首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) catalyzes the first step in peptidoglycan biosynthesis in both Gram-positive and Gram-negative bacteria. The products of the GlmU reaction are essential for bacterial survival, making this enzyme an attractive target for antibiotic drug discovery. A series of Haemophilus influenzae GlmU (hiGlmU) structures were determined by X-ray crystallography in order to provide structural and functional insights into GlmU activity and inhibition. The information derived from these structures was combined with biochemical characterization of the K25A, Q76A, D105A, Y103A, V223A, and E224A hiGlmU mutants in order to map these active-site residues to catalytic activity of the enzyme and refine the mechanistic model of the GlmU uridyltransferase reaction. These studies suggest that GlmU activity follows a sequential substrate-binding order that begins with UTP binding noncovalently to the GlmU enzyme. The uridyltransferase active site then remains in an open apo-like conformation until N-acetylglucosamine-1-phosphate (GlcNAc-1-P) binds and induces a conformational change at the GlcNAc-binding subsite. Following the binding of GlcNAc-1-P to the UTP-charged uridyltransferase active site, the non-esterified oxygen of GlcNAc-1-P performs a nucleophilic attack on the alpha-phosphate group of UTP. The new data strongly suggest that the mechanism of phosphotransfer in the uridyltransferase reaction in GlmU is primarily through an associative mechanism with a pentavalent phosphate intermediate and an inversion of stereochemistry. Finally, the structural and biochemical characterization of the uridyltransferase active site and catalytic mechanism described herein provides a basis for the structure-guided design of novel antibacterial agents targeting GlmU activity.  相似文献   

2.
GlmU is a bifunctional enzyme with acetyltransferase and uridyltransferase activities, and is essential for the biosynthesis of the bacterial cell wall. Inhibition results in a loss of cell viability. GlmU is therefore considered a potential target for novel antibacterial agents. A HTS (high-throughput screen) identified a series of aminoquinazolines with submicromolar potency against the uridyltransferase reaction. Biochemical and biophysical characterization showed competition with UTP binding. We determined the crystal structure of a representative aminoquinazoline bound to the Haemophilus influenzae isoenzyme at a resolution of 2.0 ?. The inhibitor occupies part of the UTP site, skirts the outer perimeter of the GlcNAc1-P (N-acetylglucosamine-1-phosphate) pocket and anchors a hydrophobic moiety into a lipophilic pocket. Our SAR (structure-activity relationship) analysis shows that all of these interactions are essential for inhibitory activity in this series. The crystal structure suggests that the compound would block binding of UTP and lock GlmU in an apo-enzyme-like conformation, thus interfering with its enzymatic activity. Our lead generation effort provides ample scope for further optimization of these compounds for antibacterial drug discovery.  相似文献   

3.
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is an essential bacterial enzyme with both an acetyltransferase and a uridyltransferase activity which have been mapped to the C-terminal and N-terminal domains, respectively. GlmU performs the last two steps in the synthesis of UDP-N-acetylglucosamine (UDP-GlcNAc), which is an essential precursor in both the peptidoglycan and the lipopolysaccharide metabolic pathways. GlmU is therefore an attractive target for potential antibiotics. Knowledge of its three-dimensional structure would provide a basis for rational drug design. We have determined the crystal structures of Streptococcus pneumoniae GlmU (SpGlmU) in apo form at 2.33 A resolution, and in complex with UDP-N-acetyl glucosamine and the essential co-factor Mg(2+) at 1.96 A resolution. The protein structure consists of an N-terminal domain with an alpha/beta-fold, containing the uridyltransferase active site, and a C-terminal domain with a long left-handed beta-sheet helix (LbetaH) domain. An insertion loop containing the highly conserved sequence motif Asn-Tyr-Asp-Gly protrudes from the left-handed beta-sheet helix domain. In the crystal, S. pneumoniae GlmU forms exact trimers, mainly through contacts between left-handed beta-sheet helix domains. UDP-N-acetylglucosamine and Mg(2+) are bound at the uridyltransferase active site, which is in a closed form. We propose a uridyltransferase mechanism in which the activation energy of the double negatively charged phosphorane transition state is lowered by charge compensation of Mg(2+) and the side-chain of Lys22.  相似文献   

