首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have developed a system which facilitates the rapid modification of yeast artificial chromosome (YAC) insert DNA. Specific modifications, such as deletions, insertions and point mutations, can be generated by a two-step allele replacement method using the yeast translational suppressor, SUP4-o, as both a positive and negative selection. The introduction of the SUP4-o gene was successful in 4 out of 24 selected transformant colonies, while the subsequent homologous elimination occurred in 2 out of 30 colonies. The use of a simple, short-range PCR assay rapidly identified the correct events among the genetically selected isolates and should be generally applicable to YAC modifications.  相似文献   

3.
We screened a yeast genomic library for recombinant DNA plasmids that complemented the ultraviolet (u.v.) sensitivity of a strain of Saccharomyces cerevisiae designated rad4-3 that is defective in excision repair of DNA. A multicopy plasmid (pNF4000) with a 9.4 X 10(3) base-pair yeast DNA insert partially complemented the u.v. sensitivity of rad4-3, but not of two other rad4 allelic mutants (rad4-2 and rad4-4), or of other u.v.-sensitive rad mutants. The yeast insert was analyzed by restriction mapping, DNA-DNA hybridization, DNA-tRNA hybridization and DNA sequencing. This analysis revealed the presence of a normal tRNAGln gene, a yeast sigma element situated 5' to the transfer RNA gene, a Ty element and a solo delta element. Deletion analysis of pNF4000 showed that the tRNAGln gene is required for partial complementation of the u.v. sensitivity of rad4-3. Furthermore, a multicopy plasmid containing a tRNAGln gene derived from a different region of the yeast genome also partially complemented the u.v. sensitivity of rad4-3. The rad4-3 mutation is suppressed following transformation with a plasmid containing the known ochre suppressor SUP11-o, indicating that it is an ochre mutation. We therefore conclude that when expressed in sufficient quantity, normal tRNAGln (which usually decodes the sense codon CAA) can weakly suppress the nonsense ochre codon UAA, and suggest that this represents an example of wobble occurring at the first rather than at the third position of the codon.  相似文献   

4.
A collection of 196 spontaneous mutations in the SUP4-o gene of the yeast Saccharomyces cerevisiae was analyzed by DNA sequencing. The classes of mutation identified included all possible types of base-pair substitution, deletions of various lengths, complex alterations involving multiple changes, and insertions of transposable elements. Our findings demonstrate that at least several different mechanisms are responsible for spontaneous mutagenesis in S. cerevisiae.  相似文献   

5.
Previously we compared the mutational specificities of polychromatic UVB (285-320 nm) and UVC (254 nm) light in the SUP4-o gene of the yeast Saccharomyces cerevisiae. Striking similarities in the types and distributions of induced SUP4-o mutations were consistent with roles for cyclobutane dimers and pyrimidine(6-4)pyrimidone photoproducts in mutation induction by UVB. To assess the relative importance of cyclobutane dimers, we have now examined the effect of photoreactivation (PR), which specifically reverses these lesions, on UVB and UVC induction of SUP4-o mutations. PR reduced the frequencies of both UVB and UVC mutagenesis by approximately 75%. Collections of 138 and 158 SUP4-o mutants induced by treatment with UVB plus PR or UVC plus PR, respectively, were characterized by DNA sequencing and the results were compared to those for 208 UVB and 211 UVC-induced mutants analyzed earlier. PR decreased the frequency of UVB-induced G.C----A.T transitions by 85%, diminished the substitution frequencies at individual sites by 64% on average, and reduced the mutation frequencies at the five UVB hotspots by 87%. A more detailed examination revealed that the transition frequencies at the 3' base of 5'-TC-3' and 5'-CC-3' sequences were decreased by 90% and 72%, respectively. Finally, PR appeared to occur to the same extent on both the transcribed and non-transcribed strands of SUP4-o. Similar results were obtained for PR following UVC irradiation. Our findings indicate that cyclobutane dimers are responsible for the majority of UVB mutagenesis in yeast.  相似文献   

