首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
The interaction of a newly developed Helicobacter pylori eradicating agent (TG44, 4-methylbenzyl-4'-[trans-4-(guanidinomethyl)cyclohexylcarbonyloxy]-biphenyl-4-carboxlylate monohydrochloride) with cyclomaltoheptaose (beta-cyclodextrin, beta-CyD) in the solid state was studied by high-speed frequency-switched Lee-Goldburg (FSLG) (13)C-(1)H heteronuclear correlation (HETCOR) NMR experiments. The TG44/beta-CyD solid complex in a 1:1 stoichiometry was prepared by the grinding method. Powder X-ray diffractometry confirmed that the complex is in an amorphous state. The solid-state (13)C signals of TG44 and beta-CyD were significantly broadened by the complexation. As the temperature increased, the (13)C signals of the aromatic moieties of TG44 were insignificantly influenced, whereas those of the cyclohexyl moiety became sharper. The T1(rho) H values of the aromatic moieties of TG44 were almost the same as those of the beta-CyD carbons, whereas those of other TG44 carbons gave much smaller values. The (13)C-(1)H HETCOR spectra gave the intermolecular correlation peaks between the aromatic carbons of TG44 and the beta-CyD protons or between the biphenyl protons of TG44 and the beta-CyD carbons, when measured using longer contact times (500 and 1500mus). On the basis of these solid NMR spectroscopic data together with aqueous NMR data, we assume that beta-CyD includes predominantly the biphenyl moiety of TG44 in the solid state. (13)C-(1)H HETCOR spectroscopy is particularly useful for the determination of inclusion modes of the complexes that occurring in an amorphous form.  相似文献   

2.
An inclusion complex between imazalil (IMZ), a selected fungicide, and cyclomaltoheptaose (beta-cyclodextrin, betaCD) was obtained using supercritical fluid carbon dioxide. The best preparation conditions were determined, and the inclusion complex was investigated by means of 1H NMR spectroscopy in aqueous solution and 13C CPMAS NMR spectroscopy in the solid state. Information on the geometry of the betaCD/IMZ complex was obtained from ROESY spectroscopy, while the dynamics of the inclusion complex in the kilohertz range was obtained from the proton spin-lattice relaxation times in the rotating frame, T(1rho) (1H).  相似文献   

3.
The changes in backbone hydrogen/deuterium (H/2H) exchange in the regulatory subunit (R(I)alpha(94-244)) of cyclic AMP-dependent protein kinase A (PKA) were probed by MALDI-TOF mass spectrometry. The three naturally occurring states of the regulatory subunit were studied: (1) free R(I)alpha(94-244), which likely represents newly synthesized protein, (2) R(I)alpha(94-244) bound to the catalytic (C) subunit, or holoenzyme, and (3) R(I)alpha(94-244) bound to cAMP. Protection from amide exchange upon C-subunit binding was observed for the helical subdomain, including the A-helix and B-helix, pointing to regions adjacent to those shown to be important by mutagenesis. In addition, C-subunit binding caused changes in observed amide exchange in the distal cAMP-binding pocket. Conversely, cAMP binding caused protection in the cAMP-binding pocket and increased exchange in the helical subdomain. These results suggest that the mutually exclusive binding of either cAMP or C-subunit is controlled by binding at one site transmitting long distance changes to the other site.  相似文献   