4.
The biosynthesis of UDP-GlcNAc in bacteria is carried out by GlmU, an essential bifunctional uridyltransferase that catalyzes the CoA-dependent acetylation of GlcN-1-PO(4) to form GlcNAc-1-PO(4) and its subsequent condensation with UTP to form pyrophosphate and UDP-GlcNAc. As a metabolite, UDP-GlcNAc is situated at a branch point leading to the biosynthesis of lipopolysaccharide and peptidoglycan. Consequently, GlmU is regarded as an important target for potential antibacterial agents. The crystal structure of the Escherichia coli GlmU acetyltransferase active site has been determined in complexes with acetyl-CoA, CoA/GlcN-1-PO(4), and desulpho-CoA/GlcNAc-1-PO(4). These structures reveal the enzyme groups responsible for binding the substrates. A superposition of these complex structures suggests that the 2-amino group of GlcN-1-PO(4) is positioned in proximity to the acetyl-CoA to facilitate direct attack on its thioester by a ternary complex mechanism.  相似文献   

5.
Zhou Y  Yu W  Zheng Q  Xin Y  Ma Y 《Glycoconjugate journal》2012,29(5-6):297-303
M. tuberculosis GlmU is a bifunctional enzyme with acetyltransferase activity in C-terminus and uridyltransferase activity in N-terminus, and it is involved in the biosynthesis of glycosyl donor UDP-N-acetylglucosamine (UDP-GlcNAc). The crystal structure of M. tuberculosis GlmU clearly determines the active site and catalytic mechanism of GlmU uridyltransferase domain but not succeed in GlmU acetyltransferase domain. Sequence comparison analysis revealed highly conserved amino acid residues in the C-terminus between M. tuberculosis GlmU and GlmU enzymes from other bacteria. To find the essential amino acids related to M. tuberculosis GlmU acetyltransferase activity, we substituted 10 conserved amino acids in the acetyltransferase domain of M. tuberculosis GlmU by site-directed mutagenesis. All the mutant GlmU proteins were largely expressed in soluble and purified by affinity chromatography. Enzyme assays showed that K362A, H374A, Y398A and W460A mutants abolished more than 90?% activity of M. tuberculosis GlmU acetyltransferase and totally lost the affinity with two substrates, suggesting the potential substrate-binding functions. However, K403A, S416A, N456A and E458A mutants exhibited decreased GlmU acetyltransferase activity and lower kinetic parameters, probably responsible for substrate releasing by conformation shifting.  相似文献   

6.
N-Acetyl-glucosamine-1-phosphate uridyltransferase (GlmU), a bifunctional enzyme involved in bacterial cell wall synthesis is exclusive to prokaryotes. GlmU, now recognized as a promising target to develop new antibacterial drugs, catalyzes two key reactions: acetyl transfer and uridyl transfer at two independent domains. Hitherto, we identified GlmU from Mycobacterium tuberculosis (GlmUMtb) to be unique in possessing a 30-residue extension at the C terminus. Here, we present the crystal structures of GlmUMtb in complex with substrates/products bound at the acetyltransferase active site. Analysis of these and mutational data, allow us to infer a catalytic mechanism operative in GlmUMtb. In this SN2 reaction, His-374 and Asn-397 act as catalytic residues by enhancing the nucleophilicity of the attacking amino group of glucosamine 1-phosphate. Ser-416 and Trp-460 provide important interactions for substrate binding. A short helix at the C-terminal extension uniquely found in mycobacterial GlmU provides the highly conserved Trp-460 for substrate binding. Importantly, the structures reveal an uncommon mode of acetyl-CoA binding in GlmUMtb; we term this the U conformation, which is distinct from the L conformation seen in the available non-mycobacterial GlmU structures. Residues, likely determining U/L conformation, were identified, and their importance was evaluated. In addition, we identified that the primary site for PknB-mediated phosphorylation is Thr-418, near the acetyltransferase active site. Down-regulation of acetyltransferase activity upon Thr-418 phosphorylation is rationalized by the structures presented here. Overall, this work provides an insight into substrate recognition, catalytic mechanism for acetyl transfer, and features unique to GlmUMtb, which may be exploited for the development of inhibitors specific to GlmU.  相似文献   