6.
Disruption of RAD1, a gene controlling excision repair in the yeast Saccharomyces cerevisiae, increased the frequency of spontaneous forward mutation in a plasmid-borne copy of the SUP4-o gene. To characterize this effect in detail, a collection of 249 SUP4-o mutations arising spontaneously in the rad1 strain was analyzed by DNA sequencing. The resulting mutational spectrum was compared with that derived from an examination of 322 spontaneous SUP4-o mutations selected in an isogenic wild-type (RAD1) strain. This comparison revealed that the rad1 mutator phenotype was associated with increases in the frequencies of single-base-pair substitution, single-base-pair deletion, and insertion of the yeast retrotransposon Ty. In the rad1 strain, the relative fractions of these events and their distributions within SUP4-o exhibited features similar to those for spontaneous mutagenesis in the isogenic RAD1 background. The increase in the frequency of Ty insertion argues that Ty transposition can be activated by unrepaired spontaneous DNA damage, which normally would be removed by excision repair. We discuss the possibilities that either translesion synthesis, a reduced fidelity of DNA replication, or a deficiency in mismatch correction might be responsible for the majority of single-base-pair events in the rad1 strain.  相似文献   

7.
8.
Deletions of a tyrosine tRNA suppressor gene, SUP4-o, are mediated by recombination between short repeated delta sequences in Saccharomyces cerevisiae. The arrangement of the five solo delta sequences that surround the SUP4 locus was established by DNA sequence analysis. Seven deletion classes were identified by genomic blotting. DNA sequence analysis also showed that the delta sequences within a 6.5-kilobase region of the SUP4 locus were the endpoints of these events. In three of these classes, an adjacent interval surrounded by delta sequences was inverted in concert with the deletion. The frequency of all deletion classes decreased in strains that contained mutations in the recombination and repair gene RAD52. We present two gene conversion mechanisms by which these rearrangements could have been generated. These models may also explain deletions between repeated sequences in other systems.  相似文献   

9.
Inactivation of the Saccharomyces cerevisiae RAD18 gene confers a mutator phenotype. To determine the specificity of this effect, a collection of 212 spontaneous SUP4-o mutants arising in a rad18 strain was characterized by DNA sequencing. Comparison of the resulting mutational spectrum with that for an isogenic wild-type (RAD18) strain revealed that the rad18 mutator specifically enhanced the frequency of single base pair substitutions. Further analysis indicated that an increase in the frequency of G.C----T.A transversions accounted for the elevated SUP4-o mutation frequency. Thus, rad18 is the first eucaryotic mutator found to generate only a particular base pair substitution. The majority of G.C pairs that were not mutated in the rad18 background were at sites where G.C----T.A events can be detected in SUP4-o, suggesting that DNA sequence context influences the rad18 mutator effect. Transformation of heteroduplex plasmid DNAs into the two strains demonstrated that the rad18 mutator did not reduce the efficiency of correcting G-A or C-T mismatches to G.C pairs or preferentially correct the mismatches to A.T pairs. We propose that the RAD18 gene product might contribute to the fidelity of DNA replication in S. cerevisiae by involvement in a process that serves to limit the formation of G-A and C-T mismatches at template guanine and cytosine sites during DNA synthesis.  相似文献   

