首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the body composition differences across age, 133 men with chronic spinal cord injury (SCI) (66 with tetraplegia, 67 with paraplegia) were compared with an age-, height-, and ethnicity-matched able-bodied male reference population (n = 100) using two different dual-energy X-ray absorptiometry densitometers. The effects of duration of injury, level, and completeness of lesion were analyzed in the SCI population. Independent of age, total body and regional lean mass were lower and fat mass was higher in persons with SCI compared with controls. The SCI group was 13 +/- 1% (means +/- SE) fatter per unit of body mass index (kg/m2) compared with the control group (P < 0.0001). Advancing age was strongly associated with less lean mass and greater adiposity in those with SCI, whereas it was mildly related in the controls. Total body and regional arm and trunk, but not leg, lean tissues were lower in subjects with SCI, across all ages, than in the controls. In summary, persons with SCI were fatter for any body mass index and demonstrated significantly less lean and more adipose tissues for any given age compared with controls.  相似文献   

2.
To determine the effect of paralysis on body composition, eight pairs of male monozygotic twins, one twin in each pair with paraplegia, were studied by dual-energy X-ray absorptiometry. Significant loss of total body lean tissue mass was found in the paralyzed twins compared with their able-bodied co-twins: 47.5 +/- 6. 7 vs. 60.1 +/- 7.8 (SD) kg (P < 0.005). Regionally, arm lean tissue mass was not different between the twin pairs, whereas trunk and leg lean tissue masses were significantly lower in the paralyzed twins: -3.0 +/- 3.3 kg (P < 0.05) and -10.1 +/- 4.0 kg (P < 0.0005), respectively. Bone mineral content of the total body and legs was significantly related to lean tissue mass in the able-bodied twins (R = 0.88 and 0.98, respectively) but not in the paralyzed twins. However, the intrapair difference scores for bone and lean tissue mass were significantly related (R = 0.80 and 0.81, respectively). The paralyzed twins had significantly more total body fat mass and percent fat per unit body mass index than the able-bodied twins: 4.8 kg (P < 0.05) and 7 +/- 2% (P < 0.01). In the paralyzed twins, total body lean tissue was significantly lost (mostly from the trunk and legs), independent of age, at a rate of 3.9 +/- 0.2 kg per 5-yr period of paralysis (R = 0.87, P < 0.005). Extreme disuse from paralysis appears to contribute to a parallel loss of bone with loss of lean tissue in the legs. The continuous lean tissue loss may represent a form of sarcopenia that is progressive and accelerated compared with that in ambulatory individuals.  相似文献   

3.
The aim of this study was to estimate the heritability of and environmental contributions to skeletal muscle phenotypes (appendicular lean mass and calf muscle cross-sectional area) in subjects of African descent and to determine whether heritability estimates are impacted by sex or age. Body composition was measured by dual-energy X-ray absorptiometry and computed tomography in 444 men and women aged 18 yr and older (mean: 43 yr) from eight large, multigenerational Afro-Caribbean families (family size range: 21-112). Using quantitative genetic methods, we estimated heritability and the association of anthropometric, lifestyle, and medical variables with skeletal muscle phenotypes. In the overall group, we estimated the heritability of lean mass and calf muscle cross-sectional area (h(2) = 0.18-0.23, P < 0.01) and contribution of environmental factors to these phenotypes (r(2) = 0.27-0.55, P < 0.05). In our age-specific analysis, the heritability of leg lean mass was lower in older vs. younger individuals (h(2) = 0.05 vs. 0.23, respectively, P = 0.1). Sex was a significant covariate in our models (P < 0.001), although sex-specific differences in heritability varied depending on the lean mass phenotype analyzed. High genetic correlations (rho(G) = 0.69-0.81; P < 0.01) between different lean mass measures suggest these traits share a large proportion of genetic components. Our results demonstrate the heritability of skeletal muscle traits in individuals of African heritage and that heritability may differ as a function of sex and age. As the loss of skeletal muscle mass is related to metabolic abnormalities, disability, and mortality in older individuals, further research is warranted to identify specific genetic loci that contribute to these traits in general and in a sex- and age-specific manner.  相似文献   

