stand structure and increased landscape heterogeneity, potentially altering habitat suitability for invertebrates and other forest organisms. We examined the responses of two butterfly species, Colias eurytheme and Neophasia menapia, to microclimatic changes at structural edges created by experimental restoration treatments in northern Arizona. We monitored microclimate, including air temperature, light intensity, and vapor pressure deficit (VPD), on several mornings during butterfly releases. We placed adult butterflies at east‐ and west‐facing edges approximately one half‐hour before dawn to determine their behavioral response to microclimatic differences between east‐ and west‐facing edges. After sunrise, all three microclimatic variables were higher at east‐facing edges, and the difference in microclimate between the two edge orientations increased through early morning. For both species, butterflies placed at east‐facing edges flew earlier than butterflies at west‐facing edges. Colias eurytheme, an open‐habitat species, tended to move toward the treated forest during initial flight, while movements of Neophasia menapia, a forest‐dwelling species, did not differ from random flight. Our results indicate that butterflies respond to microclimatic factors associated with restoration treatments, while responses to structural changes in habitat vary among species, based on habitat and food plant preferences. These changes in forest structure and microclimate may affect the distribution of many mobile invertebrates in forested landscapes undergoing restoration treatments.  相似文献   

6.
Many species are becoming active earlier in the season as the climate becomes warmer. In parallel to phenological responses to climate change, many species have also been affected by habitat changes due to anthropogenic land use. As habitat type can directly affect microclimatic conditions, concurrent changes in climate and habitat could have interacting effects on the phenology of species. Temperature‐related shifts in phenology, however, have mostly been studied independent of habitat types. Here, I used long‐term data from a highly standardized monitoring program with 519 transects to study how phenology of butterflies is affected by ambient temperature and habitat type. I compared forests, agricultural areas and settlements, reflecting three major land use forms, and considered butterfly species that were observed in all three of these habitats. Seasonal appearance of the butterflies was affected both by the ambient temperature and the habitat type. As expected, warmer temperatures led to an overall advancement of the appearance and flight period of most species. Surprisingly, however, phenology of species was delayed in settlement habitats, even though this habitat type is generally associated with higher temperatures. A possible explanation is dispersal among habitat types, such that source–sink effects affect local phenology. When there is little productivity in settlement areas, observed butterflies may have immigrated from forest or agricultural habitats and thus appear later in settlements. My findings suggest that a spillover of individuals among habitats may affect phenology trends and indicate that phenological studies need to be interpreted in the context of habitat types. This becomes especially important when defining strategies to prevent or mitigate effects of climate and land‐use changes on phenology and abundance of species.  相似文献   

7.
Partitioning of activity time within ecological communities potentially reduces interspecific competition and increases the number of species that can coexist. We investigated temporal activity in a highly diverse lizard assemblage in the Simpson Desert, central Australia, to determine the degree of partitioning that occurs. Three periods were defined, daytime (sunrise to sunset), early night (sunset to midnight) and late night (midnight to sunrise), and live captures of lizards were tallied for each period during two sampling months (September and November 2007). We also quantified the activity times of potential invertebrate prey and measured ambient temperatures during the different time periods to investigate any associations between these factors and lizard activity. Some 77% of captures of 13 lizard species were made by day, with Ctenotus pantherinus, Egernia inornata (Scincidae) and Nephrurus levis (Gekkonidae) the only species showing extended nocturnal activity. Activity of both species of skink was recorded at temperatures 4°C lower than those for agamid and varanid lizards early in the night, and at temperatures as low as 18–20°C. Surface‐active invertebrates differed in composition between time periods and were less abundant during the late night period in the drier of the two sample months (September), but were distributed equally over time in the other month. Termites were active in subterranean galleries at night in September and mostly by day in November, but available at all times on surface/subsurface baits. We conclude that activity is distributed unevenly within this lizard assemblage, with partitioning facilitated by the ready availability of invertebrate prey and by lizards having relatively broad temperature tolerances that, in some cases, permit opportunistic exploitation of resources beyond usual times of activity.  相似文献   