10.
X. Kang  F. Yadao  R. D. Gietz    B. A. Kunz 《Genetics》1992,130(2):285-294
The RAD6 gene of the yeast Saccharomyces cerevisiae encodes an enzyme that conjugates ubiquitin to other proteins. Defects in RAD6 confer a mutator phenotype due, in part, to an increased rate of transposition of the yeast Ty element. To further delineate the role of protein ubiquitination in the control of spontaneous mutagenesis in yeast, we have characterized 202 mutations that arose spontaneously in the SUP4-o gene carried on a centromere vector in a RAD6 deletion strain. The resulting mutational spectrum was compared to that for 354 spontaneous SUP4-o mutations isolated in the isogenic wild-type parent. This comparison revealed that the rad6 mutator enhanced the rate of single base-pair substitution, as well as Ty insertion, but did not affect the rates of the other mutational classes detected. Relative to the wild-type parent, Ty inserted at considerably more SUP4-o positions in the rad6 strain with a significantly smaller fraction detected at a transposition hotspot. These findings suggest that, in addition to the rate of transposition, protein ubiquitination might influence the target site specificity of Ty insertion. The increase in the substitution rate accounted for approximately 90% of the rad6 mutator effect but only the two transitions and the G. C----T.A transversion were enhanced. Analysis of the distribution of these events within SUP4-o suggested that the site specificity of the substitutions was influenced by DNA sequence context. Transformation of heteroduplex plasmid DNAs into the two strains demonstrated that the rad6 mutator did not reduce the efficiency of correcting mismatches that could give rise to the transitions or transversion nor did it bias restoration of the mismatches to the incorrect base-pairs. These results are discussed in relation to possible mechanisms that might link ubiquitination of proteins to spontaneous mutation rates.  相似文献   

11.
12.
The behavior in Saccharomyces cerevisiae of plasmid pYTE1, which contains yeast tyrosine-inserting ochre suppressor SUP4.o, a 4-kilobase EcoRI fragment of yeast 2muDNA, and the bacterial plasmid pBR322, has been studied. Selection of yeast transformants was by suppression of multiple ochre mutations. About 10(3) to 10(4) transformants per microgram of pYTE1 dfeoxyribonucleic acid were obtained. The majority of transformants contained both an integrated copy of the SUP4.o gene plus pBR322 deoxyribonucleic acid sequences and autonomously replicating forms of the plasmid. The integrated copy was extremely stable mitotically and meiotically, but the associated nonintegrated copies were lost at meiosis. The chromosomally integrated pBR322 sequences were linked to the SUP4.o gene. The integration site was at the SUP4+ locus. In transformants with only nonintegrated copies of pYTE1, the expression of suppression was reduced, and the plasmid was unstable in mitosis. Plasmid deoxyribonucleic acid preparations from both types of transformant could be used to retransform yeast cells. Plasmid pYTE1 has restriction enzyme sites useful for the high frequency and stable transformation of other genes into yeasts. The potential uses of this plasmid for transformation of other organisms is discussed.  相似文献   

13.
14.
An SV40-based shuttle vector, pZ189, carrying a bacterial suppressor tRNA target gene (supF), was treated with radiolabeled polycyclic aromatic carcinogens and the number of covalently bound residues (adducts) per plasmid was determined. The plasmids were transfected into human cell line 293, allowed to replicate, and the progeny plasmids rescued and assayed for the frequency of supF mutants. The agents tested were the 7,8-diol-9,10-epoxide of benzo(a)pyrene (BPDE) and 1-nitrosopyrene (1-NOP). With each agent there was a linear increase in the frequency of supF mutants as a function of the number of DNA adducts formed, reaching frequencies 15 to 25 times higher than the background frequency of 1.4 x 10(-4). When compared on the basis of adducts formed per plasmid BPDE, which forms its principal DNA adduct at the N2 position of guanine, was approximately four times more mutagenic than 1-NOP, which binds principally at the C8 position of guanine. This difference in mutagenic effectiveness may reflect intrinsic differences in the nature of the adducts and their location in the DNA molecule, but it could also reflect a difference in the rate of removal of particular adducts by nucleotide excision repair since the 293 host cell line excised BPDE-induced adducts from genomic DNA at least three times slower than 1-NOP-induced adducts. Agarose gel electrophoresis and DNA sequencing analysis of mutants derived from untreated plasmids showed that the majority (70%) involved deletions, insertions, or altered gel mobility (gross rearrangements). In contrast, the majority of those derived from carcinogen-treated plasmids were base substitutions. DNA sequencing of 86 unequivocally independent mutants derived from BPDE-treated plasmid and 60 from 1-NOP-treated plasmid indicated that 70% to 80% contained a single base substitution, 5%-10% had two base substitutions, and 4%-10% had small insertions or deletions (one or two basepairs). The majority (83%) of the base substitutions in mutants from BPDE- or 1-NOP-treated plasmid were transversions, mainly G.C----T.A. Each carcinogen produced its own spectrum of mutations.  相似文献   

