首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
cAR1, the cAMP receptor expressed normally during the early aggregation stage of the Dictyostelium developmental program, has been expressed during the growth stage, when only low amounts of endogenous receptors are present. Transformants expressing cAR1 have 7-40 times over growth stage and 3-5-fold over aggregation stage levels of endogenous receptors. The high amounts of cAR1 protein expressed constitutively throughout early development did not drastically disrupt the developmental program; the onset of aggregation was delayed by 1-3 h, and then subsequent stages proceeded normally. The affinity of the expressed cAR1 was similar to that of the endogenous receptors in aggregation stage cells when measured either in phosphate buffer (two affinity states with Kd's of approximately 30 and 300 nM) or in 3 M ammonium sulfate (one affinity state with a Kd of 2-3 nM). When expressed during growth, cAR1 did not appear to couple to its normal effectors since these cells failed to carry out chemotaxis or to elevate cGMP or cAMP levels when stimulated with cAMP. However, cAMP stimulated phosphorylation, and loss of ligand binding of cAR1 did occur. Like aggregation stage control cells, the cAR1 protein shifted in apparent molecular mass from 40 to 43 kDa and became highly phosphorylated when exposed to cAMP. In addition, the number of surface cAMP binding sites in cAR1 cells was reduced by over 80% during prolonged cAMP stimulation. These results define a useful system to express altered cAR1 proteins and examine their regulatory functions.  相似文献   

2.
Dictyostelium discoideum cells contain a heterogeneous population of cell surface cAMP receptors with components possessing different affinities (Kd between 15 and 450 nM) and different off-rates of the cAMP-receptor complex (t 1/2 between 0.7 and 150 s). The association of cAMP to the receptor and the dissociation of the cAMP-receptor complex still occur in the presence of 3.4 M ammonium sulfate. However, these processes are strongly altered. (1) Low concentrations of ammonium sulfate (approximately equal to 50 mM) induce an approx. 2-fold increase of the number of cAMP binding sites. The same effect is induced by millimolar concentrations of CaCl2. Ammonium sulfate and CaCl2 are not additive, which suggests that these salts may act via the same mechanism. (2) High concentrations of ammonium sulfate (3.4 M) induce an alteration in the proportioning of the various cAMP binding sites to the components with the highest affinity. (3) High concentrations of ammonium sulfate (3.4 M) retard the dissociation of all binding sites about 3-6-fold, thus giving rise to an increase in the affinity of all cAMP-binding components.  相似文献   

3.
We have previously reported that extracellular cAMP induced a reversible shift, from apparent Mr = 40,000 to 43,000, in the electrophoretic mobility of a polypeptide identified by photoaffinity labeling with [32P]8-N3-cAMP as the cAMP receptor of Dictyostelium (Klein, P., Theibert, A., Fontana, D., and Devreotes, P. (1985) J. Biol. Chem. 260, 1757-1764). In this report, we examine the kinetics and concentration dependence of this stimulus-induced receptor modification. Prior to stimulation, 90% of the receptors migrated as the higher mobility form (Mr = 40,000) and 10% as the lower mobility form (Mr = 43,000). Following 15 min of persistent stimulation with 1 microM cAMP, the per cent of receptors migrating as the lower mobility form rose to 80%. This transition occurred with a half-time of 2.5 min. Removal of the stimulus initiated a return to the basal state which occurred with a half-time of about 6 min at 22 degrees C. No reversal occurred at 0 degrees C. Addition and removal of a 50 nM cAMP stimulus induced transitions with similar kinetics, but the final plateau value reached was only 40% lower mobility form. The stimulus concentration which induced 50% of the maximal transition from higher to lower mobility forms at steady state was 27 nM, similar to the KD for [3H]cAMP binding. Scatchard analysis of [3H]cAMP binding indicated that, although a 20% down-regulation occurs during cAMP stimulation, there is no significant difference in the affinities of the higher and lower mobility forms of the receptor. The unoccupied higher and lower mobility forms of the receptor, designated R and D, are considered to be in rapid equilibrium with liganded forms, designated RL and DL. The rate constants for interconversion of the receptor forms R (Formula: see text) D and RL (Formula: see text) DL were calculated from the kinetic data: k1 = 0.012, k-1 = 0.104, k2 = 0.222, and k-2 = 0.055. The interconversion steps are not at equilibrium, suggesting that an energy expenditure occurs during the receptor modification. The pattern of modulation of the cAMP-induced receptor modification suggests that it may be the biochemical mechanism of adaptation.  相似文献   

