首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
24-Hydroxylated derivatives were synthesized in 24(R) and 24(S) forms by the convergent method as analogs related to 1alpha,25-dihydroxy-2beta-(3-hydroxypropoxy)vitamin D(3). In the convergent synthesis, the A-ring fragment, synthesized from diethyl D-tartarate, and the C/D-ring fragments in 24(R) and 24(S) forms (vitamin D numbering), obtained from vitamin D(2) via the Inhoffen-Lythgoe diol, were coupled in moderate yields to give 1alpha,24(R),25-trihydroxy-2beta-(3-hydroxypropoxy)vitamin D(3) and 1alpha,24(S),25-trihydroxy-2beta-(3-hydroxypropoxy)vitamin D(3). In preliminary biological evaluations, 24-hydroxylation of 1alpha,25-dihydroxy-2beta-(3-hydroxypropoxy)vitamin D(3) caused weakened affinity to vitamin D binding protein in vitro and less calcemic activity in vivo compared to the parent compound. While the affinity to vitamin D receptor in 24(R) epimer was sustained, the affinity in 24(S) epimer was less than that of the parent compound.  相似文献   

2.
Nishii Y  Okano T 《Steroids》2001,66(3-5):137-146
In 1981 Suda and his colleagues first reported the new activity of calcitriol namely its ability to differentiate the myeloid leukemia cells into normal monocytes-macrophages. However, the possibility of using calcitriol as an antileukemic drug was not feasible because of its potent calcemic effects. Based on these observations, several pharmaceutical companies initiated the synthesis of vitamin D analogs with the aim to separate the calcemic actions of calcitriol from its actions on regulating the cell growth and differentiation. As a result, numerous noncalcemic analogs with a potential for the treatment of leukemia and other cancers were synthesized. The group at Chugai introduced two characteristic analogs of opposite type namely, 22-oxacalcitriol (OCT) and 2beta-(3-hydroxypropoxy)calcitriol (ED-71) which have been shown to have therapeutic value and are already being used clinically. The work on OCT and ED-71 together with the work on calcipotriol and KH-1060 by Leo Laboratories, and 1alpha,25(OH)(2)-16-ene-23-yne-D(3) by Hoffmann-La Roche, vigorously stimulated research world-wide in the development of vitamin D analogs into pharmaceutical products. More recently new impressive vitamin D analogs such as 3-epi analogs, 19-nor analogs, 18-nor analogs, 2-methyl-20-epi-calcitriol, non-steroidal vitamin D analogs are being developed. The authors are convinced that various vitamin D analogs will become highly effective therapeutic agents at the clinical level in the new century, and also that a new theory on the mechanism of vitamin D action will be generated.  相似文献   

3.
4.
Vitamin D3 analogs are potential anti-cancer agents with theoretically wide therapeutic index, but there have been limited studies directed towards human neuroblastoma. The antiproliferative ability of the novel vitamin D3 hybrid analog QW-1624F2-2 (QW, 1-hydroxymethyl-16-ene-24, 24-F2-26, 27-bishomo-25-hydroxyvitamin D3) was examined in two human neuroblastoma-derived cell-lines. Analog QW inhibited cell-cycle progression of IMR5 cells with accumulation in G1 phase. QW induced the differentiation of CHP134 as evidenced by increased neurite length. These effects were accompanied by decreased expression of MYCN in both the cell-lines treated with QW. Furthermore, QW inhibited the migration of CHP134 cells in matrigel invasion assays, indicating its anti-invasive ability. In athymic nude mice, we found that QW was less calcemic than EB1089 (1alpha, 25-dihydroxy-22, 24-diene-24, 26,27-trishomovitamin D3). Systemic administration of QW in a mouse xenotransplantation model revealed that it is more effective than EB1089 in suppressing the growth of CHP134 flank tumors. In summary, the low-calcemic hybrid analog QW showed significant anti-tumor activity in vivo and thus exhibits potential as a novel cancer therapeutic.  相似文献   

