首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Sun H  Kondo R  Shima A  Naruse K  Hori H  Chigusa SI 《Gene》1999,231(1-2):137-145
To obtain an understanding of the origin, diversification and genomic organization of vertebrate olfactory receptor genes, we have newly cloned and characterized putative olfactory receptor genes, mfOR1, mfOR2, mfOR3 and mfOR4 from the genomic DNA of medaka fish (Oryzias latipes). The four sequences contained features commonly seen in known olfactory receptor genes and were phylogenetically most closely related to those of catfish and zebrafish.Among them, mfOR1 and mfOR2 showed the highest amino acid (aa) similarity (93%) and defined a novel olfactory receptor gene family that is most divergent among all other vertebrate olfactory receptor genes. Southern hybridization analyses suggested that mfOR1 and mfOR2 are tightly linked to each other (within 24kb), although suitable marker genes were not available to locate their linkage group. Unlike observation in catfish olfactory receptor sequences, nucleotide (nt) substitutions between the two sequences did not show any evidence of positive natural selection. mfOR3 and mfOR4, however, showed a much lower aa similarity (26%) and were both mapped to a region in the medaka linkage group XX.After including these medaka fish sequences, olfactory receptors of terrestrial and aquatic animals formed significantly different clusters in the phylogenetic tree. Although the member genes of each olfactory receptor gene subfamily are less in fish than that in mammals, fish seem to have maintained more diverse olfactory receptor gene families. Our finding of a novel olfactory receptor gene family in medaka fish may provide a step towards understanding the emergence of the olfactory receptor gene in vertebrates.  相似文献   

2.
We study to what degree patterns of amino acid substitution vary between genes using two models of protein-coding gene evolution. The first divides the amino acids into groups, with one substitution rate for pairs of residues in the same group and a second for those in differing groups. Unlike previous applications of this model, the groups themselves are estimated from data by simulated annealing. The second model makes substitution rates a function of the physical and chemical similarity between two residues. Because we model the evolution of coding DNA sequences as opposed to protein sequences, artifacts arising from the differing numbers of nucleotide substitutions required to bring about various amino acid substitutions are avoided. Using 10 alignments of related sequences (five of orthologous genes and five gene families), we do find differences in substitution patterns. We also find that, although patterns of amino acid substitution vary temporally within the history of a gene, variation is not greater in paralogous than in orthologous genes. Improved understanding of such gene-specific variation in substitution patterns may have implications for applications such as sequence alignment and phylogenetic inference.  相似文献   

3.
植物DUR3同源蛋白属于钠离子/溶质共运蛋白家族的尿素高亲和力运输蛋白,在植物体对外源尿素的主动吸收及内源尿素的再分配过程中具有重要作用。为明确棉花DUR3基因的结构和进化情况,基于生物信息学的方法,从全基因组水平鉴定陆地棉和雷蒙德氏棉的DUR3基因,并对基因结构、跨膜结构域、基序分布、进化关系等进行分析。结果表明:(1)从陆地棉A亚组和D亚组染色体各鉴定出1个DUR3基因,从雷蒙德氏棉基因组鉴定出1个DUR3基因。这3个棉花DUR3同源蛋白同其他植物DUR3同源蛋白一样,具有15个跨膜结构域,具有3个位置一致、高度保守的基序。(2)基因结构分析表明,双子叶植物DUR3基因的外显子个数明显多于单子叶植物,这3个棉花DUR3基因的外显子个数亦是如此。(3)根据物种间种属亲缘关系,对不同物种DUR3氨基酸序列构建的进化树显示,棉花的同双子叶植物的聚在一起。(4)DUR3直系同源基因和旁系同源基因的Ka/Ks比值普遍均大于1,说明这些基因在进化过程中主要受到正向选择的作用。该研究结果为深入研究棉花DUR3同源蛋白提供了理论基础。  相似文献   