4.
The ruthenium(II) hexaaqua complex [Ru(H2O)6]2+ reacts with dihydrogen under pressure to give the η2-dihydrogen ruthenium(II) pentaaqua complex [Ru(H2)(H2O)5]2+.The complex was characterized by 1H, 2H and 17O NMR: δH = −7.65 ppm, JHD = 31.2 Hz, δO = −80.4 ppm (trans to H2) and δO = −177.4 ppm (cis to H2).The H-H distance in coordinated dihydrogen was estimated to 0.889 Å from JHD, which is close to the value obtained from DFT calculations (0.940 Å).Kinetic studies were performed by 1H and 2H NMR as well as by UV-Vis spectroscopy, yielding the complex formation rate and equilibrium constants: kf = (1.7 ± 0.2) × 10−3 kg mol−1 s−1 and Keq = 4.0 ± 0.5 mol kg−1.The complex formation rate with dihydrogen is close to values reported for other ligands and thus it is assumed that the reaction with dihydrogen follows the same mechanisn (Id).In deuterated water, one can observe that [Ru(H2)(H2O)5]2+ catalyses the hydrogen exchange between the solvent and the dissolved dihydrogen.A hydride is proposed as the intermediate for this exchange.Using isotope labeling, the rate constant for the hydrogen exchange on the η2-dihydrogen ligand was determined as k1 = (0.24 ± 0.04) × 10−3 s−1.The upper and lower limits of the pKa of the coordinated dihydrogen ligand have been estimated:3 < pKa < 14.  相似文献   

5.
Summary Kidney proximal tubule Na/H exchange is inhibited by PTH. To analyze further the cellular mechanisms involved in this regulation we have used MCT cells (a culture of SV-40 immortalized mouse cortical tubule cells) grown on permeant filter supports. Na/H exchange was measured using single cell fluorescence microscopy (BCECF) and phosphate transport (measured for comparisons) by tracer techniques. MCT cells express apical and basolateral Na/H exchangers which respond differently to inhibition by ethylisopropylamiloride and by dimethylamiloride, the basolateral membrane transporter being more sensitive. Apical membrane Na/H exchange was inhibited by PTH (10–8m; by an average of 25%); similar degrees of inhibition were observed when cells were exposed either to forskolin, 8-bromo-cAMP or phorbol ester. Basolateral membrane Na/H exchange was stimulated either by incubation with PTH (to 129% above control levels) or by addition of phorbol ester (to 120% above control levels); it was inhibited after exposure to either forskolin or 8-bromo-cAMP. The above effects of PTH and phorbol ester (apical and basolateral) were prevented by preincubation of cells with protein kinase C antagonists, staurosporine and calphostin C; both compounds did not affect forskolin or 8-bromo-cAMP induced effects. PTH also inhibited apical Na-dependent phosphate influx (29% inhibition at 10–8m); it had no effect on basolateral phosphate fluxes (Na-dependent and Na-independent). Incubation with PTH (10–8m) resulted in a rapid and transient increase in [Ca2+]i (measured with the fluorescent indicator, fura-2), due to stimulation of a Ca2+ release from intracellular stores. Exposure of MCT cells to PTH did not elevate cellular levels of cAMP. Taken together, these results suggest that PTH utilizes in MCT cells the phospholipase C/protein kinase C pathway to differently control Na/H exchangers (apical vs. basolateral) and to inhibit apical Na/Pi cotransport.This work was supported by the Swiss National Science Foundation (Grant No. 32-30785.91), the Stiftung für wissenschaftliche Forschung an der Universität Zürich, the Hartmann-Müller Stiftung, the Sandoz-Stiftung, the Roche Research Foundation and the Geigy-Jubiläumsstiftung. We are grateful to Denise Rossi and Christa Knellwolf for their excellent secretarial assistance.  相似文献   

6.
Characterization of the polymorphic structural range of Aβ oligomers is important to the understanding of the mechanisms of toxicity. Yet for highly polymorphic ensembles, experimental structural elucidation is difficult. Here, we use a combination of NMR solvent protection experiments and computational structural screening to identify major species in the amyloid conformational ensemble. We examined the polymorphic pentamer and fibril seeds of Aβ42 and its mutants and compared the theoretical backbone amide protection obtained from simulations with experimental hydrogen/deuterium (H/D) exchange protection ratio. We observed that highly flexible pentamers do not share structural similarities with fibril seed oligomers, except the turn regions. We found that a novel amyloid structural motif of a triple β-sheet, with the N-terminal residues interacting with the core (Lys(17)-Glu(22)) β-sheet region, correlates with H/D exchange protection. The triple β-sheet Aβ42 oligomer has a minimal exposure of hydrophobic residues and is further stabilized by the E22Q (Dutch) mutation in Alzheimer disease. The experimental H/D exchange solvent protection ratio implies that triple β-sheet fibrils and globulomers could coexist in the Aβ42 ensemble, pointing to a broad heterogeneous aggregate population. Our results suggest that an approach that combines computational modeling with NMR protection data can be a useful strategy for obtaining clues to the preferred conformational species of the assemblies in solution and help in alleviating experimental difficulties and consequently possible errors in the exchange data for Aβ42 fibrils.  相似文献   