4.
We tested the hypothesis that muscle sympathetic nerve activity (MSNA) would be higher in endurance-trained (ET) compared with sedentary (Sed) men with similar levels of total body and abdominal adiposity. We further hypothesized that sympathetic baroreflex gain would be augmented in ET compared with Sed men independent of the level of adiposity. To address this, we measured MSNA (via microneurography), sympathetic and vagal baroreflex responses (the modified Oxford technique), body composition (dual-energy X-ray absorptiometry), and waist circumference (Gulick tape) in Sed (n = 22) and ET men (n = 8). The ET men were also compared with a subgroup of Sed men (n = 6) with similar levels of total body and abdominal adiposity. Basal MSNA was greater in the ET compared with Sed men with similar levels of total body and abdominal adiposity (28 +/- 2.0 vs. 21 +/- 2.0 bursts/min; P < 0.05) but similar to the larger group of Sed men (n = 22) with higher total body and abdominal adiposity (vs. 26 +/- 3 bursts/min; P > 0.05). In contrast to our hypothesis, sympathetic baroreflex gain was lower in the ET compared with Sed men (-6.4 +/- 0.8 vs. -8.4 +/- 0.4 arbitrary integrative units x beat(-1) x mmHg(-1); P < 0.05) regardless of the level of adiposity. Taken together, the results of the present study suggest that MSNA is higher in ET compared with Sed men with similar levels of total body and abdominal adiposity. In addition, sympathetic baroreflex gain is lower in ET compared with Sed men. That sympathetic baroreflex gain was lower in ET compared with Sed men regardless of the level of adiposity suggests an influence of the ET state per se.  相似文献   

5.
Genetic variation in myostatin, a negative regulator of skeletal muscle, in cattle has shown remarkable influence on skeletal muscle, resulting in a double-muscled phenotype in certain breeds; however, DNA sequence variation within this gene in humans has not been consistently associated with skeletal muscle mass or strength. Follistatin and activin-type II receptor B (ACVR2B) are two myostatin-related genes involved in the regulation and signaling of myostatin. We sought to identify associations between genetic variation and haplotype structure in both follistatin and ACVR2B with skeletal muscle-related phenotypes. Three hundred fifteen men and 278 women aged 19-90 yr from the Baltimore Longitudinal Study of Aging were genotyped to determine respective haplotype groupings (Hap Groups) based on HapMap data. Whole body soft tissue composition was measured by dual-energy X-ray absorptiometry. Quadriceps peak torque (strength) was measured using an isokinetic dynamometer. Women carriers of ACVR2B Hap Group 1 exhibited significantly less quadriceps muscle strength (shortening phase) than women homozygous for Hap Group 2 (109.2+/-1.9 vs. 118.6+/-4.1 N.m, 30 degrees/s, respectively, P=0.036). No significant association was observed in men. Male carriers of follistatin Hap Group 3 exhibited significantly less total leg fat-free mass than noncarriers (16.6+/-0.3 vs. 17.5+/-0.2 kg, respectively, P=0.012). No significant associations between these haplotype groups were observed in women. These results indicate that haplotype structure at the ACVR2B and follistatin loci may contribute to interindividual variation in skeletal muscle mass and strength, although these data indicate sex-specific relationships.  相似文献   

