首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sankar Subramanian 《Genetics》2013,193(3):995-1002
Previous studies observed a higher ratio of divergences at nonsynonymous and synonymous sites (ω = dN/dS) in species with a small population size compared to that estimated for those with a large population size. Here we examined the theoretical relationship between ω, effective population size (Ne), and selection coefficient (s). Our analysis revealed that when purifying selection is high, ω of species with small Ne is much higher than that of species with large Ne. However the difference between the two ω reduces with the decline in selection pressure (s → 0). We examined this relationship using primate and rodent genes and found that the ω estimated for highly constrained genes of primates was up to 2.9 times higher than that obtained for their orthologous rodent genes. Conversely, for genes under weak purifying selection the ω of primates was only 17% higher than that of rodents. When tissue specificity was used as a proxy for selection pressure we found that the ω of broadly expressed genes of primates was up to 2.1-fold higher than that of their rodent counterparts and this difference was only 27% for tissue specific genes. Since most of the nonsynonymous mutations in constrained or broadly expressed genes are deleterious, fixation of these mutations is influenced by Ne. This results in a higher ω of these genes in primates compared to those from rodents. Conversely, the majority of nonsynonymous mutations in less-constrained or tissue-specific genes are neutral or nearly neutral and therefore fixation of them is largely independent of Ne, which leads to the similarity of ω in primates and rodents.  相似文献   

2.
The variation in gene frequency among populations or between generations within a population is a result of breeding structure and selection. But breeding structure should affect all loci and alleles in the same way. If there is significant heterogeneity between loci in their apparent inbreeding coefficients F=sp2/p(1-p), this heterogeneity may be taken as evidence for selection. We have given the statistical properties of F and shown how tests of heterogeneity can be made. Using data from human populations we have shown highly significant heterogeneity in F values for human polymorphic genes over the world, thus demonstrating that a significant fraction of human polymorphisms owe their current gene frequencies to the action of natural selection. We have also applied the method to temporal variation within a population for data on Dacus oleae and have found no significant evidence of selection.  相似文献   

3.
Li H  Stephan W 《PLoS genetics》2006,2(10):e166
An important goal of population genetics is to determine the forces that have shaped the pattern of genetic variation in natural populations. We developed a maximum likelihood method that allows us to infer demographic changes and detect recent positive selection (selective sweeps) in populations of varying size from DNA polymorphism data. Applying this approach to single nucleotide polymorphism data at more than 250 noncoding loci on the X chromosome of Drosophila melanogaster from an (ancestral) African population and a (derived) European, we found that the African population expanded about 60,000 y ago and that the European population split off from the African lineage about 15,800 y ago, thereby suffering a severe population size bottleneck. We estimated that about 160 beneficial mutations (with selection coefficients s between 0.05% and 0.5%) were fixed in the euchromatic portion of the X in the African population since population size expansion, and about 60 mutations (with s around 0.5%) in the diverging European lineage.  相似文献   

4.
Comparative genomic studies suggest that a huge number of genes that show the strongest evidence for positive selection in human are testis- or sperm-specific genes, which are possibly due to germline selection. We propose a novel selection model in which the germlines of heterozygous males in a monogamous population are under natural selection. Under this model, we study the dynamics of a strongly selected substitution in the male germline and its hitch-hiking effect on the preexisting linked neutral polymorphism. We show that the expected heterozygosity at the neural locus is reduced by , where c is the recombination rate between selected and neutral locus, s is selective coefficient of advantageous allele, and N is diploid effective population size.  相似文献   

5.
We explored single nucleotide polymorphism (SNP) variation in candidate genes for bud burst from Quercus petraea populations sampled along gradients of latitude and altitude in Western Europe. SNP diversity was monitored for 106 candidate genes, in 758 individuals from 32 natural populations. We investigated whether SNP variation reflected the clinal pattern of bud burst observed in common garden experiments. We used different methods to detect imprints of natural selection (FST outlier, clinal variation at allelic frequencies, association tests) and compared the results obtained for the two gradients. FST outlier SNPs were found in 15 genes, 5 of which were common to both gradients. The type of selection differed between the two gradients (directional or balancing) for 3 of these 5. Clinal variations were observed for six SNPs, and one cline was conserved across both gradients. Association tests between the phenotypic or breeding values of trees and SNP genotypes identified 14 significant associations, involving 12 genes. The results of outlier detection on the basis of population differentiation or clinal variation were not very consistent with the results of association tests. The discrepancies between these approaches may reflect the different hierarchical levels of selection considered (inter- and intrapopulation selection). Finally, we obtained evidence for convergent selection (similar for gradients) and clinal variation for a few genes, suggesting that comparisons between parallel gradients could be used to screen for major candidate genes responding to natural selection in trees.  相似文献   