5.
Inducible cyclooxygenase-2 (COX-2) has been implicated to play a role in inflammation and carcinogenesis and selective COX-2 inhibitors have been considered as anti-inflammatory and cancer chemopreventive agents. 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3), the active hormonal form of vitamin D3 also has been considered to be a cancer chemopreventive agent in addition to its important role in maintaining calcium homeostasis. Based on these observations, we studied the direct effect of 1alpha,25(OH)2D3 and one of its less calcemic synthetic analogs, 1alpha,25(OH)2-16-ene-23-yne-D3 on the activity of both COX-1 and COX-2 in an in vitro enzyme assay. Preliminary data indicated that both 1alpha,25(OH)2D3 and 1alpha,25(OH)2-16-ene-23-yne-D3 inhibited selectively the activity of COX-2 with no effect on the activity of COX-1. Out of the two compounds, 1alpha,25(OH)2-16-ene-23-yne-D3 was found to be more effective with an IC50 of 5.8 nM. Therefore, the rest of the experiments were performed using 1alpha,25(OH)2-16-ene-23-yne-D3 only. 1alpha,25(OH)2-16-ene-23-yne-D3 inhibited the proliferation of lipopolysaccharide (LPS) stimulated mouse macrophage cells (RAW 264.7) with a reduction in the expression of COX-2 along with other inflammatory mediators like inducible nitric oxide synthase (iNOS) and interleukin-2 (IL-2). Furthermore, 1alpha,25(OH)2-16-ene-23-yne-D3 also inhibited carrageenan induced inflammation in an air pouch of a rat and effectively reduced the expression of COX-2, iNOS, and IL-2 in the tissues of the same air pouch. In both cases, 1alpha,25(OH)2-16-ene-23-yne-D3 did not show any effect on the expression of COX-1. In summary, our results indicate that 1alpha,25(OH)2-16-ene-23-yne-D3, a less calcemic vitamin D analog, exhibits potent anti-inflammatory effects and is a selective COX-2 inhibitor.  相似文献   

6.
7.
Construction of 25-hydroxy-steroidal side chain substituted with iodine at C-22 was elaborated on a model PTAD-protected steroidal 5,7-diene and applied to a synthesis of (22R)- and (22S)-22-iodo-1alpha,25-dihydroxyvitamin D3. Configuration at C-22 in the iodinated vitamins, obtained by nucleophilic substitution of the corresponding 22S-tosylates with sodium iodide, was determined by comparison of their iodine-displacement processes and cyclizations leading to isomeric five-membered (22,25)-epoxy-1alpha-hydroxyvitamin D3 compounds. Also, 20(22)-dehydrosteroids have been obtained and their structures established by 1H NMR spectroscopy. When compared to the natural hormone, (E)-20(22)-dehydro-1alpha,25-dihydroxyvitamin D3 was found 4 times less potent in binding to the porcine intestinal vitamin D receptor (VDR) and 2 times less effective in differentiation of HL-60 cells. 22-Iodinated vitamin D analogues showed somewhat lower in vitro activity, whereas (22,25)-epoxy analogues were inactive. Interestingly, it was established that (22S)-22-iodo-1alpha,25-dihydroxyvitamin D3 was 3 times more potent than its (22R)-isomer in binding to VDR and four times more effective in HL-60 cell differentiation assay. The restricted mobility of the side chain of both 22-iodinated vitamin D compounds was analyzed by a systematic conformational search indicating different spatial regions occupied by their 25-oxygen atoms. Preliminary data on the in vivo calcemic activity of the synthesized vitamin D analogues indicate that (E)-20(22)-dehydro-1alpha,25-dihydroxyvitamin D3 and 22-iodo-1alpha,25-dihydroxyvitamin D3 isomers were ca. ten times less potent than the natural hormone 1alpha,25-(OH)2D3 both in intestinal calcium transport and bone calcium mobilization.  相似文献   