6.
We tested the hypothesis that reductions in total body and abdominal visceral fat with energy restriction would be associated with increases in cardiovagal baroreflex sensitivity (BRS) in overweight/obese older men. To address this, overweight/obese (25 < or = body mass index < or = 35 kg/m(2)) young (OB-Y, n = 10, age = 32.9 +/- 2.3 yr) and older (OB-O, n = 6, age = 60 +/- 2.7 yr) men underwent 3 mo of energy restriction at a level designed to reduce body weight by 5-10%. Cardiovagal BRS (modified Oxford technique), body composition (dual-energy X-ray absorptiometry), and abdominal fat distribution (computed tomography) were measured in the overweight/obese men before weight loss and after 4 wk of weight stability at their reduced weight and compared with a group of nonobese young men (NO-Y, n = 13, age = 21.1 +/- 1.0 yr). Before weight loss, cardiovagal BRS was approximately 35% and approximately 60% lower (P < 0.05) in the OB-Y and OB-O compared with NO-Y. Body weight (-7.8 +/- 1.1 vs. -7.3 +/- 0.7 kg), total fat mass (-4.1 +/- 1.0 vs. -4.4 +/- 0.8 kg), and abdominal visceral fat (-27.6 +/- 6.9 vs. -43.5 +/- 10.1 cm(2)) were reduced (all P < 0.05) after weight loss, but the magnitude of reduction did not differ (all P > 0.05) between OB-Y and OB-O, respectively. Cardiovagal BRS increased (11.5 +/- 1.9 vs. 18.5 +/- 2.6 ms/mmHg and 6.7 +/- 1.2 vs. 12.8 +/- 4.2 ms/mmHg) after weight loss (both P < 0.05) in OB-Y and OB-O, respectively. After weight loss, cardiovagal BRS in the obese/overweight young and older men was approximately 105% and approximately 73% (P > 0.05) of NO-Y (17.5 +/- 2.2 ms/mmHg). Therefore, the results of this study indicate that weight loss increases the sensitivity of the cardiovagal baroreflex in overweight/obese young and older men.  相似文献   

7.
The purpose of this study was to determine the effects of short-term (14-day) unilateral leg immobilization using a simple knee brace (60 degree flexion)- or crutch-mediated model on muscle function and morphology in men (M, n = 13) and women (W, n = 14). Isometric and isokinetic (concentric-slow, 0.52 rad/s and fast, 5.24 rad/s) knee extensor peak torque was determined at three time points (Pre, Day-2, and Day-14). At the same time points, magnetic resonance imaging was used to measure the cross-sectional area of the quadriceps femoris and dual-energy X-ray absorptiometry scanning was used to calculate leg lean mass. Muscle biopsies were taken from vastus lateralis at Pre and Day-14 for myosin ATPase and myosin heavy chain analysis. Women showed greater decreases (Pre vs. Day-14) compared with men in specific strength (N/cm2) for isometric [M = 3.1 +/- 13.3, W = 17.1 +/- 15.9%; P = 0.055 (mean +/- SD)] and concentric-slow (M = 4.7 +/- 11.3, W = 16.6 +/- 18.4%; P < 0.05) contractions. There were no immobilization-induced sex-specific differences in the decrease in quadriceps femoris cross-sectional area (M = 5.7 +/- 5.0, W = 5.9 +/- 5.2%) or leg lean mass (M = 3.7 +/- 4.2, W = 2.7 +/- 2.8%). There were no fiber-type transformations, and the decreases in type I (M = 4.8 +/- 5.0, W = 5.9 +/- 3.4%), IIa (M = 7.9 +/- 9.9, W = 8.8 +/- 8.0%), and IIx (M = 10.7 +/- 10.8, W = 10.8 +/- 12.1%) fiber areas were similar between sexes. These findings indicate that immobilization-induced loss of knee extensor muscle strength is greater in women compared with men despite a similar extent of atrophy at the myofiber and whole muscle levels after 14 days of unilateral leg immobilization. Furthermore, we have described an effective and safe knee immobilization method that results in reductions in quadriceps muscle strength and size.  相似文献   

8.
The impact of race and resistance training status on the assumed density of the fat-free mass (D(FFM)) and estimates of body fatness via hydrodensitometry (%Fat(D)) vs. a four-component model (density, water, mineral; %Fat(D,W,M)) were determined in 45 men: white controls (W; n = 15), black controls (B; n = 15), and resistance-trained blacks (B-RT; n = 15). Body density by hydrostatic weighing, body water by deuterium dilution, and bone mineral by dual-energy X-ray absorptiometry were used to estimate %Fat(D,W,M). D(FFM) was not different between B and W (or 1.1 g/ml); however, D(FFM) in B-RT was significantly lower (1.091 +/- 0.012 g/ml; P < 0.05). Therefore, %Fat(D) using the Siri equation was not different from %Fat(D,W,M) in W (17.5 +/- 5.0 vs. 18.3 +/- 5.4%) or B (14.9 +/- 5.6 vs. 15.7 +/- 5.7%) but significantly overestimated %Fat(D,W,M) in B-RT (14.0 +/- 5.9 vs. 10.4 +/- 6.0%; P < 0.05). The use of a race-specific equation (assuming D(FFM) = 1.113 g/ml) did not improve the agreement between %Fat(D) and %Fat(D,W,M), resulting in a significantly greater mean (+/-SD) discrepancy for B (1.7 +/- 1.8% fat) and B-RT (6.2 +/- 4.3% fat). Thus race per se does not affect D(FFM) or estimates of %Fat(D); however, B-RT have a D(FFM) lower than 1.1 g/ml, leading to an overestimation of %Fat(D).  相似文献   