4.
A comparative approach was taken for identifying amino acid substitutions that may be under positive Darwinian selection and are correlated with spectral shifts among orthologous and paralogous lepidopteran long wavelength-sensitive (LW) opsins. Four novel LW opsin fragments were isolated, cloned, and sequenced from eye-specific cDNAs from two butterflies, Vanessa cardui (Nymphalidae) and Precis coenia (Nymphalidae), and two moths, Spodoptera exigua (Noctuidae) and Galleria mellonella (Pyralidae). These opsins were sampled because they encode visual pigments having a naturally occurring range of lambda(max) values (510-530 nm), which in combination with previously characterized lepidopteran opsins, provide a complete range of known spectral sensitivities (510-575 nm) among lepidopteran LW opsins. Two recent opsin gene duplication events were found within the papilionid but not within the nymphalid butterfly families through neighbor-joining, maximum parsimony, and maximum likelihood phylogenetic analyses of 13 lepidopteran opsin sequences. An elevated rate of evolution was detected in the red-shifted Papilio Rh3 branch following gene duplication, because of an increase in the amino acid substitution rate in the transmembrane domain of the protein, a region that forms the chromophore-binding pocket of the visual pigment. A maximum likelihood approach was used to estimate omega, the ratio of nonsynonymous to synonymous substitutions per site. Branch-specific tests of selection (free-ratio) identified one branch with omega = 2.1044, but the small number of substitutions involved was not significantly different from the expected number of changes under the neutral expectation of omega = 1. Ancestral sequences were reconstructed with a high degree of certainty from these data. Reconstructed ancestral sequences revealed several instances of convergence to the same amino acid between butterfly and vertebrate cone pigments, and between independent branches of the butterfly opsin tree that are correlated with spectral shifts.  相似文献   

5.
6.
Kim MS  Seo JS  Ahn SJ  Kim NY  Je JE  Sung JH  Lee HH  Chung JK 《Genomics》2008,92(5):366-371
Fishes possess more genes than other vertebrates, possibly because of a genome duplication event during the evolution of the teleost (ray-finned) fish lineage. To further explore this idea, we cloned five genes encoding phosphoinositide-specific phospholipase C-delta (PLC-delta), designated respectively PoPLC-deltas, from olive flounder (Paralichthys olivaceus), and we performed phylogenetic analysis and sequence comparison to compare our putative gene products (PoPLC-deltas) with the sequences of known human PLC isoforms. The deduced amino acid sequences shared high sequence identity with human PLC-delta1, -delta3, and -delta4 isozymes and exhibited similar primary structures. In phylogenetic analysis of PoPLC-deltas with PLC-deltas of five teleost fishes (zebrafish, stickleback, medaka, Tetraodon, and Takifugu), three tetrapods (human, chicken, and frog), and two tunicates (sea squirt and pacific sea squirt), whose putative sequences of PLC-delta are available in Ensembl genome browser, the result also indicated that the two paralogous genes corresponding to each PLC-delta isoform originated from fish-specific genome duplication prior to the divergence of teleost fish. Our analyses suggest that an ancestral PLC-delta gene underwent three rounds of genome duplication during the evolution of vertebrates, leading to the six genes of three PLC-delta isoforms in teleost fish.  相似文献   

7.
Zhang J 《Genetics》2004,166(4):1887-1895
  相似文献   

8.
Kawaguchi M  Yasumasu S  Hiroi J  Naruse K  Suzuki T  Iuchi I 《Gene》2007,392(1-2):77-88
Using gene cloning and in silico cloning, we analyzed the structures of hatching enzyme gene orthologs of vertebrates. Comparison led to a hypothesis that hatching enzyme genes of Japanese eel conserve an ancestral structure of the genes of fishes, amphibians, birds and mammals. However, the exon-intron structure of the genes was different from species to species in Teleostei: Japanese eel hatching enzyme genes were 9-exon-8-intron genes, and zebrafish genes were 5-exon-4-intron genes. In the present study, we further analyzed the gene structures of fishes belonging to Acanthopterygii. In the species of Teleostei we examined, diversification of hatching enzyme gene into two paralogous genes for HCE (high choriolytic enzyme) and LCE (low choriolytic enzyme) was found only in the acanthopterygian fishes such as medaka Oryzias latipes, Fundulus heteroclitus, Takifugu rubripes and Tetraodon nigroviridis. In addition, the HCE gene had no intron, while the LCE gene consisted of 8 exons and 7 introns. Phylogenetic analysis revealed that HCE and LCE genes were paralogous to each other, and diverged during the evolutionary lineage to Acanthopterygii. Analysis of gene synteny and cluster structure showed that the syntenic genes around the HCE and LCE genes were highly conserved between medaka and Teraodon, but such synteny was not found around the zebrafish hatching enzyme genes. We hypothesize that the zebrafish hatching enzyme genes were translocated from chromosome to chromosome, and lost some of their introns during evolution.  相似文献   