8.
Diurnal Phototropism in Solar Tracking Leaves of Lavatera cretica   总被引:1,自引:0,他引:1       下载免费PDF全文
On a clear day, leaf laminas of Lavatera cretica tracked the solar position throughout the day. The laminar azimuth did not diverge from the solar azimuth by more than 12° from sunrise to sunset. Tracking of the solar elevation started 1 to 2 hours after sunrise and ceased 1 to 2 hours before sunset. On an overcast day, the laminas reoriented horizontally. After sunset, following a clear day, the laminas performed a nocturnal reorientation, with three well defined phases. During the initial phase the laminas relaxed their strained sunset-facing orientation to one perpendicular to their petioles. This equilibrium configuration was maintained throughout the following phase, which was apparently concerned with time-measuring. During the final phase, the laminas reoriented, before sunrise, to a position facing the direction of the anticipated sunrise. This directional information is phototropic and was retained for 3 to 4 diurnal cycles, probably in the pulvinus itself, which is the site of the response. Laminas of plants transferred from sunlight either to darkness, or to a simulated natural photoperiod under overhead illumination, were facing the originally anticipated direction of sunrise at the time of each of the three to four subsequent sunrises (after which they reverted to the dark orientation in darkness, or to the horizontal one with overhead illumination). Cotyledonary laminas required directional information for the nocturnal reorientation during 3 or 4 cycles of simulated sunrise to sunset transitions.  相似文献   

9.
An attempt was made to determine some of the factors regulating flight activity in the Australian plague locust, Chortoicetes terminifera (Walk.) by comparing the physiological characteristics of flying and non-flying locusts at different times of the day. Flight during the day did not appear to involve extensive displacements of the insects and was dependent largely on the, environmental conditions. The physiological state and age did not seem important and the milling flight of swarms involved insects of all ages and states of sexual maturity and the insects were commonly fully fed. There was probably at this time a continual interchange of insects between the air and the ground provided wind speeds are not too high and the air temperature was not below 19°C. Night flight, however, was observed only in locusts after the teneral period, when cuticle deposition was nearing completion around 10 days after the imaginal ecdysis and, in the case of the females, the oocytes were relatively undeveloped. Night flight was also associated with a failure to feed prior to sunset; only those with empty foreguts being stimulated to fly with the drop in light intensity, when the temperature was not too low and certainly not below 17·5°C. It is probably the older insects which take-off in these circumstances for by the time of sunset 30 to 40 per cent of the older, ones apparently fail to feed on any one evening and empty locusts tend to be more active than fully fed ones. The females appeared to show a flight periodicity related to the oviposition cycle, which under suitable conditions, leads to the displacement of about one-third of the population which is sexually immature or which has already recently oviposited. The flight activity of females is probably greater than that of the males for the sexes were in equal ratio in insects caught in flight while males exceeded females in ground populations. At sunset, fewer females than males still had full foreguts and were perhaps more likely to take-off while a higher proportion of younger females than males may soon re-alight if their physiological state is unfavourable for prolonged flight at night.  相似文献   

10.
Although bats are nocturnal, many species emerge from roosts to forage during twilight, despite a presumed high risk of predation at this time. Here, we describe twilight foraging by a maternity colony of Schneider's leafnosed bat (Hipposideros speoris) in the dry zone of Sri Lanka and determine the dietary benefits of such behavior. Bats usually began foraging during dusk, sometimes before sunset, and also foraged during twilight in the morning. Mean use of available twilight by four radio‐tagged bats was 75 percent. Twilight foraging made up, on average, 47 percent of the total foraging time of these bats (range = 25–96%), although twilight consisted of only 12 percent of the available time between sunset and sunrise the next morning. Eight species of potential predators (7 birds and 1 mammal) were observed within a 1 km radius of the colony, of which 5 species are predicted to regularly capture bats. Bats took a wide diversity of prey (11 insect orders, including at least 27 families, and spiders) that ranged in wing length from 2.0 to 54.0 mm. Major orders in the diet were Coleoptera, Lepidoptera, and Diptera. Prey of secondary importance included Hemiptera, Hymenoptera, Isoptera, and Neuroptera. Bats captured large numbers of insects that were only available or had marked peaks in abundance during twilight. These groups included small, swarming insects (especially flies) that have peaks in flight activity at dusk and dawn, large diurnal species (especially dragonflies) that have crepuscular activity, and winged termites that emerge in swarms at dusk. Access to these insects was a clear benefit of twilight foraging.  相似文献   

