首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The higher plants of today array a large number of small chloroplasts in their photosynthetic cells. This array of small chloroplasts results from organelle division via prokaryotic binary fission in a eukaryotic plant cell environment. Functional abnormalities of the tightly coordinated biochemical event of chloroplast division lead to abnormal chloroplast development in plants. Here, we described an abnormal chloroplast phenotype in an ethylene insensitive ethylene response1-1 (etr1-1) of Arabidopsis thaliana. Extensive transgenic and genetic analyses revealed that this organelle abnormality was not linked to etr1-1 or ethylene signaling, but linked to a second mutation in ACCUMULATION AND REPLICATION3 (ARC3), which was further verified by genetic complementation analysis. Despite the normal expression of other plastid division-related genes, the loss of ARC3 caused the enlargement of chloroplasts as well as the diminution of a photosynthetic protein Rubisco in etr1-1. Our study has suggested that the increased size of the abnormal chloroplasts may not be able to fully compensate for the loss of a greater array of small chloroplasts in higher plants.  相似文献   

2.
Summary The size ranges of chloroplasts in living mesophyll cells of Spinacia oleracea, Allium cepa, Beta vulgaris (Swiss chard and red beet) and Nicotiana glutinosa are extremely wide, e.g., ranging from about 6 µ2 to 103 µ2 in face area for spinach. Moreover, the size distributions are positively skewed. We interpret the size range and skewed size distributions primarily to reflect an enormous growth of the bulk of the chloroplasts from small, equal-sized chloroplasts produced by fission of a small sub-population of constricted mature chloroplasts. While actual fission has never been observed, a slow division rate of the constricted chloroplasts in N. glutinosa can account for the increase in chloroplast numbers per cell during leaf development and for the presence of small, non-constricted chloroplasts after the small chloroplasts which developed during the initial meristem activity have enlarged. Chloroplast numbers and total amount of chloroplast material per cell face were positively correlated with mesophyll-cell face size. However, the fraction of the cell face occupied with chloroplasts was essentially constant and independent of cell size and cell age while being markedly different for different species of plants. There appear to be some family characteristics in that closely related species have similar size-distributions and ranges of chloroplast sizes. The observations are discussed with respect to the ontogeny of chloroplasts in higher plants.  相似文献   

3.
4.
Chloroplasts arose from a cyanobacterial endosymbiont and multiply by division, reminiscent of their free-living ancestor. However, chloroplasts can not divide by themselves, and the division is performed and controlled by proteins that are encoded by the host nucleus. The continuity of chloroplasts was originally established by synchronization of endosymbiotic cell division with host cell division, as seen in existent algae. In contrast, land plant cells contain multiple chloroplasts, the division of which is not synchronized, even in the same cell. Land plants have evolved cell and chloroplast differentiation systems in which the size and number of chloroplasts (or other types of plastids) change along with their respective cellular function by changes in the division rate. We recently reported that PLASTID DIVISION (PDV) proteins, land-plant specific components of the chloroplast division apparatus, determined the rate of chloroplast division. The level of PDV protein is regulated by the cell differentiation program based on cytokinin, and the increase or decrease of the PDV level gives rise to an increase or decrease in the chloroplast division rate. Thus, the integration of PDV proteins into the chloroplast division machinery enabled land plant cells to change chloroplast size and number in accord with the fate of cell differentiation.Key words: chloroplast division, cell cycle, cell differentiation, cytokinin, endosymbiosis, evolution  相似文献   

5.
Chloroplasts were originally established in eukaryotes by the endosymbiosis of a cyanobacterium; they then spread through diversification of the eukaryotic hosts and subsequent engulfment of eukaryotic algae by previously nonphotosynthetic eukaryotes. The continuity of chloroplasts is maintained by division of preexisting chloroplasts. Like their ancestors, chloroplasts use a bacterial division system based on the FtsZ ring and some associated factors, all of which are now encoded in the host nuclear genome. The majority of bacterial division factors are absent from chloroplasts and several new factors have been added by the eukaryotic host. For example, the ftsZ gene has been duplicated and modified, plastid-dividing (PD) rings were most likely added by the eukaryotic host, and a member of the dynamin family of proteins evolved to regulate chloroplast division. The identification of several additional proteins involved in the division process, along with data from diverse lineages of organisms, our current knowledge of mitochondrial division, and the mining of genomic sequence data have enabled us to begin to understand the universality and evolution of the division system. The principal features of the chloroplast division system thus far identified are conserved across several lineages, including those with secondary chloroplasts, and may reflect primeval features of mitochondrial division. Shin-ya Miyagishima is the recipient of the Botanical Society Award for Young Scientists, 2004.  相似文献   