7.
The bifunctional bacterial enzyme N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU) catalyzes the two-step formation of UDP-GlcNAc, a fundamental precursor in bacterial cell wall biosynthesis. With the emergence of new resistance mechanisms against beta-lactam and glycopeptide antibiotics, the biosynthetic pathway of UDP-GlcNAc represents an attractive target for drug design of new antibacterial agents. The crystal structures of Streptococcus pneumoniae GlmU in unbound form, in complex with acetyl-coenzyme A (AcCoA) and in complex with both AcCoA and the end product UDP-GlcNAc, have been determined and refined to 2.3, 2.5, and 1.75 A, respectively. The S. pneumoniae GlmU molecule is organized in two separate domains connected via a long alpha-helical linker and associates as a trimer, with the 50-A-long left-handed beta-helix (LbetaH) C-terminal domains packed against each other in a parallel fashion and the C-terminal region extended far away from the LbetaH core and exchanged with the beta-helix from a neighboring subunit in the trimer. AcCoA binding induces the formation of a long and narrow tunnel, enclosed between two adjacent LbetaH domains and the interchanged C-terminal region of the third subunit, giving rise to an original active site architecture at the junction of three subunits.  相似文献   

8.
VK Singh  K Das  K Seshadri 《PloS one》2012,7(8):e43969
Mycobacterium tuberculosis(Mtu), a successful pathogen, has developed resistance against the existing anti-tubercular drugs necessitating discovery of drugs with novel action. Enzymes involved in peptidoglycan biosynthesis are attractive targets for antibacterial drug discovery. The bifunctional enzyme mycobacterial GlmU (Glucosamine 1-phosphate N-acetyltransferase/ N-acetylglucosamine-1-phosphate uridyltransferase) has been a target enzyme for drug discovery. Its C- and N- terminal domains catalyze acetyltransferase (rxn-1) and uridyltransferase (rxn-2) activities respectively and the final product is involved in peptidoglycan synthesis. However, the bifunctional nature of GlmU poses difficulty in deciding which function to be intervened for therapeutic advantage. Genetic analysis showed this as an essential gene but it is still unclear whether any one or both of the activities are critical for cell survival. Often enzymatic activity with suitable high-throughput assay is chosen for random screening, which may not be the appropriate biological function inhibited for maximal effect. Prediction of rate-limiting function by dynamic network analysis of reactions could be an option to identify the appropriate function. With a view to provide insights into biochemical assays with appropriate activity for inhibitor screening, kinetic modelling studies on GlmU were undertaken. Kinetic model of Mtu GlmU-catalyzed reactions was built based on the available kinetic data on Mtu and deduction from Escherichia coli data. Several model variants were constructed including coupled/decoupled, varying metabolite concentrations and presence/absence of product inhibitions. This study demonstrates that in coupled model at low metabolite concentrations, inhibition of either of the GlmU reactions cause significant decrement in the overall GlmU rate. However at higher metabolite concentrations, rxn-2 showed higher decrement. Moreover, with available intracellular concentration of the metabolites and in vivo variant of model, uncompetitive inhibition of rxn-2 caused highest decrement. Thus, at physiologically relevant metabolite concentrations, targeting uridyltranferase activity of Mtu GlmU would be a better choice for therapeutic intervention.  相似文献   

9.
The bifunctional N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) enzyme catalyzes both the acetylation of glucosamine 1-phosphate and the uridylation of N-acetylglucosamine 1-phosphate, two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis in bacteria. In our previous work describing its initial characterization in Escherichia coli, we proposed that the 456-amino acid (50.1 kDa) protein might possess separate uridyltransferase (N-terminal) and acetyltransferase (C-terminal) domains. In the present study, we confirm this hypothesis by expression of the two independently folding and functional domains. A fragment containing the N-terminal 331 amino acids (Tr331, 37.1 kDa) has uridyltransferase activity only, with steady-state kinetic parameters similar to the full-length protein. Further deletion of 80 amino acid residues at the C terminus results in a 250-amino acid fragment (28.6 kDa) still exhibiting significant uridyltransferase activity. Conversely, a fragment containing the 233 C-terminal amino acids (24.7 kDa) exhibits acetyltransferase activity exclusively. None of these individual domains could complement a chromosomal glmU mutation, indicating that each of the two activities is essential for cell viability. Analysis of truncated GlmU proteins by gel filtration further localizes regions of the protein involved in its trimeric organization. Interestingly, overproduction of the truncated Tr331 protein in a wild-type strain results in a rapid depletion of endogenous acetyltransferase activity, an arrest of peptidoglycan synthesis and cell lysis. It is shown that the acetyltransferase activity of the full-length protein is abolished once trapped within heterotrimers formed in presence of the truncated protein, suggesting that this enzyme activity absolutely requires a trimeric organization and that the catalytic site involves regions of contact between adjacent monomers. Data are discussed in connection with the recently obtained crystal structure of the truncated Tr331 protein.  相似文献   