6.
Selection of the most stable reference gene is critical for a reliable interpretation of gene expression data using RT-PCR. In order so, 17 commonly used genes were analyzed in Wistar rat duodenum, jejunum, ileum and liver following a fat gavage and at two time periods. These reference genes were also tested in liver from Zucker (fa/fa) on a long-term dietary trial. Four strategies were used to select the most suitable reference gene for each tissue: ranking according to biological coefficient of variation and further validation by statistical comparison among groups, geNorm, NormFinder and BestKeeper programs. No agreement was observed among these approaches for a particular gene, nor a common gene for all tissues. Furthermore we demonstrated that normalising using an inadequate reference conveyed into false negative and positive results. The selection of genes provided by BestKeeper resulted in more reliable results than the other statistical packages. According to this program, Tbp, Ubc, Hprt and Rn18s were the best reference genes for duodenum, jejunum, ileum and liver, respectively following a fat gavage in Wistar rats and Rn18s for liver in another rat strain on a long-term dietary intervention. Therefore, BestKeeper is highly recommendable to select the most stable gene to be used as internal standard and the selection of a specific reference expression gene requires a validation for each tissue and experimental design.  相似文献   

7.
The experimental population genetics of Y-chromosome drive in Drosophila melanogaster is approximated by studying the behavior of T(Y;2),SD lines. These exhibit "pseudo-Y" drive through the effective coupling of the Y chromosome to the second chromosome meiotic drive locus, Segregation distorter (SD). T(Y;2),SD males consequently produce only male offspring. When such lines are allowed to compete against structurally normal SD+ flies in population cages, T(Y;2),SD males increase in frequency according to the dynamics of a simple haploid selection model until the cage population is eliminated as a result of a deficiency in the number of adult females. Cage population extinction generally occurs within about seven generations.—Several conclusions can be drawn from these competition cage studies:

(1) Fitness estimates for the T(Y;2),SD lines (relative to SD+ ) are generally in the range of 2–4, and these values are corroborated by independent estimates derived from studies of migration-selection equilibrium.

(2) Fitness estimates are unaffected by cage replication, sample time, or the starting frequency of T(Y;2),SD males, indicating that data from diverse cages can be legitimately pooled to give an overall fitness estimate.

(3) Partitioning of the T(Y;2),SD fitnesses into components of viability, fertility, and frequency of alternate segregation (Y + SD from X + SD+) suggests that most of the T(Y;2),SD advantage derives from the latter two components. Improvements in the system might involve increasing both the viability and the alternate segregation to increase the total fitness.

While pseudo-Y drive operates quite effectively against laboratory stocks, it is less successful in eliminating wild-type populations which are already segregating for suppressors of SD action. This observation suggests that further studies into the origin and rate of accumulation of suppressors of meiotic drive are needed before an overall assessment can be made of the potential of Y-chromosome drive as a tool for population control.

  相似文献   

8.
The advantage or disadvantage of sexual reproduction or recombination for the accumulation of mutant genes in a population is studied under the joint effects of recurrent mutations, selection, and random sampling drift. To obtain the rate at which mutant genes are incorporated three different methods are used; numerical integration of Kolmogorov backward equations, simulation of stochastic difference equations, and Monte Carlo experiments. The first two methods are used in a two-locus system to obtain the fixation probability of double mutants and other related quantities under five different selection models. The third one is conducted for a multiple-locus system and the rate of accumulation of mutant genes per locus is studied. Comparison of the results between sexual and asexual populations shows that the effect of recombination depends on initial linkage disequilibrium, mutation rate v, selection intensity s, and population size Ne. The mode of selection is also an important factor and the large effect of recombination is observed when mutant genes are individually deleterious but collectively favorable. Under a given model of selection, the great advantage or disadvantage of recombination is achieved when a large extent of genetic polymorphism is produced not by mutation but by recombination. Extreme values of Nes and Nev make the effect insignificant. The results of Monte Carlo experiments also reveal the presence of interaction between selection and sampling drift even when the loci segregate independently and selection is multiplicative. Although this interaction is usually small, there are cases in which one locus theory cannot be used freely. In those cases, the effect of recombination is prominent and one locus theory gives an overestimate of the rate.  相似文献   