6.
7.
Nucleoside diphosphate kinases (NDPKs) are key enzymes that are involved in the homeostasis of nucleoside triphosphates (NTPs). Different isoforms exist, which are found in diverse cell compartments, for example the cytosol, mitochondria, and plant chloroplasts. NDPK2 of Pisum sativum has been shown to be localised in chloroplasts. Two forms of different size have been reported in plastids and it has been speculated that they function in distinct suborganellar compartments. We investigated the import behaviour and localisation of these two isoforms. Our results indicate that they do not differ in their route of entry into the organelle and both forms end up in the chloroplast stroma.  相似文献   

8.
Summary Chloroplast replication was studied in Euglena gracilis Klebs, strain Z, synchronized by appropriate light-dark cycles. The chloroplasts divide synchronously, at the time of cytokinesis, but with a tighter synchrony than cell division itself. The chloroplasts within one cell are not noticeably better synchronized than those in the whole population. Chloroplast replication and cell division could not be separated by resetting the time of the light-dark cycle which induces the synchrony. These results are discussed for their implications concerning the mechanisms of integrating cell and plastid division.  相似文献   

9.
Weier , T. Elliot . (U. California, Davis.) The ultramicro structure of starch-free chloroplasts of fully expanded leaves of Nicotiana rustica. Amer. Jour. Bot. 48(7): 615–630. Illus. 1961.—The grana of starch-free chloroplasts of fully expanded leaves of Nicotiana rustica are distinct, compartmented, subplastid entities. They vary in size, shape, orientation and in the distinctness with which their compartments are delineated. It has not been possible to equate accurately their micro and ultramicro appearances. At the ultramicro level, the grana are connected with each other at irregular intervals by a system of anastomosing channels. The partitions forming the compartments of the grana may be coarse or very fine but are constant in appearance in any given chloroplast. The loculi enclosed by the partitions may vary in size with a granum, depending upon their location or upon the physiological activity of the chloroplast. The stroma does not penetrate the grana; it may be relatively fluid and the grana-fretwork system may move within it. A double envelope, which may have pores connecting stroma and hyaloplasm, surrounds the chloroplasts. Materials may collect between the surfaces of the envelope. There is considerable variation in the ultramicro details of chloroplast structure of Nicotiana rustica. It is not yet possible to distinguish accurately between those variations which may be of physiological significance and those which may be induced by processing.  相似文献   

10.
The Arabidopsis arc1 (accumulation and replication of chloroplasts 1) mutant has pale seedlings and smaller, more numerous chloroplasts than the wild type. Previous work has suggested that arc1 affects the timing of chloroplast division but does not function directly in the division process. We isolated ARC1 by map‐based cloning and discovered it encodes FtsHi1 (At4g23940), one of several FtsHi proteins in Arabidopsis. These poorly studied proteins resemble FtsH metalloproteases important for organelle biogenesis and protein quality control but are presumed to be proteolytically inactive. FtsHi1 bears a predicted chloroplast transit peptide and localizes to the chloroplast envelope membrane. Phenotypic studies showed that arc1 (hereafter ftsHi1‐1), which bears a missense mutation, is a weak allele of FtsHi1 that disrupts thylakoid development and reduces de‐etiolation efficiency in seedlings, suggesting that FtsHi1 is important for chloroplast biogenesis. Consistent with this finding, transgenic plants suppressed for accumulation of an FtsHi1 fusion protein were often variegated. A strong T‐DNA insertion allele, ftsHi1‐2, caused embryo‐lethality, indicating that FtsHi1 is an essential gene product. A wild‐type FtsHi1 transgene rescued both the chloroplast division and pale phenotypes of ftsHi1‐1 and the embryo‐lethal phenotype of ftsHi1‐2. FtsHi1 overexpression produced a subtle increase in chloroplast size and decrease in chloroplast number in wild‐type plants while suppression led to increased numbers of small chloroplasts, providing new evidence that FtsHi1 negatively influences chloroplast division. Taken together, our analyses reveal that FtsHi1 functions in an essential, envelope‐associated process that may couple plastid development with division.  相似文献   

