首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibodies to receptor ligands have been valuable in understanding the nature of receptor-ligand interactions. We have developed four monoclonal antibodies to the beta-adrenergic receptor antagonist alprenolol by immunizing A/J mice with (-)-alprenolol coupled to keyhole limpet hemocyanin. The antisera from these mice displayed specific [3H]dihydroalprenolol ([3H]DHA) binding that was inhibited by alprenolol, propranolol, and isoproterenol. Somatic cell fusion of spleen cells from the immunized mice to SP2/0 myeloma cells, followed by limited dilution subcloning, resulted in the isolation of four hybridomas (1B7, 5B7, 5D9, and 2G9) demonstrating three different classes of ligand binding characteristics. 1B7 had the highest binding affinity for antagonists based on Scatchard analysis (Kd [125I]- CYP = 1.4 X 10(-10) M; Kd [3H]DHA = 6.5 X 10(-9) M), and was the only antibody to demonstrate agonist-inhibition of [3H]DHA binding. Ki values computed from competitive inhibition curves of [3H]DHA binding to 1B7 resulted in a rank order of potency similar to that of beta-2-adrenergic receptors: (-)-propranolol greater than acebutolol amine greater than isoproterenol greater than (+)-propranolol greater than epinephrine greater than norepinephrine. 5B7 and 5D9 exemplified a second class of antibody. This pair had lower antagonist binding affinities (Kd [3H]DHA = 2 X 10(-8) M and 2.5 X 10(-7) M, respectively) and was stereoselective in binding receptor antagonists: (-)-propranolol greater than (+)-propranolol greater than acebutolol amine. Agonist inhibition of [3H]DHA binding to these antibodies could only be observed at very high concentrations (greater than 10(-4) M agonist), and was not dose-dependent. Finally, the class of anti-alprenolol monoclonal antibodies represented by 2G9 had the lowest antagonist binding affinity of all (IC50 alprenolol = 1 X 10(-5) M), did not demonstrate ligand stereoselectivity, and did not recognize agonists. We propose that antibodies raised against beta-adrenergic receptor ligands demonstrating stereoselective agonist binding will also demonstrate high affinity antagonist binding, and that they will closely parallel the binding characteristics of the receptor. According to this "agonist best-fit hypothesis," anti-idiotypic antibodies raised against the binding site of these idiotypes might contain true mirror images of the beta-adrenergic receptor binding site.  相似文献   

2.
R S Chang  V J Lotti 《Life sciences》1983,32(22):2603-2609
The beta-adrenergic antagonist, [3H]-dihydroalprenolol ([3H] DHA), binds to membranes prepared from the rat vas deferens in a specific and saturable manner. Scatchard and Hill plot analysis indicates a single class of binding sites with no evidence of cooperative interactions. The specific binding sites have a high affinity (Kd = 0.3 nM) and a maximal occupancy estimated to be 460 fmoles [3H]-DHA bound/g wet tissue weight. Beta-adrenergic agonists and/or antagonists inhibit [3H]-DHA binding to rat vas deferens membranes in a stereospecific manner and with a relative order of potency expected for beta-adrenergic receptors of the beta2 subtype. The receptor affinities of various beta-adrenergic antagonists in the rat vas deferens determined using inhibition of [3H]-DHA binding correlated with their receptor affinities determined physiologically using antagonism of isoproterenol-induced inhibition of neurogenic contractions in-vitro.  相似文献   