15.
A collection of 384 mutations recovered in a tRNA gene (SUP4-o) following exposure of isogenic excision-repair-proficient (RAD1) or deficient (rad1) strains of the yeast Saccharomyces cerevisiae to sunlight was characterized by DNA sequencing. In each case, greater than 90% of the mutations were single base-pair substitutions with events at G.C pairs constituting most of the changes. However, more than half of these substitutions were transversions in the RAD1 strain whereas transitions predominated in the rad1 strain. Tandem double substitutions were recovered in both strains and the individual changes were exclusively G.C----A.T transitions. The majority of single substitutions, and all tandem double changes, were at base-pairs where the pyrimidine(s) was part of a dipyrimidine sequence and the site specificities were consistent with cyclobutane dimers and/or pyrimidine (6-4) pyrimidone photoproducts contributing to sunlight mutagenesis. Yet, the data also pointed to an important role for lesions that form at G.C pairs and give rise to transversions. Analysis of the strand specificity of sunlight mutagenesis indicated that transitions or transversions at G.C pairs occurred preferentially in SUP4-o at sites where a dipyrimidine or a guanine, respectively, was on the transcribed strand. These biases required a functional excision-repair system.  相似文献   

16.
Defects in the RAD52 gene of the yeast Saccharomyces cerevisiae confer a mutator phenotype. To characterize this effect in detail, a collection of 238 spontaneous SUP4-o mutations arising in a strain having a disrupted RAD52 gene was analyzed by DNA sequencing. The resulting mutational spectrum was compared to that derived from an examination of 222 spontaneous mutations selected in a nearisogenic wild-type (RAD52) strain. This comparison revealed that the mutator phenotype was associated with an increase in the frequency of base-pair substitutions. All possible types of substitution were detected but there was a reduction in the relative fraction of A.T----G.C transitions and an increase in the proportion of G.C----C.G transversions. These changes were sufficient to cause a twofold greater preference for substitutions at G.C sites in the rad52 strain despite a decrease in the fraction of G.C----T.A transversions. There were also considerable differences between the distributions of substitutions within the SUP4-o gene. Base-pair changes occurred at fewer sites in the rad52 strain but the mutated sites included several that were not detected in the RAD52 background. Only two of the four sites that were mutated most frequently in the rad52 strain were also prominent in the wild-type strain and mutation frequencies at almost all sites common to both strains were greater for the rad52 derivative. Although single base-pair deletions occurred in the two strains with similar frequencies, several classes of mutation that were recovered in the wild-type background including multiple base-pair deletions, insertions of the yeast transposable element Ty, and more complex changes, were not detected in the rad52 strain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1-Nitropyrene has been shown in bacterial assays to be the principal mutagenic agent in diesel emission particulates. It has also been shown to be mutagenic in human fibroblasts and carcinogenic in animals. To investigate the kinds of mutations induced by this carcinogen and compare them with those induced by a structurally related carcinogen, (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetra-hydrobenzo [a]pyrene (BPDE) (J.-L. Yang, V. M. Maher, and J. J. McCormick, Proc. Natl. Acad. Sci. USA 84:3787-3791, 1987), we treated a shuttle vector with tritiated 1-nitrosopyrene (1-NOP), a carcinogenic mutagenic intermediate metabolite of 1-nitropyrene which forms the same DNA adduct as the parent compound, and introduced the plasmids into a human embryonic kidney cell line, 293, for DNA replication to take place. The treated plasmid, pZ189, carrying a bacterial suppressor tRNA target gene, supF, was allowed 48 h to replicate in the human cells. Progeny plasmids were then rescued, purified, and introduced into bacteria carrying an amber mutation in the beta-galactosidase gene in order to detect those carrying mutations in the supF gene. The frequency of mutants increased in direct proportion to the number of DNA-1-NOP adducts formed per plasmid. At the highest level of adduct formation tested, the frequency of supF mutants was 26 times higher than the background frequency of 1.4 X 10(-4). DNA sequencing of 60 unequivocally independent mutant derived from 1-NOP-treated plasmids indicated that 80% contained a single base substitution, 5% had two base substitutions, 4% had small insertions or deletions (1 or 2 base pairs), and 11% showed a deletion or insertion of 4 or more base pairs. Sequence data from 25 supF mutants derived from untreated plasmids showed that 64% contained deletions of 4 or more base pairs. The majority (83%) of the base substitution in mutants from 1-NOP-treated plasmids were transversions, with 73% of these being G . C --> T . A. This is very similar to what we found previously in this system, using BPDE, but each carcinogen produced its own spectrum of mutations. Of the five hot spots for base substitution mutations produced in the supF gene with 1-NOP, two were the same as seen with BPDE-treated plasmids. However, the three other hot spots were cold spots for BPDE-treated plasmids. Conversely, four of the other five hot spots seen with BPDE-treated plasmids were cold spots for 1-NOP-treated plasmids. Comparison of the two carcinogens for the frequency of supF mutants induced per DNA adduct showed that 1-NOP-induced adducts were 3.8 times less than BPDE adducts. However, the 293 cell excised 1-NOP-induced adducts faster than BPDE adducts.  相似文献   