9.
Identification of three duplicated Spin genes in medaka (Oryzias latipes)   总被引:3,自引:0,他引:3  
Wang XL  Mei J  Sun M  Hong YH  Gui JF 《Gene》2005,350(2):99-106
Gene and genomic duplications are very important and frequent events in fish evolution, and the divergence of duplicated genes in sequences and functions is a focus of research on gene evolution. Here, we report the identification and characterization of three duplicated Spindlin (Spin) genes from medaka (Oryzias latipes): OlSpinA, OlSpinB, and OlSpinC. Molecular cloning, genomic DNA Blast analysis and phylogenetic relationship analysis demonstrated that the three duplicated OlSpin genes should belong to gene duplication. Furthermore, Western blot analysis revealed significant expression differences of the three OlSpins among different tissues and during embryogenesis in medaka, and suggested that sequence and functional divergence might have occurred in evolution among them.  相似文献   

10.
Having a well-known history of genome duplication, rice is a good model for studying structural and functional evolution of paleo duplications. Improved sequence alignment criteria were used to characterize 10 major chromosome-to-chromosome duplication relationships associated with 1440 paralogous pairs, covering 47.8% of the rice genome, with 12.6% of genes that are conserved within sister blocks. Using a micro-array experiment, a genome-wide expression map has been produced, in which 2382 genes show significant differences of expression in root, leaf and grain. By integrating both structural (1440 paralogous pairs) and functional information (2382 differentially expressed genes), we identified 115 paralogous gene pairs for which at least one copy is differentially expressed in one of the three tissues. A vast majority of the 115 paralogous gene pairs have been neofunctionalized or subfunctionalized as 88%, 89% and 96% of duplicates, respectively, expressed in grain, leaf and root show distinct expression patterns. On the basis of a Gene Ontology analysis, we have identified and characterized the gene families that have been structurally and functionally preferentially retained in the duplication showing that the vast majority (>85%) of duplicated have been either lost or have been subfunctionalized or neofunctionalized during 50–70 million years of evolution.  相似文献   

11.
Gene duplication provides the opportunity for subsequent refinement of distinct functions of the duplicated copies. Either through changes in coding sequence or changes in regulatory regions, duplicate copies appear to obtain new or tissue-specific functions. If this divergence were driven by natural selection, we would expect duplicated copies to have differentiated patterns of substitutions. We tested this hypothesis using genes that duplicated before the human/mouse split and whose orthologous relations were clear. The null hypothesis is that the number of amino acid changes between humans and mice was distributed similarly across different paralogs. We used a method modified from Tang and Lewontin to detect heterogeneity in the amino acid substitution pattern between those different paralogs. Our results show that many of the paralogous gene pairs appear to be under differential selection in the human/mouse comparison. The properties that led to diversification appear to have arisen before the split of the human and mouse lineages. Further study of the diverged genes revealed insights regarding the patterns of amino acid substitution that resulted in differences in function and/or expression of these genes. This approach has utility in the study of newly identified members of gene families in genomewide data mining and for contrasting the merits of alternative hypotheses for the evolutionary divergence of function of duplicated genes.  相似文献   

