首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Cloning sequences from the hairy gene of Drosophila.   总被引:5,自引:1,他引:4       下载免费PDF全文
A series of mutations that alter the pattern of segmentation in Drosophila embryos has been identified. Mutations in one of these loci, hairy, delete the posterior part of each odd-numbered segment and the anterior part of each even-numbered segment; although the amount deleted depends on the allele. Weak alleles delete less than an entire segment and do not always eliminate structures in every other segment. Strong alleles show the same periodicity in the pattern defect, but delete regions greater than one segment. In such cases the remaining parts of the pattern duplicate with mirror-image symmetry. To study the function of this gene at a molecular level, sequences from the hairy locus were cloned. This was facilitated by the hairy1 (h1) mutation, which is caused by the insertion of the transposable element, gypsy.  相似文献   

5.
We have isolated a novel basic helix-loop-helix (bHLH) gene homologous to the Drosophila proneural gene atonal, termed ATH-3, from Xenopus and mouse. ATH-3 is expressed in the developing nervous system, with high levels of expression in the brain, retina and cranial ganglions. Injection of ATH-3 RNA into Xenopus embryos dramatically expands the neural tube and induces ectopic neural tissues in the epidermis but inhibits non-neural development. This ATH-3-induced neural hyperplasia does not require cell division, indicating that surrounding cells which are normally non-neural types adopt a neural fate. In a Xenopus animal cap assay, ATH-3 is able to convert ectodermal cells into neurons expressing anterior markers without inducing mesoderm. Interestingly, a single amino acid change from Ser to Asp in the basic region, which mimics phosphorylation of Ser, severely impairs the anterior marker-inducing ability without affecting general neurogenic activities. These results provide evidence that ATH-3 can directly convert non-neural or undetermined cells into a neural fate, and suggest that the Ser residue in the basic region may be critical for the regulation of ATH-3 activity by phosphorylation.  相似文献   

6.
7.
8.
In Drosophila melanogaster mutant alleles of the segmentation gene wingless fall into two classes: winglessLethal mutations are embryonic lethals with a segment-polarity phenotype; the wingless1 mutation is viable when homozygous and produces a homeotic transformation in adults. This paper further describes the embryonic lethal phenotype, and also pole-cell transplants, experiments with a temperature-sensitive mutation, and clonal analysis with a winglessLethal mutation. It is argued that the wg gene is zygotically required after gastrulation for the normal patterning of each embryonic segment. The gene is still required in the larval stages, and the cell nonautonomy of this function supports the view that the wg gene product may be involved in intercellular signaling during development.  相似文献   

9.
10.
11.
Considerable evidence indicates an obligate partnership of the Drosophila melanogaster Vestigial (VG) and Scalloped (SD) proteins within the context of wing development. These two proteins interact physically and a 56-amino-acid motif within VG is necessary and sufficient for this binding. While the importance of this SD-binding domain has been clearly demonstrated both in vitro and in vivo, the remaining portions of VG have not been examined for in vivo function. Herein, additional regions within VG were tested for possible in vivo functions. The results identify two additional domains that must be present for optimal VG function as measured by the loss of ability to rescue vg mutants, to induce ectopic sd expression, and to perform other normal VG functions when they are deleted. An in vivo study such as this one is fundamentally important because it identifies domains of VG that are necessary in the cellular context in which wing development actually occurs. The results also indicate that an additional large portion of VG, outside of these two domains and the SD-binding domain, is dispensable in the execution of these normal VG functions.  相似文献   

12.
The development of the mature insect trachea requires a complex series of cellular events, including tracheal cell specification, cell migration, tubule branching, and tubule fusion. Here we describe the identification of the Drosophila melanogaster dysfusion gene, which encodes a novel basic helix-loop-helix (bHLH)-PAS protein conserved between Caenorhabditis elegans, insects, and humans, and controls tracheal fusion events. The Dysfusion protein functions as a heterodimer with the Tango bHLH-PAS protein in vivo to form a putative DNA-binding complex. The dysfusion gene is expressed in a variety of embryonic cell types, including tracheal-fusion, leading-edge, foregut atrium cells, nervous system, hindgut, and anal pad cells. RNAi experiments indicate that dysfusion is required for dorsal branch, lateral trunk, and ganglionic branch fusion but not for fusion of the dorsal trunk. The escargot gene, which is also expressed in fusion cells and is required for tracheal fusion, precedes dysfusion expression. Analysis of escargot mutants indicates a complex pattern of dysfusion regulation, such that dysfusion expression is dependent on escargot in the dorsal and ganglionic branches but not the dorsal trunk. Early in tracheal development, the Trachealess bHLH-PAS protein is present at uniformly high levels in all tracheal cells, but since the levels of Dysfusion rise in wild-type fusion cells, the levels of Trachealess in fusion cells decline. The downregulation of Trachealess is dependent on dysfusion function. These results suggest the possibility that competitive interactions between basic helix-loop-helix-PAS proteins (Dysfusion, Trachealess, and possibly Similar) may be important for the proper development of the trachea.  相似文献   

13.
14.
15.
16.
The use of Drosophila chromosomal rearrangements and transposon constructs involving the white gene reveals the existence of repressive chromatin domains that can spread over considerable genomic distances. One such type of domain is found in heterochromatin and is responsible for classical position-effect variegation. Another type of repressive domain is established, beginning at specific sequences, by complexes of Polycomb Group proteins. Such complexes, which normally regulate the expression of many genes, including the homeotic loci, are responsible for silencing, white gene variegation, pairing-dependent effects and insertional targeting.  相似文献   

17.
The gene para in Drosophila melanogaster encodes an α subunit of voltage-activated sodium channels, the presumed site of action of DDT and pyrethroid insecticides. We used an existing collection of Drosophila para mutants to examine the molecular basis of target-site resistance to pyrethroids and DDT. Six out of thirteen mutants tested were associated with a largely dominant, 10- to 30-fold increase in DDT resistance. The amino acid lesions associated with these alleles defined four sites in the sodium channel polypeptide where a mutational change can cause resistance: within the intracellular loop between S4 and S5 in homology domains I and III, within the pore region of homology domain III, and within S6 in homology domain III. Some of these sites are analogous with those defined by knockdown resistance (kdr) and super-kdr resistance-associated mutations in houseflies and other insects, but are located in different homologous units of the channel polypeptide. We find a striking synergism in resistance levels with particular heterozygous combinations of para alleles that appears to mimic the super-kdr double mutant housefly phenotype. Our results indicate that the alleles analyzed from natural populations represent only a subset of mutations that can confer resistance. The implications for the binding site of pyrethroids and mechanisms of target-site insensitivity are discussed.  相似文献   

18.
19.
20.
Significant progress has been made in defining the structural motifs that distinguish the muscle-specific from other basic helix-loop-helix proteins. Evidence is accumulating for multiple levels of regulation of the expression and action of the muscle basic helix-loop-helix factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号