10.
Development of drug-resistant mutations has been a major problem with all currently developed Hepatitis C Virus (HCV) NS3/4A inhibitors, including the two FDA approved drugs, significantly reducing the efficacy of these inhibitors. The high incidence of drug-resistance mutations and the limited utility of these inhibitors against only genotype 1 highlight the need for novel, broad-spectrum HCV therapies. Here we used high-throughput screening (HTS) to identify low molecular weight inhibitors against NS3/4A from multiple genotypes. A total of 40,967 compounds from four structurally diverse molecular libraries were screened by HTS using fluorescence-based enzymatic assays, followed by an orthogonal binding analysis using surface plasmon resonance (SPR) to eliminate false positives. A novel small molecule compound was identified with an IC50 value of 2.2 µM against the NS3/4A from genotype 1b. Mode of inhibition analysis subsequently confirmed this compound to be a competitive inhibitor with respect to the substrate, indicating direct binding to the protease active site, rather than to the allosteric binding pocket that was discovered to be the binding site of a few recently discovered small molecule inhibitors. This newly discovered inhibitor also showed promising inhibitory activity against the NS3/4As from three other HCV genotypes, as well as five common drug-resistant mutants of genotype 1b NS3/4A. The inhibitor was selective for NS3 from multiple HCV genotypes over two human serine proteases, and a whole cell lysate assay confirmed inhibitory activity in the cellular environment. This compound provides a lead for further development of potentially broader spectrum inhibitors.  相似文献   

11.
Zhou Y  Xin Y  Sha S  Ma Y 《Archives of microbiology》2011,193(10):751-757
The UDP-N-acetylglucosamine (UDP-GlcNAc) is present as one of the glycosyl donors for disaccharide linker (d-N-GlcNAc-l-rhamnose) and the precursor of peptidoglycan in mycobacteria. The bifunctional enzyme GlmU involves in the last two sequential steps of UDP-GlcNAc synthetic pathway. Glucosamine-1-phosphate acetyltransferase catalyzes the formation of N-acetylglucosamine-1-phosphate (GlcNAc-1-P) from glucosamine-1-phosphate (GlcN-1-P) and acetyl coenzyme A (Acetyl CoA), and N-acetylglucosamine-1-phosphate uridyltransferase catalyzes the synthesis of UDP-GlcNAc from GlcNAc-1-P and UTP. The previous studies demonstrating the essentiality of GlmU to mycobacterial survival supported GlmU as a novel and potential target for TB drugs. In this work, two accurate and simple colorimetric assays based on 96-well microtiter plate were developed to measure the kinetic properties of bifunctional GlmU including initial velocity, optimal temperature, optimal pH, the effect of Mg2+, and the kinetic parameters. Both of the colorimetric assays for bifunctional GlmU enzyme activities and the kinetic properties will facilitate high-throughput screening of GlmU inhibitors.  相似文献   

12.
The hepatitis C virus (HCV) polymerase is required for replication of the viral genome and is a key target for therapeutic intervention against HCV. We have determined the crystal structures of the HCV polymerase complexed with two indole-based allosteric inhibitors at 2.3- and 2.4-Angstroms resolution. The structures show that these inhibitors bind to a site on the surface of the thumb domain. A cyclohexyl and phenyl ring substituents, bridged by an indole moiety, fill two closely spaced pockets, whereas a carboxylate substituent forms a salt bridge with an exposed arginine side chain. Interestingly, in the apoenzyme, the inhibitor binding site is occupied by a small alpha-helix at the tip of the N-terminal loop that connects the fingers and thumb domains. Thus, these molecules inhibit the enzyme by preventing formation of intramolecular contacts between these two domains and consequently precluding their coordinated movements during RNA synthesis. Our structures identify a novel mechanism by which a new class of allosteric inhibitors inhibits the HCV polymerase and open the way to the development of novel antiviral agents against this clinically relevant human pathogen.  相似文献   