18.
The temperature-sensitive cyr1-2 mutant in Saccharomyces cerevisiae produces low levels of adenylate cyclase and cyclic AMP at 25 degrees C and is unable to synthesize repressible acid phosphatase at 25 degrees C. Suppressor mutants of cyr1-2 were isolated by detecting acid phosphatase activity. One of the dominant suppressor mutations isolated was designated SUP201 and characterized. The SUP201 mutant gene was isolated from a gene library made from cyr1-2 SUP201 mutant DNA. Nucleotide sequence analysis of the cloned SUP201 gene revealed that the SUP201 gene was a mutated tRNA gene flanking GCN4, which worked as a UGA suppressor.  相似文献   

19.
Uracil-DNA-glycosylase has been proposed to function as the first enzyme in strand-directed mismatch repair in eukaryotic organisms, through removal of uracil from dUMP residues periodically inserted into the DNA during DNA replication (Aprelikova, O. N., V. M. Golubovskaya, T. A. Kusmin, and N. V. Tomilin, Mutat. Res. 213:135-140, 1989). This hypothesis was investigated with Saccharomyces cerevisiae. Mutation frequencies and spectra were determined for an ung1 deletion strain in the target SUP4-o tRNA gene by using a forward selection scheme. Mutation frequencies in the SUP4-o gene increased about 20-fold relative to an isogenic wild-type S. cerevisiae strain, and the mutator effect was completely suppressed in the ung1 deletion strain carrying the wild-type UNG1 gene on a multicopy plasmid. Sixty-nine independently derived mutations in the SUP4-o gene were sequenced. All but five of these were due to GC----AT transitions. From this analysis, we conclude that the mutator phenotype of the ung1 deletion strain is the result of a failure to repair spontaneous cytosine deamination events occurring frequently in S. cerevisiae and that the UNG1 gene is not required for strand-specific mismatch repair in S. cerevisiae.  相似文献   

20.
The SUP4 tRNA(Tyr) locus in Saccharomyces cerevisiae has been studied by the isolation and characterization of mutations at the SUP4 gene which result in the loss of suppressor function. Most of the mutations act as single-site mutations, whereas about a third of the mutations are deletions of the entire gene. Two meiotic fine-structure maps of the gene were made. The first mapping technique placed 10 mutations plus the sup4+ anticodon on a map by a measurement of levels of recombination between pairs of mutations. The second map utilized a more qualitative estimate of recombination frequency, allowing 69 mutations and the sup4+ anticodon to be mapped. The maps were compared with the physical structure of the gene for the 34 mutations whose nucleotide alteration has been determined by DNA sequencing (Koski et al., Cell 22:415-425, 1980; Kurjan et al., Cell 20:701-709, 1980). Both maps show a good correlation with the physical structure of the gene, even though certain properties of genetic fine-structure maps, such as marker effects and "map expansion," were seen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号