8.
We synthesized a novel vitamin D analog, 22-hydroxyvitamin D3 9 and tested its biologic activity (and antivitamin properties) in vivo in vitamin D-deficient rats, and in vitro in the chick embryonic duodenum. We examined its ability to bind to the sterol carrier protein, vitamin D binding protein and the chick intestinal cytosol receptor for 1,25-dihydroxyvitamin D3. The new vitamin 9 was synthesized from 3 beta-hydroxy-22,23-dinorcholenic acid 1 in 12 steps. The vitamin 9 displayed no vitamin D agonist activity in the intestine or in bone in vivo and did not block the activity of vitamin D3 or 25-hydroxyvitamin D3. It was a weak vitamin D3 agonist in the chick embryonal duodenum in vitro. It did not antagonize the activity of 1,25-dihydroxyvitamin D3. Vitamin 9 bound to the chick intestinal cytosol receptor with low affinity. 22-Hydroxyvitamin D3 and various vitamin D sterols were bound to vitamin D binding protein in the following order: 25-hydroxyvitamin D3. (24R)-24,25-dihydroxyvitamin D3, and (25S)-25,26-dihydroxyvitamin D3 greater than 22-hydroxyvitamin D3 greater than 11 alpha-hydroxyvitamin D3 greater than 1,25-dihydroxyvitamin D3 greater than vitamin D3. We conclude that the introduction of a hydroxyl group at C-22 in the side chain of the vitamin D3 molecule decreases its biological activity.  相似文献   

9.
In this study, we used molecules with either of the structural differences in the side chains of vitamin D(2) and vitamin D(3) to investigate which feature is responsible for the significant differences in their respective metabolism, pharmacokinetics and toxicity. We used two cell model systems-HepG2 and HPK1A-ras-to study hepatic and target cell metabolism, respectively. Studies with HepG2 revealed that the pattern of 24- and 26-hydroxylation of the side chain reported for 1alpha-hydroxyvitamin D(2) (1alpha-OH-D(2)) but not for 1alpha-OH-D(3) is also observed in both 1alpha-OH-D(4) and Delta(22)-1alpha-OH-D(3) metabolism. This suggests that the structural feature responsible for targeting the enzyme to the C24 or C26 site could be either the C24 methyl group or the 22-23 double bond. In HPK1A-ras cells, the pattern of metabolism observed for the 24-methylated derivative, 1alpha,25-(OH)(2)D(4), was the same pattern of multiple hydroxylations at C24, C26 and C28 seen for vitamin D(2) compounds without evidence of side chain cleavage observed for vitamin D(3) derivatives, suggesting that the C24 methyl group plays a major role in this difference in target cell metabolism of D(2) and D(3) compounds. Novel vitamin D(4) compounds were tested and found to be active in a variety of in vitro biological assays. We conclude that vitamin D(4) analogs and their metabolites offer valuable insights into vitamin D analog design, metabolic enzymes and maybe useful clinically.  相似文献   

10.
Analogs of vitamin D have been synthesized which have reduced calcemic activities yet increased anti-proliferative and differentiation-inducing properties, raising expectations that they will be useful for treatment of human neoplastic diseases. In the present study we compared the abilities of three such analogs, 24a, 24b-dihomo-1,25-dihydroxyvitamin D(3) (PRI-1890), 24-ene-1,25-dihydroxyvitamin D(2) (PRI-1906) and (24R)-1,24-dihydroxyvitamin D(3) (PRI-2191) to induce markers (CD14, CD11b and MSE) of differentiation, G(1) phase block, and associated molecular events in human promyeloblastic leukemia cells HL60. We found that the potencies of the analogs to induce differentiation paralleled their activation of Erk, JNK and p38 mitogen-activated protein kinase (MAPK) pathways, and the anti-proliferative activity closely correlated with the extent of hypophosphorylation of retinoblastoma protein (pRb). Interestingly, low concentrations of derivatives of vitamin D, which were insufficient to induce any detectable changes in the cell cycle traverse, markedly increased the levels of total pRb, which was highly phosphorylated. These results suggest that pRb may have an unsuspected role in monocytic differentiation, perhaps to increase the sensitivity of the G(1) checkpoint, by increasing the amount of substrate for cyclin-dependent kinases.  相似文献   

11.
The biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)(2)D3,] possess in vitro multiple anti-cancer activities including growth arrest, induction of apoptosis and differentiation of a variety of different types of malignant cells. However, its use as a therapeutic agent is hindered by its calcemic effects. Analogs of 1,25(OH)(2)D3 have enhanced anti-tumor activity, with reduced calcemic effects. However, limited clinical studies using vitamin D compounds have not yet achieved major clinical success. Nevertheless, pre-clinical studies suggest that the combination of either 1,25(OH)(2)D3 or its analogs with other agents can have additive or synergistic anti-cancer activities, suggesting future clinical studies.  相似文献   