4.
Dictyostelium discoideum cells contain a heterogeneous population of cell surface cAMP receptors with components possessing different affinities (Kd between 15 and 450 nM) and different off-rates of the cAMP-receptor complex (t12 between 0.7 and 150 s). The association of cAMP to the receptor and the dissociation of the cAMP-receptor complex still occur in the presence of 3.4 M ammonium sulfate. However, these processes are strongly altered. (1) Low concentrations of ammonium sulfate (≈ 50 mM) induce an approx. 2-fold increase of the number of cAMP binding sites. The same effect is induced by millimolar concentrations of CaCl2. Ammonium sulfate and CaCl2 are not additive, which suggests that these salts may act via the same mechanism. (2) High concentrations of ammonium sulfate (3.4 M) induce an alteration in the proportioning of the various cAMP binding sites to the components with the highest affinity. (3) High concentrations of ammonium sulfate (3.4 M) retard the dissociation of all binding sites about 3–6-fold, thus giving rise to an increase in the affinity of all cAMP-binding components.  相似文献   

5.
Eukaryotic cells need morphological polarity to carry out chemotaxis (Parent, C. A., Blacklock, B. J., Froehlich, W. M., Murphy, D. B., and Devreotes, P. N. (1998) Cell 95, 81-91; Jin, T., Zhang, N., Long, Y., Parent, C., and Devreotes, P. N. (2000) Science 287, 1034-1036; Servant, G., Weiner, O. D., Herzmark, P., Balla, T., Sedat, J. W., and Bourne, H. R. (2000) Science 287, 1037-1040), but sensing direction does not require polarization of chemoattractant receptors. When cells are exposed to a gradient of chemoattractant, activation occurs selectively at the stimulated edge. Such localized activation, transmitted by the recruitment of cytosolic proteins, may be a general mechanism for gradient sensing by G protein-linked chemotactic systems. Here we show that in Dictyostelium discoideum cells exposed to a cAMP gradient the myosin II heavy chain kinase (MHC-PKC) and myosin II translocate to opposite ends of the cell. We further show that MHC-PKC C1 domain is responsible for the localization of MHC-PKC to the cell leading edge, but it is not sufficient to promote cell polarization. Our findings suggest a mechanism by which MHC-PKC regulates myosin II, allowing cell polarization and movement in the direction of the cAMP source.  相似文献   

6.
《The Journal of cell biology》1996,134(6):1543-1549
Starving Dictyostelium cells aggregate by chemotaxis to cAMP when a secreted protein called conditioned medium factor (CMF) reaches a threshold concentration. Cells expressing CMF antisense mRNA fail to aggregate and do not transduce signals from the cAMP receptor. Signal transduction and aggregation are restored by adding recombinant CMF. We show here that two other cAMP-induced events, the formation of a slow dissociating form of the cAMP receptor and the loss of ligand binding, which is the first step of ligand-induced receptor sequestration, also require CMF. Vegetative cells have very few CMF and cAMP receptors, while starved cells possess approximately 40,000 receptors for CMF and cAMP. Transformants overexpressing the cAMP receptor gene cAR1 show a 10-fold increase of [3H]cAMP binding and a similar increase of [125I]CMF binding; disruption of the cAR1 gene abolishes both cAMP and CMF binding. In wild-type cells, downregulation of cAR1 with high levels of cAMP also downregulates CMF binding, and CMF similarly downregulates cAMP and CMF binding. This suggests that the cAMP binding and CMF binding are closely linked. Binding of approximately 200 molecules of CMF to starved cells affects the affinity of the majority of the cAR1 cAMP receptors within 2 min, indicating that an amplifying mechanism allows one activated CMF receptor to regulate many cARs. In cells lacking the G-protein beta subunit, cAMP induces a loss of cAMP binding, but not CMF binding, while CMF induces a reduction of CMF binding without affecting cAMP binding, suggesting that the linkage of the cell density-sensing CMF receptor and the chemoattractant cAMP receptor is through a G-protein.  相似文献   