11.
Cell division, the mating system, and auxosporulation were studied in the marine epipelic diatom Seminavis cf. robusta Danielidis & D. G. Mann. The interphase protoplast contains two girdle‐appressed chloroplasts, each with an elongate bar‐like pyrenoid, and also a central nucleus, located in a bridge between two vacuoles. Before cell division, the chloroplasts divide transversely and translocate onto the valves. The nucleus relocates to the ventral side for mitosis. After cytokinesis and valve formation, the chloroplasts move back to the girdle, showing a constant clockwise movement relative to the epitheca of the daughter cell. Seminavis cf. robusta is dioecious, and sexual reproduction is possible once cells are less than 50 μm. In crosses of compatible clones, gametangia pair laterally, without the formation of a copulation envelope, and produce two gametes apiece. The intensity of sexualization increases as cells reduce further in size below the 50‐μm threshold. At plasmogamy, the gametangia dehisce fully and the gametes, which were morphologically and behaviorally isogamous, fuse in the space between the gametangial thecae. The auxospore forms a transverse and longitudinal perizonium. After expansion is complete, there is an unequal contraction of the protoplast within the perizonium, creating the asymmetrical shape of the vegetative cell. Apart from this last feature, almost all characteristics exhibited by the live cell and auxospores of Seminavis agree with what is found in Navicula sensu stricto, supporting the classification of both in the Naviculaceae. Haploid parthenogenesis and polyploid auxospores were found, lending support to the view that change in ploidy may be a significant mechanism in diatom evolution.  相似文献   

12.
Summary Ten-cell-long filaments of the caulonema of Funaria hygrometrica were isolated and labeled with 3H-thymidine. During the process of regeneration this precursor is incorporated into the nucleus and the chloroplasts. The nuclei of aged cells are preferentially labeled, even the nuclei of such cells which probably will no longer divide.From these facts it is concluded that DNA synthesis can occur during the process of regeneration irrespectively of a following cell division.  相似文献   

13.
Plastid Ontogeny during Petal Development in Arabidopsis   总被引:4,自引:0,他引:4       下载免费PDF全文
Imaging of chlorophyll autofluorescence by confocal microscopy in intact whole petals of Arabidopsis thaliana has been used to analyze chloroplast development and redifferentiation during petal development. Young petals dissected from unopened buds contained green chloroplasts throughout their structure, but as the upper part of the petal lamina developed and expanded, plastids lost their chlorophyll and redifferentiated into leukoplasts, resulting in a white petal blade. Normal green chloroplasts remained in the stalk of the mature petal. In epidermal cells the chloroplasts were normal and green, in stark contrast with leaf epidermal cell plastids. In addition, the majority of these chloroplasts had dumbbell shapes, typical of dividing chloroplasts, and we suggest that the rapid expansion of petal epidermal cells may be a trigger for the initiation of chloroplast division. In petals of the Arabidopsis plastid division mutant arc6, the conversion of chloroplasts into leukoplasts was unaffected in spite of the greatly enlarged size and reduced number of arc6 chloroplasts in cells in the petal base, resulting in few enlarged leukoplasts in cells from the white lamina of arc6 petals.  相似文献   

14.
Absolute DNA amounts of individual chloroplasts from mesophyll and epidermal cells of developing spinach leaves were measured by microspectrofluorometry using the DNA-specific stain, 4,6-diamidino-2-phenyl indole, and the bacterium, Pediococcus damnosus, as an internal standard. Values obtained by this method showed that DNA amounts of individual chloroplasts from mesophyll cells fell within a normal distribution curve, although mean DNA amounts changed during leaf development and also differed from the levels in epidermal chloroplasts. There was no evidence in the data of plastids containing either the high or low levels of DNA which would be indicative of discontinuous polyploidy of plastids, or of division occurring in only a small subpopulation of chloroplasts. By contrast, the distribution of nuclear DNA amounts in the same leaf tissues in which cell division was known to be occurring showed a clear bimodal distribution. We consider that the distribution of chloroplast DNA in the plastid population shows that there is no S-phase of chloroplast DNA synthesis, all chloroplasts in the population in young leaf cells synthesize DNA, and all chloroplasts divide.  相似文献   

15.
The morphological and functional organization of the needles of Scotch pine (Pinus sylvestris L.) and Siberian fir (Abies sibirica Ledeb.), which differ in their light requirement were studied. The characteristic properties of the high-light-requiring pine included high rates of apparent photosynthesis and dark respiration, high assimilation number, numerous folds in mesophyll cell walls, and increased partial volume of intercellular spaces and hyaloplasm in the mesophyll. In the needles of shade-enduring fir, the higher efficiency of photosynthesis at low light intensities depended on the higher number of membranes and higher pigment content in the chloroplasts. The low assimilation number in fir indicated a shortage of photosynthetic reaction centers. The relative volume of the vascular cylinder and the vascular bundles in the needles and the partial volume of chloroplasts in the hyaloplasm, are considered as indices of the rate of assimilate export from mesophyll cells and their possible damping at different levels of structural organization.  相似文献   