11.
Abstract  The timing of host-seeking behaviour was studied in two mosquito species, Anopheles annulipes sensu lato and Coquillettidia linealis at Mundic Creek, near the Upper River Murray in South Australia. Hourly sampling using carbon dioxide-baited traps revealed consistent patterns in the timing of host-seeking. Coquillettidia linealis displayed a very large peak in host-seeking activity at sunset, followed by a much reduced level throughout the night and a smaller peak at sunrise. Anopheles annulipes s.l. differed by displaying a significantly smaller peak at sunset, followed by higher amount of activity throughout the night compared with Cq. linealis . The two taxa, while both crepuscular and nocturnal, spread their host-seeking effort out differently throughout the night, indicating that they have different resource requirements.  相似文献   

12.
ABSTRACT.   Millions of birds migrate across the Gulf of Mexico each year. However, most studies of migration in this region involve sampling onshore locations during the day, potentially underrepresenting the diversity and abundance of migrants passing the region. We evaluated a potential solution to this problem by recording the flight calls of passing migrants from an oil platform located southeast of the Alabama coast in the Gulf of Mexico. We detected 2762 calls during 30 nights from 9 September to 2 November 1999, and were able to identify 2329 calls to species. Flight calls by nine species of birds represented 23% of all identified calls. The greatest number of calls during one night (1017 calls) and during a 1-h period (257 calls) were recorded on 10 September. The greatest number of calls was recorded 8 h after sunset, with a secondary peak 2 h after sunset. The peak prior to sunrise may indicate the formation of flocks at dawn, and the peak after sunset may have been caused by the first wave of migrants reaching the platform. However, call counts varied extensively, with 98% of all calls recorded during 13 nights and 40% on a single night, possibly resulting from hourly and nightly differences in bird numbers aloft, atmospheric conditions, and artificial lighting conditions. Although recording on oil platforms can be difficult because of mechanical, wind, and wave noise, our results suggest great potential for describing the species composition of passing vocal migrants and the temporal patterns of flight-calling behavior if quiet recording locations can be found. Moreover, flight call monitoring could be a critically important tool for bird conservation in this region, given recent proposals to develop wind power and the potential bird mortality associated with such developments.  相似文献   

13.
This study aimed to investigate the spatial structure of nocturnal fish communities at settlement on coral reefs in Moorea Island lagoon, French Polynesia; and the temporal consistency of habitat selection between winter (April to June 2001) and summer (November 2001). The Moorea lagoon was divided into 12 habitat zones (i.e., coral reef zones), which were distinct in terms of depth, wave exposure, and substratum composition. Nocturnal visual censuses among the 12 habitats found that the recently settled juveniles of 25 species recorded were dispatched among three communities spatially distributed according to the distance from the reef crest (reef crest, barrier reef, and fringing reef communities). This spatial communities structure of nocturnal juveniles was consistent in both winter and summer and would be explained primarily by a current gradient in Moorea lagoon (current speed was high near the reef crest and decreased towards the beach) and by the topographic characteristics of reef zones. Among the 25 species, 13 were recorded in both winter and summer. A comparison of the spatial distribution between summer and winter for 13 species that occurred during both seasons found that only 4 differed between the two seasons. For these species, habitat selection would be organized primarily by some stochastic processes such as inter- and intraspecific competition, predation, and food availability. Overall, the present study allowed us to highlight that most nocturnal coral reef fish juveniles at Moorea Island exhibited striking patterns in their distribution and current and topographic characteristics of reef zones might exert considerable influence on the distribution of fishes.  相似文献   