7.
cAR1, a G protein-coupled receptor (GPCR) for cAMP, is required for the multicellular development of Dictyostelium. The activation of multiple pathways by cAR1 is transient because of poorly defined adaptation mechanisms. To investigate this, we used a genetic screen for impaired development to isolate four dominant-negative cAR1 mutants, designated DN1-4. The mutant receptors inhibit multiple cAR1-mediated responses known to undergo adaptation. Reduced in vitro adenylyl cyclase activation by GTPgammaS suggests that they cause constitutive adaptation of this and perhaps other pathways. In addition, the DN mutants are constitutively phosphorylated, which normally requires cAMP binding and possess cAMP affinities that are approximately 100-fold higher than that of wild-type cAR1. Two independent activating mutations, L100H and I104N, were identified. These residues occupy adjacent positions near the cytoplasmic end of the receptor's third transmembrane helix and correspond to the (E/D)RY motif of numerous mammalian GPCRs, which is believed to regulate their activation. Taken together, these findings suggest that the DN mutants are constitutively activated and block development by turning on natural adaptation mechanisms.  相似文献   

8.
R-state monoclinic P2(1) crystals of phosphorylase have been shown to be catalytically active in the presence of an oligosaccharide primer and glucose-1-phosphate in 0.9 M ammonium sulfate, 10 mM beta-glycerophosphate, 0.5 mM EDTA, and 1 mM dithiothreitol, the medium in which the crystals are grown or equilibrated for crystallographic studies (Barford, D. & Johnson, L.N., 1989, Nature 360, 609-616; Barford, D., Hu, S.-H., & Johnson, L.N., 1991, J. Mol. Biol. 218, 233-260). Kinetic data suggest that the activity of crystalline tetrameric phosphorylase is similar to that determined in solution for the enzyme tetramer. However, large differences were found in the maximal velocities for both oligosaccharide or glucose-1-phosphate substrates between the soluble dimeric and crystalline tetrameric enzyme.  相似文献   

9.
cAMP binds to Dictyostelium discoideum surface receptors and induces a transient activation of adenylatecyclase, which is followed by desensitization. cAMP also induces a loss of detectable surface receptors (down-regulation). Cells were incubated with constant cAMP concentrations, washed free of cAMP, and cAMP binding to surface receptors and cAMP-induced activation of adenylate cyclase were measured. cAMP could induce maximally 65% loss of binding activity and complete desensitization of cAMP-stimulated adenylate cyclase activity. Half-maximal effects for down-regulation were observed at 50 nM cAMP and for desensitization at 5 nM cAMP. Down-regulation was rapid with half-times of 4, 2.5, and 1 min at 0.1, 1, and 10 microM cAMP, respectively. Similar kinetic data have been reported for desensitization (Dinauer, M.C., Steck, T.L., and Devreotes, P.N. (1980) J. Cell Biol. 86, 554-561). Down-regulation and desensitization were not reversible at 0 degrees C. Down-regulation reversed slowly at 20 degrees C with a half-time of about 1 h. Resensitization of adenylate cyclase was biphasic showing half-times of 4 min and about 1 h, respectively; the contribution of the rapidly resensitizing component was diminished when down-regulation of receptors was enhanced. These results suggest that cAMP-induced down-regulation of receptors and desensitization of adenylate cyclase stimulation proceed by at least two steps. One step is rapidly reversible, occurs at low cAMP concentrations, and induces desensitization without down-regulation, while the second step is slowly reversible, requires higher cAMP concentrations, and also induces down-regulation.  相似文献   

10.
Multiple signal transduction pathways within a single cell may share common components. In particular, seven different transmembrane helix receptors may activate identical pathways by interacting with the same G-proteins. Dictyostelium cells respond to cAMP using one such receptor, cAR1, coupled by a typical heterotrimeric G-protein to intracellular effectors. However, cells in which the gene for cAR1 has been deleted are unexpectedly still able to respond to cAMP. This implies either that certain responses are mediated by a different receptor than cAR1, or alternatively that a second, partially redundant receptor shares some of the functions of cAR1. We have examined the dose response and ligand specificity of one response, cAMP relay, and the dose response of another, cyclic GMP synthesis. In each case, the EC50 was approximately 100-fold higher and the maximal response was smaller in car1- than wild-type cells. These data indicate that cAR1 normally mediates responses to cAMP. The ligand specificity suggests that the responses seen in car1- mutants are mediated by a second receptor, cAR3. To test this hypothesis, we constructed a cell line containing deletions of both cAR1 and cAR3 genes. As predicted, these lines are totally insensitive to cAMP. We conclude that the functions of the cAR1 and cAR3 receptors are partially redundant and that both interact with the same heterotrimeric G-protein to mediate these and other responses.  相似文献   