16.
ABSTRACT

We examined the ability of northern bobwhite quail Colinus virginianus to discriminate along the duration dimension because of its suspected importance in their ability to identify individual covey members. If quail are using variability along this dimension to identify individuals we would expect their auditory resolving powers to be sufficiently refined in that dimension to make appropriate discriminations. Three 2-year old male bobwhite quail were trained using a positive reinforcement technique to discriminate between a 1000 Hz standard (correct) tone 600 ms in duration (100 ms rise/fall time) and a 1000 Hz comparison tone 300 ms in duration (also 10 ms rise/fall time). Quail were then required to discriminate between pairs of tones in which the duration of the comparison tone was progressively increased from 400 ms to 590 ms. Because of the categorical nature of the analysis we concluded that the two tones must differ in duration by 20 ms or more if they are to be discriminated correctly. Our study has shown that bobwhites are able to detect a 3% difference in duration around a standard tone 600 ms in duration, which compares favourably with results obtained from earlier studies with parakeets Melopsittacus undulatus and pigeons Columbia livia. Such a finely tuned duration discrimination ability also suggests that it is possible bobwhites may be using individual variability along the duration dimension of the separation call to identify individual covey members.  相似文献   

17.
Under certain conditions inBotrydiopsis alpina stacks of chloroplasts are formed. They consist of up to 8 elements. In contrast to what is known from other algae in zoosporangia of this species and ofHeterococcus caespitosus, stigmata are formed in early developmental stages. They are reproduced together with the chloroplasts, in which they occupy a position at the edge and near the existing or future incision. At the side of the old stigma a new one is formed, and partitioning of the chloroplast between these two leads to their distribution to the daughter chloroplasts. Young daughter cells in the zoosporangia ofBotrydiopsis alpina contain one chloroplast which undergoes a last unequal division giving rise to one astigmate and usually somewhat smaller and to one stigmate chloroplast. In both species the capacity for locomotion may be suppressed, the presumptive zoospores thereby becoming aplanospores. Autospores in the proper sense were not observed. Their development quite generally is different from that of aplanospores (and zoospores), and both types of spores should be distinguished.
Herrn Professor Dr.Lothar Geitler zum 80. Geburtstag in Verehrung gewidmet.  相似文献   

18.
Limitations in chloroplast multiplication inAcetabularia mediterranea   总被引:1,自引:1,他引:0  
Summary The incorporation of thymidine into chloroplastic DNA inAcetabularia, examined two times after enucleation, has been compared with known data on the evolution of the DNA content of these organelles after enucleation.Division of the chloroplasts has been examined in cytoplasts obtained from intact and anucleate algae and compared with known data on chloroplast division in algae enucleated since various periods of time (up to three weeks) and with corresponding electron micrographs.The distribution curves of the chloroplast size in intact algae, anucleate fragments, and cytoplasts were established.On the basis of the experimental evidence, it is proposed that both replication of chloroplastic DNA and division of the chloroplasts are under nuclear control but that information or factors involved in the former have a longer life time than those involved in the latter.In addition, some factors involved in division seem to be located in the peripheral part of the cytoplasm ofAcetabularia. Alternatively, they could be lost by the cytoplasts.  相似文献   

19.
Summary Salmonella typhimurium strain IIG has a temperature—sensitive DNA synthesis initiation apparatus and completes rounds of DNA replication when shifted to 38°. At this temperature there is a period of apparently normal division followed by a second phase in which DNA-less cells are produced. The rate of division in this second phase can be markedly increased if a culture growing in MM is shifted to nutrient broth at the time of the temperature shift. The extra divisions induced by the nutritional shift are not due to extra replication forks being introduced by this process nor to the rapid growth of ts + revertants. It is concluded that in this strain at 38°, the rate of division can be increased without altering the rate of DNA synthesis. The extra divisions induced by the shift-up do not take place for about 90 min. The possible occurrence of such a period between the triggering of division and the division event in normal cells is discussed.  相似文献   

20.
We transformed tobacco plants (Mcotiana tabacum L, Xanthi) by introducing a sense construct ofNtFtsZ1-2. This tobacco nuclear gene encodes a chloroplast-localized homologue of FtsZ, the bacterial cell-division protein. The overexpressing plants contained enlarged chloroplasts in their leaf mesophyll cells. In the T1 progeny, we observed three different phenotypes: 1 ) plants with cells containing many small chloroplasts, which was the same as for wild-type plants; 2) plants in which the celts contained one to three enlarged chloroplasts (severe type); and 3) plants whose cells contained a combination of many small chloroplasts and one to three enlarged chloroplasts (intermediate type). The outward appearance of the severe and intermediate types of transgenic plants did not differ noticeably from the wild-types. However, the severe-type plants were most retarded in their growth under both high- and low-light conditions, followed by the intermediate-types. Under medium levels of light, the two types of transgenic plants exhibited growth rates comparable to that of the wild types. Based on the overall results, we suggest that many small chloroplasts, rather than a few large chloroplasts, are required for efficient use of light energy in the mesophyll cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号