首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of caspase-independent cell death by killer lymphocytes involves the serine protease granzyme A (GzmA). In this issue, Martinvalet et al. (2008) show that GzmA penetrates the mitochondrial matrix without perturbing normal mitochondrial functions. In the mitochondrial matrix, GzmA cleaves NDUFS3 (a component of the electron transport chain) leading to production of reactive oxygen species and ultimately to cell death.  相似文献   

2.
Quantification of random mutations in the mitochondrial genome   总被引:1,自引:0,他引:1  
Mitochondrial DNA (mtDNA) mutations contribute to the pathology of a number of age-related disorders, including Parkinson disease [A. Bender et al., Nat. Genet. 38 (2006) 515,Y. Kraytsberg et al., Nat. Genet. 38 (2006) 518], muscle-wasting [J. Wanagat, Z. Cao, P. Pathare, J.M. Aiken, FASEB J. 15 (2001) 322], and the metastatic potential of cancers [K. Ishikawa et al., Science 320 (2008) 661]. The impact of mitochondrial DNA mutations on a wide variety of human diseases has made it increasingly important to understand the mechanisms that drive mitochondrial mutagenesis. In order to provide new insight into the etiology and natural history of mtDNA mutations, we have developed an assay that can detect mitochondrial mutations in a variety of tissues and experimental settings [M. Vermulst et al., Nat. Genet. 40 (2008) 4, M. Vermulst et al., Nat. Genet. 39 (2007) 540]. This methodology, termed the Random Mutation Capture assay, relies on single-molecule amplification to detect rare mutations among millions of wild-type bases [J.H. Bielas, L.A. Loeb, Nat. Methods 2 (2005) 285], and can be used to analyze mitochondrial mutagenesis to a single base pair level in mammals.  相似文献   

3.
Walker SC  Engelke DR 《Cell》2008,135(3):412-414
In bacteria, archaea, and the eukaryote nucleus, the endonuclease ribonuclease P (RNase P) is composed of a catalytic RNA that is assisted by protein subunits. Holzmann et al. (2008) now provide evidence that the human mitochondrial RNase P is an entirely protein-based enzyme.  相似文献   

4.
Tanaka A  Youle RJ 《Molecular cell》2008,29(4):409-410
DRP1, a member of the dynamin family of large GTPases, mediates mitochondrial fission. In a recent issue of Developmental Cell, Cassidy-Stone et al. (2008) identified mdivi-1, a new DRP1 inhibitor that prevents mitochondria division and Bax-mediated mitochondrial outer membrane permeabilization during apoptosis.  相似文献   

5.
Bcl2 is the founding member of a family of proteins that regulates apoptosis by controlling mitochondrial outer membrane integrity. In this issue of Molecular Cell, Wang et al. (2008) propose another function for Bcl2: the inhibition of DNA repair by nonhomologous end-joining.  相似文献   

6.
Meisinger C  Sickmann A  Pfanner N 《Cell》2008,134(1):22-24
Mitochondria are central to cellular energetics, metabolism, and signaling. In this issue, Pagliarini et al. (2008) report the largest compendium of mammalian mitochondrial proteins to date. Together with proteomic studies in yeast, this study represents an important step toward the systematic characterization of the mitochondrial proteome and of mitochondrial diseases.  相似文献   

7.
Walsh S  Koehler CM 《Cell》2008,134(3):382-383
Most mitochondrial proteins are synthesized in the cytosol and imported into the mitochondrion via molecular machines called translocons on the outer and inner mitochondrial membranes. Alder et al. (2008b) examine protein translocation into intact mitochondria by adapting fluorescent techniques first used to study translocation in the endoplasmic reticulum.  相似文献   

8.
Semenza GL 《Cell》2008,134(2):206-208
In this issue, two papers implicate histone H3 lysine 56 acetylation in histone deposition in chromatin. Li et al. (2008) show that acetylation of H3K56 promotes S phase chromatin assembly that is mediated by the histone chaperones CAF-1 and Rtt106. Chen et al. (2008) establish that the acetylation mark promotes chromatin reassembly following DNA double-strand break repair.  相似文献   

9.
10.
In a recent publication (K. Ishikawa et al., 2008, Science320, 661-664), the authors described how replacing the endogenous mitochondrial DNA (mtDNA) in a weakly metastatic mouse tumor cell line with mtDNA from a highly metastatic cell line enhanced tumor progression through enhanced production of reactive oxygen species (ROS). The authors attributed the transformation from a low-metastatic cell line to a high-metastatic phenotype to overproduction of ROS (hydrogen peroxide and superoxide) caused by a dysfunction in mitochondrial complex I protein encoded by mtDNA transferred from the highly metastatic tumor cell line. In this critical evaluation, using the paper by Ishikawa et al. as an example, we bring to the attention of researchers in the free radical field how the failure to appreciate the complexities of dye chemistry could potentially lead to pitfalls, misinterpretations, and erroneous conclusions concerning ROS involvement. Herein we make a case that the authors have failed to show evidence for formation of superoxide and hydrogen peroxide, presumed to be generated from complex I deficiency associated with mtDNA mutations in metastatic cells.  相似文献   