9.
We studied plasma leptin levels in six people with high-lesion spinal cord injury [SCI; body mass index (BMI) 25.9 +/- 1.5 kg/m(2), age 37 +/- 3.0 yr] and six able-bodied (AB) controls (BMI 29.1 +/- 1.9 kg/m(2), age 35 +/- 3.5 yr) before and after 12, 24, and 36 h of fasting. The plasma leptin levels significantly decreased during 36 h fasting by 48.8 +/- 4.5% (pre: 11.3 +/- 2.3, post: 6.2 +/- 1.5 ng/ml) and 38.6 +/- 7.9% (pre: 7.6 +/- 5.0, post: 4.2 +/- 1.0 ng/ml) in SCI and AB, respectively. Plasma leptin started to decrease at 24 h of fasting in the SCI group, whereas plasma leptin started to decrease at 12 h of fasting in the AB group. The current study demonstrated that plasma leptin decreased with fasting in both SCI and AB groups, with the leptin decrease being delayed in the SCI group. The delayed leptin response to fasting in the SCI group may be because of increased fat mass (%body fat, SCI: 33.8 +/- 3.0, AB: 24.1 +/- 2.9) and sympathetic nervous system dysfunction.  相似文献   

10.
Although magnetic resonance imaging (MRI) can accurately measure lower limb skeletal muscle (SM) mass, this method is complex and costly. A potential practical alternative is to estimate lower limb SM with dual-energy X-ray absorptiometry (DXA). The aim of the present study was to develop and validate DXA-SM prediction equations. Identical landmarks (i.e., inferior border of the ischial tuberosity) were selected for separating lower limb from trunk. Lower limb SM was measured by MRI, and lower limb fat-free soft tissue was measured by DXA. A total of 207 adults (104 men and 103 women) were evaluated [age 43 +/- 16 (SD) yr, body mass index (BMI) 24.6 +/- 3.7 kg/m(2)]. Strong correlations were observed between lower limb SM and lower limb fat-free soft tissue (R(2) = 0.89, P < 0.001); age and BMI were small but significant SM predictor variables. In the cross-validation sample, the differences between MRI-measured and DXA-predicted SM mass were small (-0.006 +/- 1.07 and -0.016 +/- 1.05 kg) for two different proposed prediction equations, one with fat-free soft tissue and the other with added age and BMI as predictor variables. DXA-measured lower limb fat-free soft tissue, along with other easily acquired measures, can be used to reliably predict lower limb skeletal muscle mass.  相似文献   

11.
12.
In this study we examined the influence of complete spinal cord injury (SCI) on affected skeletal muscle morphology within 6 months of SCI. Magnetic resonance (MR) images of the leg and thigh were taken as soon as patients were clinically stable, on average 6 weeks post injury, and 11 and 24 weeks after SCI to assess average muscle cross-sectional area (CSA). MR images were also taken from nine able-bodied controls at two time points separated from one another by 18 weeks. The controls showed no change in any variable over time. The patients showed differential atrophy (P = 0.0001) of the ankle plantar or dorsi flexor muscles. The average CSA of m. gastrocnemius and m. soleus decreased by 24% and 12%, respectively (P = 0.0001). The m. tibialis anterior CSA showed no change (P = 0.3644). As a result of this muscle-specific atrophy, the ratio of average CSA of m. gastrocnemius to m. soleus, m. gastrocnemius to m. tibialis anterior and m. soleus to m. tibialis anterior declined (P = 0.0001). The average CSA of m, quadriceps femoris, the hamstring muscle group and the adductor muscle group decreased by 16%, 14% and 16%, respectively (P< or =0.0045). No differential atrophy was observed among these thigh muscle groups, thus the ratio of their CSAs did not change (P = 0.6210). The average CSA of atrophied skeletal muscle in the patients was 45-80% of that of age- and weight-matched able-bodied controls 24 weeks after injury. In conclusion, the results of this study suggest that there is marked loss of contractile protein early after SCI which differs among affected skeletal muscles. While the mechanism(s) responsible for loss of muscle size are not clear, it is suggested that the development of muscular imbalance as well as diminution of muscle mass would compromise force potential early after SCI.  相似文献   