12.
Kitano T  Saitou N 《Immunogenetics》2000,51(10):856-862
Rh and its homologous Rh50 gene products are considered to form heterotetramers on erythrocyte membranes. Rh protein has Rh blood group antigen sites, while Rh50 protein does not, and is more conserved than Rh protein. We previously determined both Rh and Rh50 gene cDNA coding regions from mouse and rat, and carried out phylogenetic analyses. In this study, we determined Rh50 gene cDNA coding regions from African clawed frog and Japanese medaka fish, and examined the long-term evolution of the Rh blood group and related genes. We constructed the phylogenetic tree from amino acid sequences. Rh50 genes of African clawed frog and Japanese medaka fish formed a cluster with mammalian Rh50 genes. The gene duplication time between Rh and Rh50 genes was estimated to be about 510 million years ago based on this tree. This period roughly corresponds to the Cambrian, before the divergence between jawless fish and jawed vertebrates. We also BLAST-searched an amino acid sequence database, and the Rh blood group and related genes were found to have homology with ammonium transporter genes of many organisms. Ammonium transporter genes can be classified into two major groups (amt alpha and amt beta). Both groups contain genes from three domains (bacteria, archaea, and eukaryota). The Rh blood group and related genes are separated from both amt alpha and beta groups.  相似文献   

13.
The major histocompatibility complex (MHC) class II molecules play central roles in adaptive immunity by regulating immune response via the activation of CD4 T cells. The full complement of the MHC class II genes has been elucidated only in mammalian species to date. To understand the evolution of these genes, we performed their first comprehensive analysis in nonmammalian species using a teleost, medaka (Oryzias latipes). Based on a database search, cDNA cloning, and genomic PCR, medaka was shown to possess five pairs of expressed class II genes, comprising one IIA and one IIB gene. Each pair was located on a different chromosome and was not linked to the class I genes. Only one pair showed a high degree of polymorphism and was considered to be classical class II genes, whereas the other four pairs were nonclassical. Phylogenetic analysis of all medaka class II genes and most reported teleost class II genes revealed that the IIA and IIB genes formed separate clades, each containing three well-corresponding lineages. One lineage contained three medaka genes and all known classical class II genes of Ostariophysi and Euteleostei and was presumed to be an original lineage of the teleost MHC class II genes. The other two lineages contained one nonclassical medaka gene each and some Euteleostei genes. These results indicate that multiple lineages of the teleost MHC class II genes have been conserved for hundreds of millions of years and that the tightly linked IIA and IIB genes have undergone concerted evolution.  相似文献   

14.
CYCLOIDEA (CYC) and DICHOTOMA (DICH) are paralogous genes that determine adaxial (dorsal) flower identity in the bilaterally symmetric flowers of Antirrhinum majus (snapdragon). We show here that the duplication leading to the existence of both CYC and DICH in Antirrhinum occurred before the radiation of the Antirrhineae (the tribe to which snapdragon belongs). We find no additional gene duplications within Antirrhineae. Using explicit codon-based models of evolution in a likelihood framework, we show that patterns of molecular evolution after the duplication that gave rise to CYC and DICH are consistent with purifying selection acting at both loci, despite their known functional redundancy in snapdragon. However, for specific gene regions, purifying selection is significantly relaxed across DICH lineages, relative to CYC lineages. In addition, we find evidence for relaxed purifying selection along the lineage leading to snapdragon in one of two putative functional domains of DICH. A model of selection accounting for the persistence of paralogous genes in the absence of diversifying selection is presented. This model takes into account differences in the degree of purifying selection acting at the two loci and is consistent with subfunctionalization models of paralogous gene evolution.  相似文献   

15.
We have identified the Hsp70 gene superfamily of the nematode Caenorhabditis briggsae and investigated the evolution of these genes in comparison with Hsp70 genes from C. elegans, Drosophila, and yeast. The Hsp70 genes are classified into three monophyletic groups according to their subcellular localization, namely, cytoplasm (CYT), endoplasmic reticulum (ER), and mitochondria (MT). The Hsp110 genes can be classified into the polyphyletic CYT group and the monophyletic ER group. The different Hsp70 and Hsp110 groups appeared to evolve following the model of divergent evolution. This model can also explain the evolution of the ER and MT genes. On the other hand, the CYT genes are divided into heat-inducible and constitutively expressed genes. The constitutively expressed genes have evolved more or less following the birth-and-death process, and the rates of gene birth and gene death are different between the two nematode species. By contrast, some heat-inducible genes show an intraspecies phylogenetic clustering. This suggests that they are subject to sequence homogenization resulting from gene conversion-like events. In addition, the heat-inducible genes show high levels of sequence conservation in both intra-species and inter-species comparisons, and in most cases, amino acid sequence similarity is higher than nucleotide sequence similarity. This indicates that purifying selection also plays an important role in maintaining high sequence similarity among paralogous Hsp70 genes. Therefore, we suggest that the CYT heat-inducible genes have been subjected to a combination of purifying selection, birth-and-death process, and gene conversion-like events.  相似文献   