13.
Olsen LR  Roderick SL 《Biochemistry》2001,40(7):1913-1921
N-Acetylglucosamine-1-PO(4) uridyltransferase (GlmU) is a trimeric bifunctional enzyme that catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-GlcNAc. The X-ray crystal structure of Escherichia coli GlmU in complex with UDP-GlcNAc and CoA has been determined to 2.1 A resolution and reveals a two-domain architecture that is responsible for these two reactions. The C-terminal domain is responsible for the CoA-dependent acetylation of Glc-1-PO(4) to GlcNAc-1-PO(4) and displays the longest left-handed parallel beta-helix observed to date. The acetyltransferase active site defined by the binding site for CoA makes use of residues from all three subunits and is positioned beneath an open cavity large enough to accommodate the Glc-1-PO(4) acetyl acceptor. The N-terminal domain catalyzes uridyl transfer from UTP to GlcNAc-1-PO(4) to form the final products UDP-GlcNAc and pyrophosphate. This domain is composed of a central seven-stranded beta-sheet surrounded by six alpha-helices in a Rossmann fold-like topology. A Co(2+) ion binds to just one of the two independent pyrophosphorylase active sites present in the crystals studied here, each of which nonetheless binds UDP-GlcNAc. The conformational changes of the enzyme and sugar nucleotide that accompany metal binding may provide a window into the structural dynamics that accompany catalysis.  相似文献   

14.
N-acetylglucosamine 1-phosphate uridyltransferase (GlmU) is a cytoplasmic bifunctional enzyme involved in the biosynthesis of the nucleotide-activated UDP-GlcNAc, which is an essential precursor for the biosynthetic pathways of peptidoglycan and other components in bacteria. The crystal structure of a truncated form of GlmU has been solved at 2.25 A resolution using the multiwavelength anomalous dispersion technique and its function tested with mutagenesis studies. The molecule is composed of two distinct domains connected by a long alpha-helical arm: (i) an N-terminal domain which resembles the dinucleotide-binding Rossmann fold; and (ii) a C-terminal domain which adopts a left-handed parallel beta-helix structure (LbetaH) as found in homologous bacterial acetyltransferases. Three GlmU molecules assemble into a trimeric arrangement with tightly packed parallel LbetaH domains, the long alpha-helical linkers being seated on top of the arrangement and the N-terminal domains projected away from the 3-fold axis. In addition, the 2.3 A resolution structure of the GlmU-UDP-GlcNAc complex reveals the structural bases required for the uridyltransferase activity. These structures exemplify a three-dimensional template for the development of new antibacterial agents and for studying other members of the large family of XDP-sugar bacterial pyrophosphorylases.  相似文献   

15.
The N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a key bifunctional enzyme in the biosynthesis of UDP-GlcNAc, a precursor in the synthesis of cell wall peptidoglycan. Crystal structures of the enzyme from different bacterial strains showed that the polypeptide forms a trimer through a unique parallel left-handed beta helix domain. Here, we show that the GlmU enzyme from Escherichia coli forms a hexamer in solution. Sedimentation equilibrium analytical ultracentrifugation demonstrated that the enzyme is in a trimer/hexamer equilibrium. Small-angle X-ray scattering studies were performed to determine the structure of the hexameric assembly and showed that two trimers assemble through their N-terminal domains. The interaction is mediated by a loop that undergoes a large conformational change in the uridyl transferase reaction, a feature that may affect the enzymatic activity of GlmU.  相似文献   

16.
GlmU is a bifunctional enzyme that is essential for bacterial growth, converting D-glucosamine 1-phosphate into UDP-GlcNAc via acetylation and subsequent uridyl transfer. A biochemical screen of AstraZeneca's compound library using GlmU of Escherichia coli identified novel sulfonamide inhibitors of the acetyltransferase reaction. Steady-state kinetics, ligand-observe NMR, isothermal titration calorimetry, and x-ray crystallography showed that the inhibitors were competitive with acetyl-CoA substrate. Iterative chemistry efforts improved biochemical potency against gram-negative isozymes 300-fold and afforded antimicrobial activity against a strain of Haemophilus influenzae lacking its major efflux pump. Inhibition of precursor incorporation into bacterial macromolecules was consistent with the antimicrobial activity being caused by disruption of peptidoglycan and fatty acid biosyntheses. Isolation and characterization of two different resistant mutant strains identified the GlmU acetyltransferase domain as the molecular target. These data, along with x-ray co-crystal structures, confirmed the binding mode of the inhibitors and explained their relative lack of potency against gram-positive GlmU isozymes. This is the first example of antimicrobial compounds mediating their growth inhibitory effects specifically via GlmU.  相似文献   