14.
Knowledge of the effects of thermal conditions on animal movement and dispersal is necessary for a mechanistic understanding of the consequences of climate change and habitat fragmentation. In particular, the flight of ectothermic insects such as small butterflies is greatly influenced by ambient temperature. Here, variation in body temperature during flight is investigated in an ecological model species, the Glanville fritillary butterfly (Melitaea cinxia). Attention is paid on the effects of flight metabolism, genotypes at candidate loci, and environmental conditions. Measurements were made under a natural range of conditions using infrared thermal imaging. Heating of flight muscles by flight metabolism has been presumed to be negligible in small butterflies. However, the results demonstrate that Glanville fritillary males with high flight metabolic rate maintain elevated body temperature better during flight than males with a low rate of flight metabolism. This effect is likely to have a significant influence on the dispersal performance and fitness of butterflies and demonstrates the possible importance of intraspecific physiological variation on dispersal in other similar ectothermic insects. The results also suggest that individuals having an advantage in low ambient temperatures can be susceptible to overheating at high temperatures. Further, tolerance of high temperatures may be important for flight performance, as indicated by an association of heat‐shock protein (Hsp70) genotype with flight metabolic rate and body temperature at takeoff. The dynamics of body temperature at flight and factors affecting it also differed significantly between female and male butterflies, indicating that thermal dynamics are governed by different mechanisms in the two sexes. This study contributes to knowledge about factors affecting intraspecific variation in dispersal‐related thermal performance in butterflies and other insects. Such information is needed for predictive models of the evolution of dispersal in the face of habitat fragmentation and climate change.  相似文献   

15.
Ixodes ricinus is the most common tick species in Europe and vector of many diseases of humans. The risk of contracting such a disease is influenced by many factors, but one of the crucial points is questing activity of unfed ticks. In order to supplement the few literature data on patterns of diel activity of this tick species and to examine the correlations between data on diel activity of ticks and their small mammal hosts and some meteorological variables, a survey was performed. Diel activity of questing I. ricinus and small rodents was studied in a known natural tick-borne encephalitis virus focus over 7 months at one sampling day monthly. 1,063 I. ricinus ticks and 25 rodents were sampled. Air temperature and humidity data were also recorded in the 24 study plots at time of sampling. From April to October questing activity of nymphs increased in the 3-h-period after sunrise, comparing to activity of the 3 h before sunrise. Proportion of nymphs sampled 3 h after sunset compared to total sampled nymphs 3 h before and 3 h after sunset showed correlation to activity of rodents. In the period of April–July both nymphs and larvae showed stronger activity from sunrise to sunset, this turned to dominant nighttime activity in August–September, whereas activity changed to equal in day and night in October. Our results indicate that natural light and rodent population have positive effect on questing activity of I. ricinus.  相似文献   

16.
ABSTRACT.   Studies comparing numbers of nocturnal migrants in flight with numbers of migrants at stopover sites have produced equivocal results. In 2003, we compared numbers of nocturnal migrants detected by radar to numbers of passerines observed at the Atlantic Bird Observatory in southwestern Nova Scotia, Canada. Numbers of nocturnal migrants detected by radar were positively correlated with numbers of migrants as determined by mist-netting, censuses, and daily estimated totals (daily estimates of birds present based netting and census results and casual observations) the following day. On nights with winds favorable for migration (tailwinds), the peak correlation between ground counts and radar counts the night before occurred just after sunset. On nights with unfavorable winds (headwinds), the correlation increased through the night, with a peak just before sunrise. The patterns of correlation are consistent with a scenario where birds accumulate at the coastline during periods of unfavorable wind, likely because they are not willing to cross a major ecological barrier, the Gulf of Maine. On nights with favorable winds, many birds departed, but some, possibly after testing wind conditions, apparently decided not to cross the Gulf of Maine and returned. Our results suggest that combining data collected using different methods to generate a daily estimated total provides the best estimate of the number of migrants present at a stopover site. Simultaneous studies at multiple locations where different census methods are used, making more effective use of temporal data (both from radar and diurnal counts), will more clearly elucidate patterns of flight behavior by migratory songbirds and the relationship between ground counts and counts of birds aloft.  相似文献   

17.
Most seabirds are diurnal foragers, but some species may also feed at night. In Peruvian pelicans (Pelecanus thagus), the evidence for nocturnal foraging is sparse and anecdotal. We used GPS-dataloggers on five incubating Peruvian pelicans from Isla Lobos de Tierra, Perú, to examine their nocturnality, foraging movements and activities patterns at sea. All instrumented pelicans undertook nocturnal trips during a 5–7 day tracking period. Eighty-seven percent of these trips (n = 13) were strictly nocturnal, whereas the remaining occurred during the day and night. Most birds departed from the island after sunset and returned a few hours after sunrise. Birds traveled south of the island for single-day trips at a maximum range of 82.8 km. Overall, 22% of the tracking period was spent at sea, whereas the remaining time was spent on the island. In the intermediate section of the trip (between inbound and outbound commutes), birds spent 77% of the trip time in floating bouts interspersed by short flying bouts, the former being on average three times longer than the latter. Taken together, the high sinuosity of the bird''s tracks during floating bouts, the exclusively nocturnal trips of most individuals, and the fact that all birds returned to the island within a few hours after sunrise suggest that pelicans were actively feeding at night. The nocturnal foraging strategy of Peruvian pelicans may reduce food competition with the sympatric and strictly diurnal Guanay cormorants (Phalacrocorax bougainvillii), Peruvian boobies (Sula variegata) and Blue-footed boobies (S. nebouxii), which were present on the island in large numbers. Likewise, plankton bioluminescence might be used by pelicans as indirect cues to locate anchovies during their upward migration at night. The foraging success of pelicans at night may be enhanced by seizing prey close to the sea surface using a sit-and-wait strategy.  相似文献   