11.
cAR1, a G protein-coupled cAMP receptor, is essential for multicellular development of Dictyostelium. We previously identified a cAR1-Ile(104) mutant that appeared to be constitutively activated based on its constitutive phosphorylation, elevated affinity for cAMP, and dominant-negative effects on development as well as specific cAR1 pathways that are subject to adaptation. To investigate how Ile(104) might regulate cAR1 activation, we assessed the consequences of substituting it with all other amino acids. Constitutive phosphorylation of these Ile(104) mutants varied broadly, suggesting that they are activated to varying extents, and was correlated with polarity of the substituting amino acid residue. Remarkably, all Ile(104) substitutions, except for the most conservative, dramatically elevated the receptor's cAMP affinity. However, only a third of the mutants (those with the most polar substitutions) blocked development. These findings are consistent with a model in which polar Ile(104) substitutions perturb the equilibrium between inactive and active cAR1 conformations in favour of the latter. Based on homology with rhodopsin, Ile(104) is likely buried within inactive cAR1 and exposed to the cytoplasm upon activation. We propose that the hydrophobic effect normally promotes burial of Ile(104) and hence cAR1 inactivation, while polar substitution of Ile(104) mitigates this effect, resulting in activation.  相似文献   

12.
cAMP receptor 1 and G-protein alpha-subunit 2 null cell lines (car1- and g alpha 2-) were examined to assess the roles that these two proteins play in cAMP stimulated adenylyl cyclase activation in Dictyostelium. In intact wild-type cells, cAMP stimulation elicited a rapid activation of adenylyl cyclase that peaked in 1-2 min and subsided within 5 min; in g alpha 2- cells, this activation did not occur; in car1- cells an activation occurred but it rose and subsided more slowly. cAMP also induced a persistent activation of adenylyl cyclase in growth stage cells that contain only low levels of cAMP receptor 1 (cAR1). In lysates of untreated wild-type, car1-, or g alpha 2- cells, guanosine 5'-O-'(3-thiotriphosphate) (GTP gamma S) produced a similar 20-fold increase in adenylyl cyclase activity. Brief treatment of intact cells with cAMP reduced this activity by 75% in control and g alpha 2- cells but by only 8% in the car1- cells. These observations suggest several conclusions regarding the cAMP signal transduction system. 1) cAR1 and another cAMP receptor are linked to activation of adenylyl cyclase in intact cells. Both excitation signals require G alpha 2. 2) cAR1 is required for normal adaptation of adenylyl cyclase. The adaptation reaction caused by cAR1 is not mediated via G alpha 2. 3) Neither cAR1 nor G alpha 2 is required for GTP gamma S-stimulation of adenylyl cyclase in cell lysates. The adenylyl cyclase is directly coupled to an as yet unidentified G-protein.  相似文献   

13.
A series of 5'-carbamoyl and 5'-thionocarbamoyl derivatives of 2'-C-methyl analogues of the A(1) adenosine receptor (A(1)AR) full agonists N(6)-cyclopentyladenosine (CPA), 2-chloro-N(6)-cyclopentyladenosine (CCPA), N(6)-[3-(R)-tetrahydrofuranyl]adenosine (tecadenoson), and 2-chloro analogue (2-Cl-tecadenoson) was synthesized and evaluated for their affinity for adenosine receptor subtypes from bovine, porcine, and human species. In the N(6)-cyclopentylamino series, the 5'-substituted derivatives showed a reduced affinity at the bovine A(1)AR compared to the parent compounds; however, the selectivity for A(1) versus A(2A) receptor was retained or increased. The corresponding N(6)-3-(R)-tetrahydrofuranylamino analogues displayed a very low affinity toward the bovine A(1)AR. The 5'-methylthionocarbamoyl derivative of 2'-Me-CCPA showed the best affinity at porcine A(1)AR with a K(i) value of 13 nM. At human AR subtypes tecadenoson derivatives showed 2.3- to 5-fold lower affinity at A(1)AR and very low affinity at the other subtypes (A(2A), A(2B), and A(3)) compared to the corresponding N(6)-cyclopentyl analogues. The 5'-carbamoyl and 5'-thionocarbamoyl derivatives of 2'-Me-CCPA 3, 4, 7 and tecadenoson derivative 12 were found to be partial A(1) agonists at the porcine receptor. Docking studies explained the lower affinity of N(6)-3-(R)-tetrahydrofuranyl-substituted compounds at bovine A(1)AR compared to that of N(6)-cyclopentyl analogues, showing that the oxygen of the tetrahydrofuranyl ring establishes unfavorable electrostatic interactions with the CO oxygen of Asn254. The low binding affinity of the 2'-C-methyl-N(6)-3-(R)-tetrahydrofuranyl adenosine analogues at human A(1)AR may be ascribed to the presence of unfavorable interactions between the hydrophilic tetrahydrofuranyl ring and the surrounding hydrophobic residues Leu250 (TM6) and Ile274 (TM7).  相似文献   