7.
3D QSAR studies on the title compounds led to the development of a model with three biophoric sites and six secondary sites viz. H-acceptor (ACC), H-donor (DON), heteroatom (presence), hydrophobic (hydrophobicity), steric (refractivity), and a ring (presence) along with total hydrophobicity and total refractivity as global properties. The model predicted the test set of compounds reasonably well. Three of the five newly synthesized 2-substituted octahydropyrazinopyridoindoles have shown potent antihistaminic H1 activity with less toxicity and sedation potential.  相似文献   

8.
The biogenetic origin of the isoprenoid building blocks of the sesquiterpene germacrene D was studied in Solidago canadensis. Feeding experiments were carried out with 1-[5,5-D(2)]deoxy-D-xylulose-5-phosphate (D(2)-DOXP), [5-13C]mevalonolactone (13C-MVL) and [1-13C]-D-glucose. The hydrodistillate of a cut shoot fed with D(2)-DOXP was investigated by enantio-MDGC-MS and the volatile fraction of a shoot supplied with 13C-MVL was examined by GC-C-IRMS. The incorporation of [1-13C]-D-glucose was analyzed by quantitative 13C NMR spectroscopy after isolation of germacrene D from the essential oil. Our labeling studies revealed that the biosynthesis of the C-15 skeleton of sesquiterpene germacrene D in Solidago canadensis proceeds predominantly via the methylerythritol phosphate pathway.  相似文献   

9.
Recent investigations into ferredoxin-dependent transhydrogenases, a class of enzymes responsible for electron transport, have highlighted the biological importance of flavin-based electron bifurcation (FBEB). FBEB generates biomolecules with very low reduction potential by coupling the oxidation of an electron donor with intermediate potential to the reduction of high and low potential molecules. Bifurcating systems can generate biomolecules with very low reduction potentials, such as reduced ferredoxin (Fd), from species such as NADPH. Metabolic systems that use bifurcation are more efficient and confer a competitive advantage for the organisms that harbor them. Structural models are now available for two NADH-dependent ferredoxin-NADP+ oxidoreductase (Nfn) complexes. These models, together with spectroscopic studies, have provided considerable insight into the catalytic process of FBEB. However, much about the mechanism and regulation of these multi-subunit proteins remains unclear. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS) and statistical coupling analysis (SCA), we identified specific pathways of communication within the model FBEB system, Nfn from Pyrococus furiosus, under conditions at each step of the catalytic cycle. HDX-MS revealed evidence for allosteric coupling across protein subunits upon nucleotide and ferredoxin binding. SCA uncovered a network of co-evolving residues that can provide connectivity across the complex. Together, the HDX-MS and SCA data show that protein allostery occurs across the ensemble of iron?sulfur cofactors and ligand binding sites using specific pathways that connect domains allowing them to function as dynamically coordinated units.  相似文献   