16.
The human steroid 21-hydroxylase gene (CYP21A2) participates in cortisol and aldosterone biosynthesis, and resides together with its paralogous (duplicated) pseudogene in a multiallelic copy number variation (CNV), called RCCX CNV. Concerted evolution caused by non-allelic gene conversion has been described in great ape CYP21 genes, and the same conversion activity is responsible for a serious genetic disorder of CYP21A2, congenital adrenal hyperplasia (CAH). In the current study, 33 CYP21A2 haplotype variants encoding 6 protein variants were determined from a European population. CYP21A2 was shown to be one of the most diverse human genes (HHe=0.949), but the diversity of intron 2 was greater still. Contrary to previous findings, the evolution of intron 2 did not follow concerted evolution, although the remaining part of the gene did. Fixed sites (different fixed alleles of sites in human CYP21 paralogues) significantly accumulated in intron 2, indicating that the excess of fixed sites was connected to the lack of effective non-allelic conversion and concerted evolution. Furthermore, positive selection was presumably focused on intron 2, and possibly associated with the previous genetic features. However, the positive selection detected by several neutrality tests was discerned along the whole gene. In addition, the clear signature of negative selection was observed in the coding sequence. The maintenance of the CYP21 enzyme function is critical, and could lead to negative selection, whereas the presumed gene regulation altering steroid hormone levels via intron 2 might help fast adaptation, which broadly characterizes the genes of human CNVs responding to the environment.  相似文献   

17.
Analysis of evolution of paralogous genes in a genome is central to our understanding of genome evolution. Comparison of closely related bacterial genomes, which has provided clues as to how genome sequences evolve under natural conditions, would help in such an analysis. With species Staphylococcus aureus, whole-genome sequences have been decoded for seven strains. We compared their DNA sequences to detect large genome polymorphisms and to deduce mechanisms of genome rearrangements that have formed each of them. We first compared strains N315 and Mu50, which make one of the most closely related strain pairs, at the single-nucleotide resolution to catalogue all the middle-sized (more than 10 bp) to large genome polymorphisms such as indels and substitutions. These polymorphisms include two paralogous gene sets, one in a tandem paralogue gene cluster for toxins in a genomic island and the other in a ribosomal RNA operon. We also focused on two other tandem paralogue gene clusters and type I restriction-modification (RM) genes on the genomic islands. Then we reconstructed rearrangement events responsible for these polymorphisms, in the paralogous genes and the others, with reference to the other five genomes. For the tandem paralogue gene clusters, we were able to infer sequences for homologous recombination generating the change in the repeat number. These sequences were conserved among the repeated paralogous units likely because of their functional importance. The sequence specificity (S) subunit of type I RM systems showed recombination, likely at the homology of a conserved region, between the two variable regions for sequence specificity. We also noticed novel alleles in the ribosomal RNA operons and suggested a role for illegitimate recombination in their formation. These results revealed importance of recombination involving long conserved sequence in the evolution of paralogous genes in the genome.  相似文献   

18.
Spider dragline (major ampullate) silk outperforms virtually all other natural and manmade materials in terms of tensile strength and toughness. For this reason, the mass-production of artificial spider silks through transgenic technologies has been a major goal of biomimetics research. Although all known arthropod silk proteins are extremely large (>200 kiloDaltons), recombinant spider silks have been designed from short and incomplete cDNAs, the only available sequences. Here we describe the first full-length spider silk gene sequences and their flanking regions. These genes encode the MaSp1 and MaSp2 proteins that compose the black widow's high-performance dragline silk. Each gene includes a single enormous exon (>9000 base pairs) that translates into a highly repetitive polypeptide. Patterns of variation among sequence repeats at the amino acid and nucleotide levels indicate that the interaction of selection, intergenic recombination, and intragenic recombination governs the evolution of these highly unusual, modular proteins. Phylogenetic footprinting revealed putative regulatory elements in non-coding flanking sequences. Conservation of both upstream and downstream flanking sequences was especially striking between the two paralogous black widow major ampullate silk genes. Because these genes are co-expressed within the same silk gland, there may have been selection for similarity in regulatory regions. Our new data provide complete templates for synthesis of recombinant silk proteins that significantly improve the degree to which artificial silks mimic natural spider dragline fibers.  相似文献   