14.
Several series of conformationally constrained N1-arylsulfonyltryptamine derivatives were prepared and tested for 5-HT6 receptor binding affinity and ability to modulate cAMP production in a cyclase assay. The 3-piperidin-3-yl-, 3-(1-methylpyrrolidin-2-ylmethyl)-, and 3-pyrrolidin-3-yl-1H-indole arrays (8-13) appear to be able to adopt a conformation that allows high affinity 5-HT6 receptor binding, while the beta-carboline array 14 binds with a significantly weaker (10- to 100-fold) affinity. N1-Benzenesulfonyl-3-piperidin-3-yl-1H-indole 9a is a high affinity full agonist with EC50 = 24 nM. Several of the N1-arylsulfonyl-3-(1-methylpyrrolidin-2-ylmethyl)-1H-indole derivatives behave as very potent antagonists ((S)-11r, (S)-11t; IC50 = 0.8, 1.0 nM).  相似文献   

15.
Endothelial cells from brain microvessels (BCEC) express high affinity receptor sites for endothelin-1 that recognize endothelin-3 with a low affinity (Vigne, P., Marsault, R., Breittmayer, J.P. & Frelin, C. (1990) Biochem. J. 266, 415-420). Binding experiments using 125I-endothelin-3 showed the presence in BCEC of a new class of receptor sites that had a high affinity for endothelin-3 (Kd = 0.8 nM), endothelin-1 (Kd = 0.8 nM), and sarafotoxin S6b (Kd = 0.3 nM). Endothelins activated phospholipase C in BCEC and produced transient increases in intracellular Ca2+ with properties of a low affinity endothelin-3 receptor. Endothelins also increased 22Na+ uptake via the Na+/H+ antiporter in BCEC. Concentrations for half-maximum activation (endothelin-1, 0.5 nM; sarafotoxin S6b, 1 nM; endothelin-3, 2 nM) were close to the Kd values determined in 125I-endothelin-3-binding experiments. The action of endothelins on Na+/H+ exchange was not mimicked by phorbol myristate acetate, it was not reversed by staurosporine, and it did not correlate with the phosphorylation of the 80-kDa protein. These results indicated that the action of endothelins on Na+/H+ exchange did not involve protein kinase C. It is concluded that BCEC coexpress two types of functional receptor sites for endothelins: (i) a high affinity endothelin-1, low affinity endothelin-3 receptor that is coupled to phospholipase C and to intracellular Ca2+ mobilization, and (ii) a high affinity endothelin-1, high affinity endothelin-3 receptor that controls Na+/H+ exchange activity via a protein kinase C-independent mechanism.  相似文献   

16.
《The Journal of cell biology》1995,129(6):1659-1665
We have previously reported that activation of adenylyl cyclase by chemoattractant receptors in Dictyostelium requires, in addition to a heterotrimeric G-protein, a cytosolic protein, designated CRAC (Lilly, P., and P. N. Devreotes. 1994. J. Biol. Chem. 269:14123-14129; Insall, R. H., A. Kuspa, P. J. Lilly, G. Schaulsky, L. R. Levin, W. F. Loomis, and P. N. Devreotes. 1994. J. Cell Biol. 126:1537-1545). In this report, we show that in intact cells, chemoattractants promote translocation of CRAC from the cytosolic to the membrane fraction. However, CRAC is not required at the time of receptor stimulation; it can be added to lysates of activated cells. Treatment of membranes with guanine nucleotides creates binding sites for CRAC. These binding sites can be generated in mutants lacking each of the components of the pathway except the beta-subunit, suggesting that free or "activated" beta gamma-subunits may be a part of the binding site. This hypothesis is consistent with previous observations that CRAC contains a pleckstrin homology domain and that the beta gamma-subunits likely mediate activation of adenylyl cyclase in this system. Thus, CRAC may serve as an adapter, linking the G-protein beta gamma-subunits to activation of the enzyme. GTP gamma S cannot generate CRAC-binding sites when the adenylyl cyclase pathway has been adapted by prior chemoattractant stimulation, suggesting that this is a point of downstream adaptation.  相似文献   