10.
Crystalline bis(N,N-di-iso-butyldithiocarbamato-S,S′)(pyridine)cadmium(II) - adduct 1 was prepared and studied by means of multinuclear 13C, 15N, 113Cd CP/MAS NMR spectroscopy, single-crystal X-ray diffraction and simultaneous thermal analysis (STA). In molecular structure 1, the cadmium atom coordinates with four sulphur atoms and one nitrogen atom of pyridine, forming a coordination polyhedron [CdS4N], whose geometry is an almost ideal tetragonal pyramidal (C4v). The coordinated py molecule is in the apical position, while two structurally non-equivalent di-iso-butyldithiocarbamate ligands, playing the same terminal S,S′-chelating function, define the basal plane. To characterise additionally the structural state of the cadmium atom in this fivefold coordination, 113Cd chemical shift anisotropy (CSA) parameters, δaniso and η, were calculated from experimental MAS NMR spectra that revealed an almost axially symmetric 113Cd chemical shift tensor. From a combination of TG and DSC measurements taken under an argon atmosphere, we found that the mass of adduct 1 is lost in two steps involving initial desorption of coordinated py molecules with subsequent thermal destruction of liberated cadmium(II) di-iso-butyldithiocarbamate, with yellow-orange, fine-powdered solid CdS as the final product.  相似文献   

11.
12.
NhaA, the main sodium-proton exchanger in the inner membrane of Escherichia coli, regulates the cytosolic concentrations of H+ and Na+. It is inactive at acidic pH, becomes active between pH 6 and pH 7, and reaches maximum activity at pH 8. By cryo-electron microscopy of two-dimensional crystals grown at pH 4 and incubated at higher pH, we identified two sequential conformational changes in the protein in response to pH or substrate ions. The first change is induced by a rise in pH from 6 to 7 and marks the transition from the inactive state to the pH-activated state. pH activation, which precedes the ion-induced conformational change, is accompanied by an overall expansion of the NhaA monomer and a local ordering of the N-terminus. The second conformational change is induced by the substrate ions Na+ and Li+ at pH above 7 and involves a 7-Å displacement of helix IVp. This movement would cause a charge imbalance at the ion-binding site that may trigger the release of the substrate ion and open a periplasmic exit channel.  相似文献   

13.
14.
It is widely accepted that the incidence of chromosomal aberration is 10–15.2% in the azoospermic male; however, the exact genetic damages are currently unknown for more than 40% of azoospermia. To elucidate the causative gene defects, we used the next generation sequencing (NGS) to map the breakpoints of a chromosome insertion from an azoospermic male who carries a balanced, maternally inherited karyotype 46, XY, inv ins (18,7) (q22.1; q36.2q21.11). The analysis revealed that the breakage in chromosome 7 disrupts two genes, dipeptidyl aminopeptidase-like protein 6 (DPP6) and contactin-associated protein-like 2 (CACNA2D1), the former participates in regulation of voltage-gated potassium channels, and the latter is one of the components in voltage-gated calcium channels. The deletion and duplication were not identified equal or beyond 100 kb, but 4 homologous DNA elements were verified proximal to the breakpoints. One of the proband's sisters inherited the same aberrant karyotype and experienced recurrent miscarriages and consecutive fetus death, while in contrast, another sister with a normal karyotype experienced normal labor and gave birth to healthy babies. The insertional translocation is confirmed with FISH and the Y-chromosome microdeletions were excluded by genetic testing. This is the first report describing chromosome insertion inv ins (18,7) and attributes DPP6 and CACNA2D1 to azoospermia.  相似文献   

15.
Moderate heat stress (40 °C, 30 min) on spinach thylakoids induced cleavage of the D1 protein, producing an N-terminal 23-kDa fragment, a C-terminal 9-kDa fragment, and aggregation of the D1 protein. A homologue of Arabidopsis FtsH2 protease, which is responsible for degradation of the damaged D1 protein, was abundant in the stroma thylakoids. Two processes occurred in the thylakoids in response to heat stress: dephosphorylation of the D1 protein in the stroma thylakoids, and aggregation of the phosphorylated D1 protein in the grana. Heat stress also induced the release of the extrinsic PsbO, P and Q proteins from Photosystem II, which affected D1 degradation and aggregation significantly. The cleavage and aggregation of the D1 protein appear to be two alternative processes influenced by protein phosphorylation/dephosphorylation, distribution of FtsH, and intactness of the thylakoids.  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号