12.
We investigated the effects of 1,25-dihydroxyvitamin D(3) [25(OH)(2)D(3)] on tissue plasminogen activator (tPA) secretion from primary cultures of rat heart microvascular cells. After an initial 5-day culture period, cells were treated for 24 h with 1,25(OH)(2)D(3) and several of its analogs. The results showed that 1,25(OH)(2)D(3) induced tPA secretion at 10(-10) to 10(-16) M. A less calcemic analog, Ro-25-8272, and an analog that binds the vitamin D receptor but is ineffective at perturbing Ca(2+) channels, Ro-24-5531, were approximately 10% as active as 1,25(OH)(2)D(3). An analog that binds the vitamin D receptor poorly but is an effective Ca(2+) channel agonist, Ro-24-2287, required approximately 10(-13) M to induce tPA secretion. Combinations of Ro-24-5531 and Ro-24-2287 were approximately as potent as 1,25(OH)(2)D(3). Treatment of the cells with BAY K 8644 or thapsigargin also increased tPA secretion, suggesting that increased cytosolic calcium concentration ([Ca(2+)]) induces tPA secretion. The results suggested that the sensitivity of the tPA secretory response of microvascular cells to 1,25(OH)(2)D(3) was due in part to generation of a vitamin D-depleted state in vitro and in part to synergistic effects of 1,25(OH)(2)D(3) on two different induction pathways of tPA release.  相似文献   

13.
The in vivo metabolism of dihydrotachysterol3, an analogue of vitamin D3 and a potent calcemic factor, has been studied in the rat. This in vivo metabolism is compared to the in vitro metabolism of 25-hydroxydihydrotachysterol3 in the perfused rat kidney. Using mass spectrometry and ultraviolet spectroscopy, we have identified seven novel metabolites derived from 25-hydroxydihydrotachysterol3. The seven compounds represent intermediates on two renal pathways (24-oxidation and 26,23-lactone formation) also observed for 25-hydroxyvitamin D3. No evidence was found for the renal synthesis of a 1-hydroxylated metabolite of 25-hydroxydihydrotachysterol3 analogous to the hormone 1,25-dihydroxyvitamin D3. Two of the compounds formed in vitro, 24,25-dihydroxydihydrotachysterol3 and 25-hydroxydihydrotachysterol 26,23-lactone, were also formed in vivo. In vivo studies also revealed the formation of two other unidentified metabolites which are presumed to be formed nonrenally and may be calcemic factors. This work shows that dihydrotachysterol3 metabolism is complex and probably utilizes the same side-chain enzymes as vitamin D3. In addition, our work also confirms that intermediates postulated to lie on pathways to 26,23-lactone in the vitamin D3 series are also formed for the side chain in dihydrotachysterol3.  相似文献   

14.
Design, synthesis, and in vitro and in vivo evaluation of a series of antipsoriatic antedrugs having 16-en-22-oxa-vitamin D3 are described. Among the seven compounds examined, two are promising: ester 5c and amide 5f, both of which exhibit greater potent antiproliferation activity with lessened calcemic activity than the presently prescribed maxacalcitol (2).  相似文献   

15.
In continuing efforts towards the synthesis of biologically active vitamin D compounds of potential therapeutic value, new 2-methylene-1alpha-hydroxy-19-norvitamin D(3) analogs 3 and 4 with modified alkyl side chains have been synthesized. The key synthetic step involved Lythgoe-type Wittig-Horner coupling of Windaus-Grundmann type ketones 9, possessing different 17beta-alkyl substituents, with the phosphine oxide 10 prepared from (-)-quinic acid. The prepared vitamins 3 and 4 were ca. eight times less potent than 1alpha,25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)) (1) in binding to the rat intestinal vitamin D receptor (VDR). In comparison with the hormone 1 they exhibited slightly lower cellular HL-60 differentiation activity. When tested in vivo; the analog 3 was characterized by very high bone calcium mobilizing potency and intestinal calcium transport activity. Unexpectedly, the 25-methyl compound 4 showed marked calcemic activity in both assays. Computational docking of the vitamin 3 into the binding pocket of the rat vitamin D receptor is also reported.  相似文献   