9.
Quantifying the distribution of fitness effects among newly arising mutations in the human genome is key to resolving important debates in medical and evolutionary genetics. Here, we present a method for inferring this distribution using Single Nucleotide Polymorphism (SNP) data from a population with non-stationary demographic history (such as that of modern humans). Application of our method to 47,576 coding SNPs found by direct resequencing of 11,404 protein coding-genes in 35 individuals (20 European Americans and 15 African Americans) allows us to assess the relative contribution of demographic and selective effects to patterning amino acid variation in the human genome. We find evidence of an ancient population expansion in the sample with African ancestry and a relatively recent bottleneck in the sample with European ancestry. After accounting for these demographic effects, we find strong evidence for great variability in the selective effects of new amino acid replacing mutations. In both populations, the patterns of variation are consistent with a leptokurtic distribution of selection coefficients (e.g., gamma or log-normal) peaked near neutrality. Specifically, we predict 27–29% of amino acid changing (nonsynonymous) mutations are neutral or nearly neutral (|s|<0.01%), 30–42% are moderately deleterious (0.01%<|s|<1%), and nearly all the remainder are highly deleterious or lethal (|s|>1%). Our results are consistent with 10–20% of amino acid differences between humans and chimpanzees having been fixed by positive selection with the remainder of differences being neutral or nearly neutral. Our analysis also predicts that many of the alleles identified via whole-genome association mapping may be selectively neutral or (formerly) positively selected, implying that deleterious genetic variation affecting disease phenotype may be missed by this widely used approach for mapping genes underlying complex traits.  相似文献   

10.
Obligate endosymbioses are tight associations between symbionts and the hosts they live inside. Hosts and their associated obligate endosymbionts generally exhibit codiversification, which has been documented in taxonomically diverse insect lineages. Host demography (e.g., effective population sizes) may impact the demography of endosymbionts, which may lead to an association between host demography and the patterns and processes of endosymbiont molecular evolution. Here, we used whole‐genome sequencing data for carpenter ants (Genus Camponotus; subgenera Camponotus and Tanaemyrmex) and their Blochmannia endosymbionts as our study system to address whether Camponotus demography shapes Blochmannia molecular evolution. Using whole‐genome phylogenomics, we confirmed previous work identifying codiversification between carpenter ants and their Blochmannia endosymbionts. We found that Blochmannia genes have evolved at a pace ~30× faster than that of their hosts'' molecular evolution and that these rates are positively associated with host rates of molecular evolution. Using multiple tests for selection in Blochmannia genes, we found signatures of positive selection and shifts in selection strength across the phylogeny. Host demography was associated with Blochmannia shifts toward increased selection strengths, but not associated with Blochmannia selection relaxation, positive selection, genetic drift rates, or genome size evolution. Mixed support for relationships between host effective population sizes and Blochmannia molecular evolution suggests weak or uncoupled relationships between host demography and Blochmannia population genomic processes. Finally, we found that Blochmannia genome size evolution was associated with genome‐wide estimates of genetic drift and number of genes with relaxed selection pressures.  相似文献   

11.
Sexual selection is measured between two strains of Drosophila melanogaster: a wild strain and a strain mutant at the sepia locus. Frequency-dependent male mating was found to be successful, whereas the female genotype exerted no influence. The rarer the male genotype becomes, the greater is its mating success. A selection model is built for this behavior characteristic in which selection operates differently in the two sexes. The genetic consequencies of this model upon the maintenance of genetic polymorphism at the sepia locus are compared to experimental data from previous population cage studies. The fit obtained with this sexual selection model is compared to that of the larvel selection model previously investigated. A model composed of both sexual and larval components of fitness is presented. The role that each major selection component is expected to play in experimental populations as the gene frequency changes is discussed. Sexual selection leads to an equilibrium level higher than larval selection, and the combined model is very close to the experimental values.  相似文献   