13.
Body composition estimates from dual-energy X-ray absorptiometry and stable isotope dilution ((2)H and (18)O) were compared in 61 rhesus monkeys (Macaca mulatta) from the ongoing long-term energy restriction study at the University of Wisconsin. Their average age was 18.9 +/- 2.5 y/o. Of the animals, 51% were in the energy restricted group and 38% were females. Although the correlation between methods was highly significant for fat mass (R(2) = 0.97, SEE = 0.25 kg or 7.5%, P < 0.0001) and fat-free mass (R(2) = 0.98, SEE = 0.29 kg or 3.6%, P < 0.0001), we observed that dual-energy X-ray absorptiometry underestimated fat mass by 0.67 +/- 0.26 kg (7.5%, P < 0.0001) and overestimated fat-free mass by 0.57 +/- 0.29 kg (20%, P < 0.0001) when compared with isotope dilution. Taken together with data from the literature, the present results emphasize the usefulness of dual-energy X-ray absorptiometry to derive body composition and thus nutritional status in monkeys, but demonstrate the importance of validation experiments for a given DXA model and software.  相似文献   

14.
Our purpose was to measure blood flow and muscle fatigue in chronic, complete, spinal cord-injured (SCI) and able-bodied (AB) individuals during electrical stimulation. Electrical stimulation of the quadriceps muscles was used to elicit similar activated muscle mass. Blood flow was measured in the femoral artery by Doppler ultrasound. Muscle fatigue was significantly greater (three- to eightfold, P < or = 0.001) in the SCI vs. the AB individuals. The magnitude of blood flow was not significantly different between groups. A prolonged half-time to peak blood flow at the beginning of exercise (fivefold, P = 0.001) and recovery of blood flow at the end of exercise (threefold, P = 0.009) was found in the SCI vs. the AB group. In conclusion, the magnitude of the muscle blood flow to electrical stimulation was not associated with increased muscle fatigue in SCI individuals. However, the prolonged time to peak blood flow may be an explanation for increased fatigue in SCI individuals.  相似文献   

15.
Caloric restriction (CR) results in fat loss; however, it may also result in loss of muscle and thereby reduce strength and aerobic capacity (VO2 max). These effects may not occur with exercise-induced weight loss (EX) because of the anabolic effects of exercise on heart and skeletal muscle. We tested the hypothesis that CR reduces muscle size and strength and VO2 max, whereas EX preserves or improves these parameters. Healthy 50- to 60-yr-old men and women (body mass index of 23.5-29.9 kg/m2) were studied before and after 12 mo of weight loss by CR (n = 18) or EX (n = 16). Lean mass was assessed by dual-energy X-ray absorptiometry, thigh muscle volume by MRI, isometric and isokinetic knee flexor strength by dynamometry, and treadmill VO2 max by indirect calorimetry. Both interventions caused significant decreases in body weight (CR: -10.7 +/- 1.4%, EX: -9.5 +/- 1.5%) and lean mass (CR: -3.5 +/- 0.7%, EX: -2.2 +/- 0.8%), with no significant differences between groups. Significant decreases in thigh muscle volume (-6.9 +/- 0.8%) and composite knee flexion strength (-7.2 +/- 3%) occurred in the CR group only. Absolute VO2 max decreased significantly in the CR group (-6.8 +/- 2.3%), whereas the EX group had significant increases in both absolute (+15.5 +/- 2.4%) and relative (+28.3 +/- 3.0%) VO2 max. These data provide evidence that muscle mass and absolute physical work capacity decrease in response to 12 mo of CR but not in response to a similar weight loss induced by exercise. These findings suggest that, during EX, the body adapts to maintain or even enhance physical performance capacity.  相似文献   