18.
We detected that Galaxias maculatus exhibits a pattern where metabolic activity increases after sunrise and peaks between noon and sunset, but this species feeds in the afternoon, until several hours after sunset. Moreover, we showed that G. maculatus is observed in the littoral zone during the day, disappears completely from this zone after sunset and returns at sunrise. Littoral prey species are common in the diet of G. maculatus, but this study showed that pelagic prey is also present during twilight and night hours in smaller individuals (<50 mm), which is related to habitat use. These behavioural rhythms are especially important for G. maculatus, which runs a high predation risk when consuming prey that is widely available outside the littoral zone. This risk is ameliorated under the protection of low light intensity. Thus, G. maculatus is a key species linking lower trophic levels, such as the plankton community, to higher levels of native and exotic piscivores. These displacements of G. maculatus generate an active flow of energy and matter between habitats, with a potentially profound effect on the entire food network and energy dynamics of the lake.  相似文献   

19.
Most moths use ears solely to detect the echolocation calls of hunting, insectivorous bats and evoke evasive flight manoeuvres. This singularity of purpose predicts that this sensoribehavioural network will regress if the selective force that originally maintained it is removed. We tested this with noctuid moths from the islands of Tahiti and Moorea, sites where bats have never existed and where an earlier study demonstrated that the ears of endemic species resemble those of adventives although partially reduced in sensitivity. To determine if these moths still express the anti-bat defensive behaviour of acoustic startle response (ASR) we compared the nocturnal flight times of six endemic to six adventive species in the presence and absence of artificial bat echolocation sounds. Whereas all of the adventive species reduced their flight times when exposed to ultrasound, only one of the six endemic species did so. These differences were significant when tested using a phylogenetically based pairwise comparison and when comparing effect sizes. We conclude that the absence of bats in this habitat has caused the neural circuitry that normally controls the ASR behaviour in bat-exposed moths to become decoupled from the functionally vestigial ears of endemic Tahitian moths.  相似文献   

20.
Age-induced changes in 1) nocturnal and diurnal acidity fluctuations that coincide with the ongoing environmental conditions, 2) the build up of abscisic acid (ABA) in plant roots and leaves during sunrise, midday, and sunset in all growing stages, 3) the changes in phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activities as key enzymes of the photosynthetic pathways of C3 and CAM, 4) leaf water potential (ψ1), and 5) Km and Vmax for PEPC to express its activity and affinity, were studied in Mesembryanthemum nodiflorum during transition from C3 to CAM mode of CO2 fixation. The acidity during sunset in mature stage was higher than in earlier stages and reflected the impact of environmental conditions on physiological and metabolic changes. Moreover, the higher acidity during sunrise and sunset was observed during the senescence than the mature stage; this might be due to CO2 release and oxygen intake during senescence induced ethylene formation that lead to increased malic acid formation. The ABA concentration was high in M. nodiflorum leaves, but stomatal closure was insensitive to elevated ABA concentrations recorded. Vmax of PEPC, Km, and the affinity of PEPC during later stages indicated the ability of PEPC to fix CO2 taking up at night in CAM cycle of M. nodiflorum. Less affinity during sunrise indicated inhibitory effect of malate on PEPC during the release of CO2. The second peak of PEPC activity before sunset caused CO2 fixation. The RuBPCO was inactive at night. Slight increase in ABA during sunset, and night drop in air temperature and increase in relative humidity reduced markedly transpiration rate without decreasing ψ1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号