12.
Phenotypic variants of Pseudomonas fluorescens F113 showing a translucent and diffuse colony morphology show enhanced colonization of the alfalfa rhizosphere. We have previously shown that in the biocontrol agent P. fluorescens F113, phenotypic variation is mediated by the activity of two site-specific recombinases, Sss and XerD. By overexpressing the genes encoding either of the recombinases, we have now generated a large number of variants (mutants) after selection either by prolonged laboratory cultivation or by rhizosphere passage. All the isolated variants were more motile than the wild-type strain and appear to contain mutations in the gacA and/or gacS gene. By disrupting these genes and complementation analysis, we have observed that the Gac system regulates swimming motility by a repression pathway. Variants isolated after selection by prolonged cultivation formed a single population with a swimming motility that was equal to the motility of gac mutants, being 150% more motile than the wild type. The motility phenotype of these variants was complemented by the cloned gac genes. Variants isolated after rhizosphere selection belonged to two different populations: one identical to the population isolated after prolonged cultivation and the other comprising variants that besides a gac mutation harbored additional mutations conferring higher motility. Our results show that gac mutations are selected both in the stationary phase and during rhizosphere colonization. The enhanced motility phenotype is in turn selected during rhizosphere colonization. Several of these highly motile variants were more competitive than the wild-type strain, displacing it from the root tip within 2 weeks.  相似文献   

13.
Modern agriculture favours the selection and spread of novel plant diseases. Furthermore, crop genetic resistance against pathogens is often rendered ineffective within a few years of its commercial deployment. Leptosphaeria maculans, the cause of phoma stem canker of oilseed rape, develops gene-for-gene interactions with its host plant, and has a high evolutionary potential to render ineffective novel sources of resistance in crops. Here, we established a four-year field experiment to monitor the evolution of populations confronted with the newly released Rlm7 resistance and to investigate the nature of the mutations responsible for virulence against Rlm7. A total of 2551 fungal isolates were collected from experimental crops of a Rlm7 cultivar or a cultivar without Rlm7. All isolates were phenotyped for virulence and a subset was genotyped with neutral genetic markers. Virulent isolates were investigated for molecular events at the AvrLm4-7 locus. Whilst virulent isolates were not found in neighbouring crops, their frequency had reached 36% in the experimental field after four years. An extreme diversity of independent molecular events leading to virulence was identified in populations, with large-scale Repeat Induced Point mutations or complete deletion of AvrLm4-7 being the most frequent. Our data suggest that increased mutability of fungal genes involved in the interactions with plants is directly related to their genomic environment and reproductive system. Thus, rapid allelic diversification of avirulence genes can be generated in L. maculans populations in a single field provided that large population sizes and sexual reproduction are favoured by agricultural practices.  相似文献   

14.
Large-scale comparison of sequence polymorphism and divergence at numerous genomic loci within and between closely related species can reveal signatures of natural selection. Here, we present a population genomics study based on direct sequencing of 61 mitotic cell cycle genes from 30 Arabidopsis thaliana accessions and comparison of the resulting data to the close relative Arabidopsis lyrata. We found that the Arabidopsis core cell cycle (CCC) machinery is not highly constrained but is subject to different modes of selection. We found patterns of purifying selection for the cyclin-dependent kinase (CDK), CDK subunit, retinoblastoma, and WEE1 gene families. Other CCC gene families often showed a mix of one or two constrained genes and relaxed purifying selection on the other genes. We found several large effect mutations in CDKB1;2 that segregate in the species. We found a strong signature of adaptive protein evolution in the Kip-related protein KRP6 and departures from equilibrium at CDKD;1 and CYCA3;3 consistent with the operation of selection in these gene regions. Our data suggest that within Arabidopsis, the genetic robustness of cell cycle–related processes is more due to functional redundancy than high selective constraint.  相似文献   

15.
Maruyama T  Nei M 《Genetics》1981,98(2):441-459
Mathematical properties of the overdominance model with mutation and random genetic drift are studied by using the method of stochastic differential equations (Itô and McKean 1974). It is shown that overdominant selection is very powerful in increasing the mean heterozygosity as compared with neutral mutations, and if 2Ns (N = effective population size; s = selective disadvantage for homozygotes) is larger than 10, a very low mutation rate is sufficient to explain the observed level of allozyme polymorphism. The distribution of heterozygosity for overdominant genes is considerably different from that of neutral mutations, and if the ratio of selection coefficient (s) to mutation rate (ν) is large and the mean heterozygosity (h) is lower than 0.2, single-locus heterozygosity is either approximately 0 or 0.5. If h increases further, however, heterozygosity shows a multiple-peak distribution. Reflecting this type of distribution, the relationship between the mean and variance of heterozygosity is considerably different from that for neutral genes. When s/v is large, the proportion of polymorphic loci increases approximately linearly with mean heterozygosity. The distribution of allele frequencies is also drastically different from that of neutral genes, and generally shows a peak at the intermediate gene frequency. Implications of these results on the maintenance of allozyme polymorphism are discussed.  相似文献   