11.
Le Hir H  Séraphin B 《Cell》2008,133(2):213-216
In mammalian cells, the splicing machinery deposits the exon junction complex (EJC) on mRNA splice junctions. Two studies in this issue now link the EJC to different aspects of translational control. Ma et al. (2008) show that the EJC activates translation downstream of the mTOR signaling pathway, whereas Isken et al. (2008) establish that translation is repressed by partners of the EJC that are implicated in nonsense mediated decay (NMD).  相似文献   

12.
Elevated fatty acids promote inflammation and insulin resistance. In this issue of Cell Metabolism, Koves et al. (2008) explore a novel paradigm suggesting that beta-oxidation of fatty acids exceeding the capacity of the tricarboxylic acid cycle yields incomplete fat oxidation and mitochondrial distress, obligatory events in the pathogenesis of insulin resistance.  相似文献   

13.
Singer RH 《Cell》2008,134(5):722-723
Two new studies reveal the role of microtubule polarity in the asymmetric localization of mRNAs. In this issue of Cell, Zimyanin et al. (2008) show that the asymmetric localization of oskar mRNA in fruit fly oocytes results from a slight bias in the direction of its transport. Meanwhile, Messitt et al. (2008) reporting in Developmental Cell find a subpopulation of microtubules that is critical for the asymmetric distribution of Vg1 mRNA in frog oocytes.  相似文献   

14.
Stamler JS  Sun QA  Hess DT 《Cell》2008,133(1):33-35
Dysregulated S-nitrosylation of proteins characterizes a broad array of human disorders, but its role in disease etiology is not well understood. Two new studies (Durham et al., 2008; Bellinger et al., 2008) now show that hyper-S-nitrosylation of the ryanodine receptor calcium release channel (RyR1) in skeletal muscle disrupts calcium ion flux. This disruption underlies the impaired contractility and cellular damage of skeletal muscle during strenuous exercise and in a spectrum of congenital muscle disorders including malignant hyperthermia.  相似文献   

15.
Acilan C  Saunders WS 《Cell》2008,134(4):572-575
Having the correct number of centrosomes is crucial for proper chromosome segregation during cell division and for the prevention of aneuploidy, a hallmark of many cancer cells. Several recent studies (Basto et al., 2008; Kwon et al., 2008; Yang et al., 2008) reveal the importance of mechanisms that protect against the consequences of harboring too many centrosomes.  相似文献   

16.
Clark AG 《Cell》2008,134(3):388-389
Next-generation sequencing methods use massively parallel detection of short sequencing reactions, making them ideal for the analysis of ancient DNA. In this issue, Green et al. (2008) exploit this feature to infer the complete mitochondrial genome sequence of one Neanderthal and place bounds on its time of common ancestry with modern humans.  相似文献   

17.
OPA1 and PARL keep a lid on apoptosis   总被引:4,自引:0,他引:4  
Gottlieb E 《Cell》2006,126(1):27-29
A change in the shape of mitochondrial cristae must take place to attain rapid and complete release of cytochrome c during apoptosis. In this issue of Cell, Cipolat et al. and Frezza et al. (2006) show that a rhomboid intramembrane protease PARL and a dynamin-related protein OPA1 are critical regulators of cristae remodeling.  相似文献   

18.
Cardiolipin (CL) is an anionic phospholipid with a dimeric structure predominantly localized in the mitochondrial inner membrane, where it is closely associated with mitochondrial function, biogenesis, and genome stability (Daum, 1985; Janitor and Subik, 1993; Jiang et al., 2000; Schlame et al., 2000; Zhong et al., 2004). Previous studies have shown that yeast mutant cells lacking CL due to a disruption in CRD1, the structural gene encoding CL synthase, exhibit defective colony formation at elevated temperature even on glucose medium (Jiang et al., 1999; Zhong et al., 2004), suggesting a role for CL in cellular processes apart from mitochondrial bioenergetics. In the current study, we present evidence that the crd1Delta mutant exhibits severe vacuolar defects, including swollen vacuole morphology and loss of vacuolar acidification, at 37 degrees C. Moreover, vacuoles from crd1Delta show decreased vacuolar H(+)-ATPase activity and proton pumping, which may contribute to loss of vacuolar acidification. Deletion mutants in RTG2 and NHX1, which mediate vacuolar pH and ion homeostasis, rescue the defective colony formation phenotype of crd1Delta, strongly suggesting that the temperature sensitivity of crd1Delta is a consequence of the vacuolar defects. Our results demonstrate the existence of a novel mitochondria-vacuole signaling pathway mediated by CL synthesis.  相似文献   