17.
The glucosamine-1-phosphate acetyltransferase activity but not the uridyltransferase activity of the bifunctional GlmU enzyme from Escherichia coli was lost when GlmU was stored in the absence of β-mercaptoethanol or incubated with thiol-specific reagents. The enzyme was protected from inactivation in the presence of its substrate acetyl coenzyme A (acetyl-CoA), suggesting the presence of an essential cysteine residue in or near the active site of the acetyltransferase domain. To ascertain the role of cysteines in the structure and function of the enzyme, site-directed mutagenesis was performed to change each of the four cysteines to alanine, and plasmids were constructed for high-level overproduction and one-step purification of histidine-tagged proteins. Whereas the kinetic parameters of the bifunctional enzyme appeared unaffected by the C296A and C385A mutations, 1,350- and 8-fold decreases of acetyltransferase activity resulted from the C307A and C324A mutations, respectively. The Km values for acetyl-CoA and GlcN-1-P of mutant proteins were not modified, suggesting that none of the cysteines was involved in substrate binding. The uridyltransferase activities of wild-type and mutant GlmU proteins were similar. From these studies, the two cysteines Cys307 and Cys324 appeared important for acetyltransferase activity and seemed to be located in or near the active site.  相似文献   

18.
Phosphoenolpyruvate carboxylase (PEPC) catalyzes the first step in the fixation of atmospheric CO(2) during C(4) photosynthesis. The crystal structure of C(4) form maize PEPC (ZmPEPC), the first structure of the plant PEPCs, has been determined at 3.0 A resolution. The structure includes a sulfate ion at the plausible binding site of an allosteric activator, glucose 6-phosphate. The crystal structure of E. coli PEPC (EcPEPC) complexed with Mn(2+), phosphoenolpyruvate analog (3,3-dichloro-2-dihydroxyphosphinoylmethyl-2-propenoate), and an allosteric inhibitor, aspartate, has also been determined at 2.35 A resolution. Dynamic movements were found in the ZmPEPC structure, compared with the EcPEPC structure, around two loops near the active site. On the basis of these molecular structures, the mechanisms for the carboxylation reaction and for the allosteric regulation of PEPC are proposed.  相似文献   

19.
An aminoquinazoline series targeting the essential bacterial enzyme GlmU (uridyltransferase) were previously reported (Biochem. J. 2012, 446, 405). In this study, we further explored SAR through a combination of traditional medicinal chemistry and structure-based drug design, resulting in a novel scaffold (benzamide) with selectivity against protein kinases. Virtual screening identified fragments that could be fused into the core scaffold, exploiting additional binding interactions and thus improving potency. These efforts resulted in a hybrid compound with target potency increased by a 1000-fold, while maintaining selectivity against selected protein kinases and an improved level of solubility and protein binding. Despite these significant improvements no significant antibacterial activity was yet observed within this class.  相似文献   

20.
Zhai Y  Liang M  Fang J  Wang X  Guan W  Liu XW  Wang P  Wang F 《Biotechnology letters》2012,34(7):1321-1326
The availability of uridine 5'-diphosphate N-acetylglucosamine (UDP-GlcNAc) is a prerequisite for the GlcNAc-transferase-catalyzed glycosylation reaction. UDP-GlcNAc has already been synthesized using an N-acetylhexosamine 1-kinase (NahK) and a GlcNAc-1-P uridyltransferase (truncated GlmU) and here, a fusion enzyme was constructed with truncated GlmU and NahK. After determination of the optimum catalytic condition (pH 8.0 at 40 °C), the fusion enzyme was used to synthesize UDP-GlcNAc in a single step with a yield of 88 % from GlcNAc, ATP and UTP. Furthermore, a simplified purification method was demonstrated using separation by gel filtration after by-product digestion with alkaline phosphatase. An overall yield of 77 % and a purity of over 90 % were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号