19.
One of the principal goals of population genetics is to understand the processes by which genetic variation within species (polymorphism) becomes converted into genetic differences between species (divergence). In this transformation, selective neutrality, near neutrality, and positive selection may each play a role, differing from one gene to the next. Synonymous nucleotide sites are often used as a uniform standard of comparison across genes on the grounds that synonymous sites are subject to relatively weak selective constraints and so may, to a first approximation, be regarded as neutral. Synonymous sites are also interdigitated with nonsynonymous sites and so are affected equally by genomic context and demographic factors. Hence a comparison of levels of polymorphism and divergence between synonymous sites and amino acid replacement sites in a gene is potentially informative about the magnitude of selective forces associated with amino acid replacements. We have analyzed 56 genes in which polymorphism data from D. simulans are compared with divergence from a reference strain of D. melanogaster. The framework of the analysis is Bayesian and assumes that the distribution of selective effects (Malthusian fitnesses) is Gaussian with a mean that differs for each gene. In such a model, the average scaled selection intensity (gamma = N(e)s) of amino acid replacements eligible to become polymorphic or fixed is -7.31, and the standard deviation of selective effects within each locus is 6.79 (assuming homoscedasticity across loci). For newly arising mutations of this type that occur in autosomal or X-linked genes, the average proportion of beneficial mutations is 19.7%. Among the amino acid polymorphisms in the sample, the expected average proportion of beneficial mutations is 47.7%, and among amino acid replacements that become fixed the average proportion of beneficial mutations is 94.3%. The average scaled selection intensity of fixed mutations is +5.1. The presence of positive selection is pervasive with the single exception of kl-5, a Y-linked fertility gene. We find no evidence that a significant fraction of fixed amino acid replacements is neutral or nearly neutral or that positive selection drives amino acid replacements at only a subset of the loci. These results are model dependent and we discuss possible modifications of the model that might allow more neutral and nearly neutral amino acid replacements to be fixed.  相似文献   

20.
The availability of multiple teleost (bony fish) genomes is providing unprecedented opportunities to understand the diversity and function of gene duplication events using comparative genomics. Here we examine multiple paralogous genes of γ-glutamyl transferase (GGT) in several distantly related teleost species including medaka, stickleback, green spotted pufferfish, fugu, and zebrafish. Through mining genome databases, we have identified multiple GGT orthologs. Duplicate (paralogous) GGT sequences for GGT1 (GGT1 a and b), GGTL1 (GGTL1 a and b), and GGTL3 (GGTL3 a and b) were identified for each species. Phylogenetic analysis suggests that GGTs are ancient proteins conserved across most metazoan phyla and those paralogous GGTs in teleosts likely arose from the serial 3R genome duplication events. A third GGTL1 gene (GGTL1c) was found in green spotted pufferfish; however, this gene is not present in medaka, stickleback, or fugu. Similarly, one or both paralogs of GGTL3 appear to have been lost in green spotted pufferfish, fugu, and zebrafish. Syntenic relationships were highly maintained between duplicated teleost chromosomes, among teleosts and across ray-finned (Actinopterygii) and lobe-finned (Sarcopterygii) species. To assess subfunction partitioning, six medaka GGT genes were cloned and assessed for developmental and tissue-specific expression. On the basis of these data, we propose a modification of the "duplication-degeneration-complementation" model of subfunction partitioning where quantitative differences rather than absolute differences in gene expression are observed between gene paralogs. Our results demonstrate that multiple GGT genes have been retained within teleost genomes. Questions remain, however, regarding the functional roles of multiple GGTs in these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号