16.
Low levels of vitamin D have been implicated in a wide variety of health issues from calcemic diseases to cancer, diabetes and cardiovascular disease. For most humans, the majority of vitamin D(3) is derived from sunlight. How much vitamin D is produced under given exposure conditions is still widely discussed. We present a computational model for the production of (pre-)vitamin D within the skin. It accounts for spectral irradiance, optical properties of the skin and concentration profile of provitamin D. Results are computed for various sets of these parameters yielding the distribution of produced previtamin D in the skin.  相似文献   

17.
BACKGROUND: Calcitriol [1,25-(OH)(2)D(3)] is a strong anti-proliferative agent both in vitro and in vivo. Earlier studies have established that calcitriol inhibits the growth factor-stimulated proliferation of endothelial cells (EC) and angiogenesis. However, the lethal calcemic side effects of calcitriol prohibit its use as a therapeutic agent. Several analogs of vitamin D have been developed to minimize these calcemic side effects. 1,25-dihydroxy-3-epi-vitamin D(3) (3-epiD(3)), a naturally formed vitamin D metabolite is one such analog. OBJECTIVE: To demonstrate that 3-epiD(3), a calcitriol analog, inhibits endothelial cell proliferation and induces apoptosis. RESULTS: Treatment of EC with 3-epiD(3) showed 60% inhibition (P < 0.006) of proliferation. Cell viability assays corroborated these results. Pro-apoptotic caspase-3 activity was increased fourfold (P < 0.01) in 3-epiD(3)-treated cells over controls. 3-epiD(3) induced apoptosis in EC as shown by genomic DNA fragmentation. Cell cycle analysis of 3-epiD(3)-treated EC revealed a G0/G1 arrest. CONCLUSIONS: 3-epiD(3), a low-calcemic, natural analog of calcitriol, inhibits EC proliferation by causing a G0/G1 arrest and induces apoptosis more effectively than 1,25-(OH)(2)D(3). These results suggest that 3-epiD(3) is a potent inhibitor of EC growth.  相似文献   

18.
We demonstrated previously that daily injection for 3 days of the less calcemic vitamin D analogs: JK 1624 F(2)-2 (JKF) and QW 1624F(2)-2 (QW) followed by estradiol-17beta (E(2)) in female rats upregulated creatine kinase-specific activity (CK) in skeletal tissues. In this study, we evaluated both histomorphological and biochemical changes due to a regime of 4 days treatment with JKF or QW, followed by injection of E(2) on day 5, repeated for 2.5 months. Ovariectomized female rats (Ovx) were injected 2 weeks after surgery, with JKF or QW at 0.2 ng/g BW followed by injections of E(2) (1 microg/rat) on day 5 of each week for 2.5 months. Rats were sacrificed 24 h after the last injection and bones were analyzed. JKF alone decreased growth plate width, increased % total bone volume (%TBV), with no change in cortical thickness. In contrast, QW restored growth plate width and %TBV with no change in cortical thickness. Combined with E(2), JKF restored %TBV and growth plate width but with no change in cortical thickness, while QW restored significantly all parameters including cortical thickness. Moreover, there was also an increase in the responsiveness of CK to E(2) in epiphyseal cartilage and diaphyseal bone but not in uterus. Thus, vitamin D less calcemic analogs increased responsiveness to E(2) morphologically as well as biochemically. We, therefore, conclude that combined treatment of less calcemic analogs vitamin D and E(2) might be superior for treatment of bone damage caused by ovariectomy in female rats and might be applied for post-menopausal osteoporosis.  相似文献   

19.
In the context of our ongoing study of vitamin D structure-function relationships and in an attempt to obtain a better dissociation of their prodifferentiating (HL-60) and/or antiproliferative (MCF-7) activities and their calcemic activity, further 20-epi and 14-epi modifications were made to three trans-decalin CD-ring analogs of 1,25-dihydroxyvitamin D(3), the hormonally active metabolite of vitamin D(3), possessing a natural 20R side chain and featuring additional structural modifications in the seco-B-ring and in the A-ring. Following a previously observed trend and in agreement with the conformational analysis results, all three 20-epi derivatives show substantially lower biological activities, opposite to what is usually observed for analogs having the natural CD-ring. The 14-epi modification (cis-decalins) has little effect on the biological activity of the ynediene type and the saturated derivative, but results in an approximate 10-fold reduction in activity of the previtamin derivative. No better dissociation of the prodifferentiating and/or antiproliferative activities and the calcemic activity was achieved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号