19.
Calcium homeostasis is central to all cellular functions and has been studied for decades. Calcium acts as a critical second messenger for both extracellular and intracellular signaling and is fundamental in cell life and death decisions (Berridge et al., 2000) [1]. The calcium gradient in the cell is coupled with an inherent ability of the divalent cation to reversibly bind multiple target biological molecules to generate an extremely versatile signaling system [2]. Calcium signals are used by the cell to control diverse processes such as development, neurotransmitter release, muscle contraction, metabolism, autophagy and cell death. “Cellular calcium overload” is detrimental to cellular health, resulting in massive activation of proteases and phospholipases leading to cell death (Pinton et al., 2008) [3]. Historically, cell death associated with calcium ion perturbations has been primarily recognized as necrosis. Recent evidence clearly associates changes in calcium ion concentrations with more sophisticated forms of cellular demise, including apoptosis (Kruman et al., 1998; Tombal et al., 1999; Lynch et al., 2000; Orrenius et al., 2003) , ,  and . Although the endoplasmic reticulum (ER) serves as the primary calcium store in the metazoan cell, dynamic calcium release to the cytosol, mitochondria, nuclei and other organelles orchestrate diverse coordinated responses. Most evidence supports that calcium transport from the ER to mitochondria plays a significant role in regulating cellular bioenergetics, production of reactive oxygen species, induction of autophagy and apoptosis. Recently, molecular identities that mediate calcium traffic between the ER and mitochondria have been discovered (Mallilankaraman et al., 2012a; Mallilankaraman et al., 2012b; Sancak et al., 2013)[8–10]. The next questions are how they are regulated for exquisite tight control of ER–mitochondrial calcium dynamics. This review attempts to summarize recent advances in the role of calcium in regulation of ER and mitochondrial function. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

20.
Mutations in Parkin or PINK1 are the most common cause of recessive familial parkinsonism. Recent studies suggest that PINK1 and Parkin form a mitochondria quality control pathway that identifies dysfunctional mitochondria, isolates them from the mitochondrial network, and promotes their degradation by autophagy. In this pathway the mitochondrial kinase PINK1 senses mitochondrial fidelity and recruits Parkin selectively to mitochondria that lose membrane potential. Parkin, an E3 ligase, subsequently ubiquitinates outer mitochondrial membrane proteins, notably the mitofusins and Miro, and induces autophagic elimination of the impaired organelles. Here we review the recent rapid progress in understanding the molecular mechanisms of PINK1- and Parkin-mediated mitophagy and the identification of Parkin substrates suggesting how mitochondrial fission and trafficking are involved. We also discuss how defects in mitophagy may be linked to Parkinson''s disease.Parkinson''s disease (PD) is the second most common neurodegenerative disorder and is characterized by cardinal motor symptoms: slowness of movement, rigidity, rest tremor, and postural instability (Ropper et al. 2009). Although these symptoms initially respond to drugs that modulate dopamine metabolism or surgeries that alter basal ganglia circuitry, the disease eventually progresses. With a modest exception (Olanow et al. 2009), no therapy has been shown to alter the disease course.The pathogenesis of sporadic Parkinson''s disease is likely complex involving altered metabolism of the protein α-synuclein, lysosomal dysfunction, and a dysregulated inflammatory response (reviewed in Shulman et al. 2011). Several lines of evidence also point to mitochondrial dysfunction as a central player in the pathogenesis of PD. Complex I dysfunction is associated with sporadic PD and is sufficient to induce parkinsonism (reviewed in Schapira 2008). The inhibitors of complex I, MPTP (Langston et al. 1983) and rotenone (Betarbet et al. 2000), replicate the symptoms of PD, and rotenone recapitulates key pathognomonic features of PD, such as the α-synuclein-rich inclusion bodies (Betarbet et al. 2000). The cause of mitochondrial dysfunction in sporadic PD is not entirely clear, but laser capture microdissection of substantia nigra neurons from patients with PD reveal a higher burden of mitochondrial DNA deletions relative to age-matched controls (Bender et al. 2006). That such deletions are sufficient to cause parkinsonism is suggested by the occurrence of parkinsonism in patients with rare mutations in their mtDNA replication machinery (e.g., the catalytic subunit of the mtDNA polymerase POLG [Luoma et al. 2004] or the mtDNA helicase Twinkle [Baloh et al. 2007]). The defective mtDNA replicative machinery generates high levels of mtDNA deletions throughout the body that are qualitatively similar to those observed in the substantia nigra in patients with sporadic PD (Reeve et al. 2008). Thus, mitochondrial dysfunction is both associated with sporadic PD and sufficient to cause the parkinsonian syndrome.As is discussed in this review, recent insights from certain genetic forms of PD—resulting from mutations in Parkin or PINK1—support the model that mitochondrial damage is a central driver of PD pathogenesis. Additionally, they provide a rationale for targeting mitochondrial quality control pathways in patients with PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号