17.
We investigated the use of Eu3+ chelate-labeled analogues of melanin-concentrating hormone (MCH) as ligands for both human MCH receptors (MCHR1 and MCHR2). The analogues employed were Ala17 MCH, S36057 (Y-ADO-RC*MLGRVFRPC*W, where ADO=8-amino-3,6-dioxyoctanoyl and *=disulfide bond), and R2P (RC*MLGRVFRPC*Y-NH2). The peptides were readily labeled on the alpha-amino residue with the Eu3+ chelate of N1-(p-isothiocyanatobenzyl)-diethylenetriamine-N1,N2,N3,N3-tetraacetic acid and then purified by reverse-phase fast-performance liquid chromatography at neutral pH to maintain Eu3+ chelation. Both labeled Ala17 MCH and S36057 had high affinity for MCHR1 ( Kd = 0.37 and 0.059nM, respectively) while Eu3+ -labeled S36057 and R2P had high affinity for MCHR2 ( Kd = 0.16 and 0.10nM, respectively). Labeled Ala17 MCH had little demonstrable binding affinity for MCHR2. Eu3+ -labeled S36057 and R2P were full agonists at MCHR1 when assessed by measurement of agonist-stimulated GTPgamma(35)S binding. Competition binding experiments with both MCHR isoforms, a series of previously characterized alanine scan MCH analogues, and a recently identified nonpeptide MCHR1-selective antagonist T-226296 confirmed the expected receptor selectivity. These studies further extend the utility of Eu3+ chelate time-resolved fluorescence for the development of high-sensitivity, nonradioactive receptor binding assays and demonstrate the need to select the optimal ligand for labeling.  相似文献   

18.
19.
The differences in biological functions between alpha-human atrial natriuretic polypeptide (alpha-hANP) and its oxidized analog, MetSO-alpha-hANP, have been investigated. Analysis of the ANP receptor subtypes by affinity labeling has shown that a bovine pulmonary aortic endothelial cell line (CPAE cells) primarily expresses ANP-R1 (R, receptor) coupled to particulate guanylate cyclase, while Hela cells from human cervical carcinoma predominantly express ANP-R2, which lacks a guanylate cyclase. alpha-hANP could bind to both ANP receptor subtypes with high affinity, while MetSO-alpha-hANP showed more selective binding to ANP-R2 than to ANP-R1. The activity of MetSO-alpha-hANP for stimulation of guanylate cyclase coupled to ANP-R1 was about 520-fold less than that of alpha-hANP (median effective dose = 2.5 nM for alpha-hANP, 1.3 microM for MetSO-alpha-hANP), indicating that MetSO-alpha-hANP was a partial agonist for this receptor. While this oxidized analog could inhibit the cAMP production through ANP-R2, with 0.15 times the activity of alpha-hANP (median concentration = 0.31 nM for alpha-hANP, 2.0 nM for MetSO-alpha-hANP). In in vivo studies, the diuretic activity of MetSO-alpha-hANP was 25-100-fold less than that of alpha-hANP. In addition, MetSO-alpha-hANP could potentiate the diuretic activity of alpha-hANP that was also caused by C-ANF4-23, a specific agonist for ANP-R2. These results demonstrate that MetSO-alpha-hANP can act as an agonist more selective for ANP-R2 than for ANP-R1, both in vivo and in vitro. The relationship between receptor selectivities and the conformation of alpha-hANP or MetSO-alpha-hANP was also discussed.  相似文献   

20.
Optimization on a series of piperazinebenzylamines resulted in analogues with low nanomolar binding at the human MC4 receptor but weak affinity (Ki > 500 nM) at the MC3 receptor. Compound 14c was identified to be a potent MC4R antagonist (Ki = 3.2 nM) with a selectivity of 240-fold over MC3R. It proved to be an insurmountable antagonist in a cAMP assay. Compound 14c potently stimulated food intake in satiated mice when given by intracerebroventricular administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号