16.
The present study was aimed at evaluating the feasibility and reliability of lower limb skeletal muscle (SM) mass estimates obtained by bioimpedance analysis (BIA). BIA estimates were compared with the estimates obtained by dual-energy X-ray absorptiometry (DXA). Ten normal weight and 10 obese women had BIA and DXA evaluations. Lower limb SM mass was then derived from DXA appendicular lean soft tissue estimates. Lower limb SM mass and SM distribution were also estimated from BIA modeling that fits measured resistance values along the leg. SM mass (mean +/- SD) was 5.8 +/- 1.0 kg by BIA vs. 5.8 +/- 1.1 kg by DXA in normal weight subjects and 7.2 +/- 1.4 kg by BIA vs. 7.2 +/- 1.2 kg by DXA in obese subjects. Mean +/- SD of the absolute value of the relative error was 7.0 +/- 3.4 and 5.9 +/- 3.4% in the two groups, respectively. Similar results were obtained by using five resistance values for the analysis. In conclusion, the proposed BIA model provides an adequate means of evaluating appendicular SM mass.  相似文献   

17.
BACKGROUND/AIMS: Children with cystic fibrosis (CF) are of increased risk of reduced fat body mass (FBM) and lean body mass (LBM). Serum concentrations of insulin-like growth factor-1 (IGF-1)and leptin could be markers of LBM and/or FBM depletion. To evaluate the relationships between disease activity, body composition, IGF-1 and leptin concentrations in CF children. METHODS: A cross-sectional study with 26 CF children aged 5.0-15.5 years and 33 healthy controls, mean age 9.4 years. Body composition was evaluated by dual-energy X-ray absorptiometry. Fasting blood samples were analyzed for leptin, IGF-1 and IGFBP-3. RESULTS: FBM standard deviation score (SDS; CF boys -0.02 +/- 0.88 vs. 0.78 +/- 0.65, p < 0.01; CF girls -0.37 +/- 1.15 vs. 0.70 +/- 0.97, p < 0.05), leptin concentration (CF boys 2.07 +/- 0.79 vs. 3.07 +/- 1.28 ng/ml, p < 0.05; CF girls 2.71 +/- 0.86 vs. 5.00 +/- 2.95 ng/ml, p < 0.05) and IGF-1SDS (CF boys -1.43 +/- 1.50 vs. -0.32 +/- 0.88, p < 0.05; CF girls -0.66 +/- 1.66 vs. 0.64 +/- 0.57, p < 0.01) were lower in CF children compared to controls. Shwachman score was the strongest predictor of lean body mass (R = 0.63). Leptin levels explain 60% of the variability in FBM. CONCLUSION: Serum concentrations of IGF-1 and leptin are decreased in children with CF and are associated with clinical conditions and body composition.  相似文献   

18.
BACKGROUND/AIMS: Turner's syndrome (TS) is associated with increased insulin resistance and adiposity, which might be associated with type 2 diabetes in later life. We aimed to determine whether the defect in insulin sensitivity is a primary intrinsic defect in TS or dependent on variation in body composition. METHODS: Sixteen women with TS not on growth hormone replacement but receiving oestrogen replacement therapy [age (mean +/- SD): 30.2 +/- 8.5 years; height-corrected fat-free mass: 26.1 +/- 3.1 kg/height] and a control group of 16 normal healthy women (age: 30.1 +/- 8.2 years; height-corrected fat-free mass: 25.9 +/- 2.4 kg/height) were studied. Fasting blood samples were obtained for measurement of glucose, insulin, IGF-I, IGFBP-1, IGFBP-3 and lipid levels. The hyperinsulinaemic euglycaemic clamp was performed to assess peripheral insulin sensitivity (M value), and the Homeostasis Model Assessment (HOMA-S) was used to estimate fasting insulin sensitivity. Body composition was assessed using a dual-energy X-ray absorptiometry scan. RESULTS: Fasting insulin sensitivity (HOMA-S 103.2 +/- 78.6 vs. 193.9 +/- 93.5, p = 0.006) was lower in TS subjects compared to controls as was whole-body insulin sensitivity (M value 2.9 +/- 1.9 vs. 5.5 +/- 2.6 mg/kg/min, p = 0.003). In a multiple regression analysis the Turner karyotype was significantly related to insulin sensitivity (p = 0.008) independent of any differences in fat-free mass and percent whole-body fat mass. CONCLUSION: The increased insulin resistance in women with TS is independent of measures of body composition and may represent an intrinsic defect related to their chromosomal abnormality.  相似文献   