16.
Using a classical population genetic model, the necessary conditions for the spread of genes that determine social behaviors and the rate of spread of these genes are derived. The influence of 1, 2, 3, or k inseminations per female on these conditions is investigated for both diploid and haplodiploid organisms. These results are then extended to a population in which there are arbitrary variations among females in their numbers of mates. These results do not depend upon assuming equal paternity by all inseminating males; the effects of sperm competition and unequal paternity are also derived. The rates and conditions for social evolution in these groups of complex composition are discussed in relation to Hamilton's rule.For all models, the total change in gene frequency, Δq, is partitioned into two components: (1) ΔqI, the change in gene frequency caused by selection within groups; this component is always negative, illustrating that individual selection always operates against the evolution of social behaviors; and (2) ΔqG, the change in gene frequency caused by selection between groups; this component is generally positive. Hamilton's rule is shown to specify the necessary and sufficient conditions for ΔqG > |ΔqI|, that is, for selection among kin groups to over-ride individual selection within kin groups.  相似文献   

17.
The probability that the fitter of two alleles will increase in frequency in a population goes up as the product of N (the effective population size) and s (the selection coefficient) increases. Discovering the distribution of values for this product across different alleles in different populations is a very important biological task. However, biologists often use the product Ns to define a different concept; they say that drift “dominates” selection or that drift is “stronger than” selection when Ns is much smaller than some threshold quantity (e.g., ½) and that the reverse is true when Ns is much larger than that threshold. We argue that the question of whether drift dominates selection for a single allele in a single population makes no sense. Selection and drift are causes of evolution, but there is no fact of the matter as to which cause is stronger in the evolution of any given allele.  相似文献   

18.
19.
A major goal in evolutionary biology is to understand the origins and fates of adaptive mutations. Natural selection may act to increase the frequency of de novo beneficial mutations, or those already present in the population as standing genetic variation. These beneficial mutations may ultimately reach fixation in a population, or they may stop increasing in frequency once a particular phenotypic state has been achieved. It is not yet well understood how different features of population biology, and/or different environmental circumstances affect these adaptive processes. Experimental evolution is a promising technique for studying the dynamics of beneficial alleles, as populations evolving in the laboratory experience natural selection in a replicated, controlled manner. Whole-genome sequencing, regularly obtained over the course of sustained laboratory selection, could potentially reveal insights into the mutational dynamics that most likely occur in natural populations under similar circumstances. To date, only a few evolution experiments for which whole-genome data are available exist. This review describes results from these resequenced laboratory-selected populations, in systems with and without sexual recombination. In asexual systems, adaptation from new mutations can be studied, and results to date suggest that the complete, unimpeded fixation of these mutations is not always observed. In sexual systems, adaptation from standing genetic variation can be studied, and in the admittedly few examples we have, the complete fixation of standing variants is not always observed. To date, the relative frequency of adaptation from new mutations versus standing variation has not been tested using a single experimental system, but recent studies using Caenorhabditis elegans and Saccharomyces cerevisiae suggest that this a realistic future goal.  相似文献   

20.
The aims of this study were to determine (i) whether adaptation under strong selection occurred through mutations in a narrow target of one or a few nucleotide sites or a broad target of numerous sites and (ii) whether the programs of adaptation previously observed from three experimental populations were unique or shared among populations that underwent parallel evolution. We used archived population samples from a previous study, representing 500 generations of experimental evolution in 12 populations under strong selection, 6 populations in a high-salt environment and 6 populations in a low-glucose environment. Each set of six populations included four with sexual reproduction and two with exclusively asexual reproduction. Populations were sampled as resequenced genomes of 115 individuals and as bulk samples from which frequencies of mutant alleles were estimated. In a high-salt environment, a broad target of 11 mutations within the proton exporter, PMA1, was observed among the six populations, in addition to expansions of the ENA gene cluster. This pattern was shared among populations that underwent parallel evolution. In a low-glucose environment, two programs of adaptation were observed. The originally observed pattern of mutation in MDS3/MKT1 in population M8 was a narrow target of a single nucleotide, unique to this population. Among the other five populations, the three mutations were shared in a broad target, sensing/signaling genes RAS1 and RAS2. RAS1/RAS2 mutations were not observed in the high-salt populations; PMA1 mutations were observed only in a high-salt environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号