19.
We tested the hypothesis that muscle sympathetic nerve activity (MSNA) would not differ in subcutaneously obese (SUBOB) and nonobese (NO) men with similar levels of abdominal visceral fat despite higher plasma leptin concentrations in the former. We further hypothesized that abdominal visceral fat would be the strongest body composition- or regional fat distribution-related correlate of MSNA among these individuals. To accomplish this, we measured MSNA (via microneurography), body composition (via dual-energy X-ray absorptiometry), and abdominal fat distribution (via computed tomography) in 15 NO (body mass index 0.05, respectively) despite approximately 2.6-fold higher (P < 0.05) plasma leptin concentration in the SUBOB men. Furthermore, abdominal visceral fat was the only body composition- or regional fat distribution-related correlate (r = 0.45; P < 0.05) of MSNA in the pooled sample. In addition, abdominal visceral fat was related to MSNA in NO (r = 0.58; P = 0.0239) but not SUBOB (r = 0.39; P = 0.3027) men. Taken together with our previous observations, our findings suggest that the relation between obesity and MSNA is phenotype dependent. The relation between abdominal visceral fat and MSNA was evident in NO but not in SUBOB men and at levels of abdominal visceral fat below the level typically associated with elevated cardiovascular and metabolic disease risk. Our observations do not support an obvious role for leptin in contributing to sympathetic neural activation in human obesity and, in turn, are inconsistent with the concept of selective leptin resistance.  相似文献   

20.
The human immunodeficiency virus (HIV)-lipodystrophy syndrome is associated with fat redistribution and metabolic abnormalities, including insulin resistance. Increased intramyocellular lipid (IMCL) concentrations are thought to contribute to insulin resistance, being linked to metabolic and body composition variables. We examined 46 women: HIV infected with fat redistribution (n = 25), and age- and body mass index-matched HIV-negative controls (n = 21). IMCL was measured by 1H-magnetic resonance spectroscopy, and body composition was assessed with computed tomography, dual-energy X-ray absorptiometry (DEXA), and magnetic resonance imaging. Plasma lipid profile and markers of glucose homeostasis were obtained. IMCL was significantly increased in tibialis anterior [135.0 +/- 11.5 vs. 85.1 +/- 13.2 institutional units (IU); P = 0.007] and soleus [643.7 +/- 61.0 vs. 443.6 +/- 47.2 IU, P = 0.017] of HIV-infected subjects compared with controls. Among HIV-infected subjects, calf subcutaneous fat area (17.8 +/- 2.3 vs. 35.0 +/- 2.5 cm2, P < 0.0001) and extremity fat by DEXA (11.8 +/- 1.1 vs. 15.6 +/- 1.2 kg, P = 0.024) were reduced, whereas visceral abdominal fat (125.2 +/- 11.3 vs. 74.4 +/- 12.3 cm2, P = 0.004), triglycerides (131.1 +/- 11.0 vs. 66.3 +/- 12.3 mg/dl, P = 0.0003), and fasting insulin (10.8 +/- 0.9 vs. 7.0 +/- 0.9 microIU/ml, P = 0.004) were increased compared with control subjects. Triglycerides (r = 0.39, P = 0.05) and extremity fat as percentage of whole body fat by DEXA (r = -0.51, P = 0.01) correlated significantly with IMCL in the HIV but not the control group. Extremity fat (beta = -633.53, P = 0.03) remained significantly associated with IMCL among HIV-infected patients, controlling for visceral abdominal fat, abdominal subcutaneous fat, and antiretroviral medications in a regression model. These data demonstrate increased IMCL in HIV-infected women with a mixed lipodystrophy pattern, being most significantly associated with reduced extremity fat. Further studies are necessary to determine the relationship between extremity fat loss and increased IMCL in HIV-infected women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号