3.
On the basis of affinity differences for spiperone, two binding sites for [3H](+/-)-2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene ([3H]ADTN) in the rat brain could be distinguished: "D3" with a low and "D4" with a high affinity for spiperone. Evidence is provided that D3 and D4 sites are related to high agonist affinity states of the D1 and D2 dopamine receptors, respectively. Various well-known selective D1 and D2 agonists and antagonists showed potencies at these sites in agreement with this hypothesis. A comparison of the Bmax values for [3H]ADTN binding to D3 and D4 sites with the numbers of D1 receptors (labelled by [3H]SCH 23390) and of D2 receptors (labelled by [3H]spiperone), both in the striatum and in the mesolimbic system, indicated that under the conditions used for 3H-agonist binding experiments, both populations of D1 and D2 receptors were converted to their high agonist affinity states to a considerable, although different extent. In fact, when competition experiments with [3H]spiperone were performed under the conditions otherwise used for [3H]ADTN binding experiments (instead of the conditions usually used for antagonist binding), substantial shifts of the displacement curves of 3,4-dihydroxyphenylethylamine (dopamine) and ADTN toward higher affinities were observed. A comparison of the effects of various agonists and antagonists in the [3H]ADTN binding experiments and in functional tests revealed a significant correlation between their potencies at D4 binding sites and at D2 receptors modulating the release of [3H]acetylcholine from striatal slices. However, in the situation of the D1/D3 pair, when the measurement of adenylate cyclase activity was taken as a functional test for D1 receptors, agonists were more active in the binding than in the functional test, whereas for many antagonists the opposite was found. The results are discussed with regard to the classification and functional aspects of brain dopamine receptors.  相似文献   

4.
Although dopamine agonists can recognize two states of the D2 dopamine receptor in the anterior pituitary (D2high and D2low), we examined whether the dopamine antagonists such as [3H]spiperone could recognize these two sites with different affinities. Using up to 30 concentrations of [3H]spiperone, however, we could only detect a single population of binding sites (porcine anterior pituitary homogenates) with a dissociation constant (KD) of 130 pM. When specific [3H]spiperone binding was defined by a low concentration of (+)-butaclamol (100 nM), the apparent density was low. When defined by a high concentration of (+)-butaclamol (10 microM), nonspecific sites became detectable, thus revealing two apparent populations of sites for [3H]spiperone, only one of which was specific for dopamine. Sodium chloride reduced the KD of the single population of specific D2 sites to 64 pM. Guanine nucleotide by itself had no effect on the KD, but enhanced the density by 25%. Since the density-enhancement could be eliminated by extensive washing of membranes, and could be restored by preincubation with dopamine, the nucleotide-induced elevation of D2 density appeared to be a result of the release of tightly bound endogenous dopamine. Thus, monovalent cations and guanine nucleotides appear to have separate regulatory effects on the anterior pituitary D2 receptor that modulate antagonist-receptor interactions. Several maneuvers were used to test whether [3H]spiperone could differentiate between the two agonist-detected subpopulations of sites. Twentyfold different concentrations of [3H]spiperone (47 pM and 1000 pM) were found to label identical proportions of receptors in the D2high and D2low states as detected by the agonist 6,7-dihydroxyaminotetralin (ADTN), suggesting that spiperone labelled equal proportions of D2high and D2low sites without differential affinity for them. In addition, competition of spiperone for D2high sites selectively labelled by the agonist [3H]n-propylnorapomorphine (NPA) had a virtually identical KD for spiperone as did the total D2 receptor population as determined by direct binding studies (75 pM versus 64 pM). [3H]Spiperone also bound to a uniform population of D2low sites induced by preincubation with guanine nucleotide with identical affinity as to the total D2 population. Thus, these data do not support a "reciprocal model" for the D2 receptor (i.e., antagonist having low affinity for D2high and high affinity for D2low in a manner reciprocal to agonists).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Haloperidol coupled to albumin via the hydroxyl or carbonyl group has been used to obtain two classes of monoclonal anti-haloperidol antibodies. Both classes of monoclonal antibody bind haloperidol with high affinity but whereas one class is highly specific for haloperidol the other class binds other butyrophenones e.g. droperidol, spiperone. Anti-idiotypic antisera have been obtained that inhibit [3H]haloperidol binding to the anti-haloperidol antibodies but these do not cross react with the D2 dopamine receptor.  相似文献   

6.
Monoclonal anti-idiotypic antibodies (3C3F3E4 and 10D3F8H7) that interact with platelet activating factor (PAF) receptors were generated using an auto-anti-idiotypic approach by immunizing mice with an aldehydic analog of PAF coupled to bovine thyroglobulin. The resulting hybridomas were screened for anti-idiotypic antibody (anti-anti-PAF) with F(ab')2 fragments of affinity-purified polyclonal rabbit anti-PAF antibody. These antibodies displayed internal image properties of PAF and were considered as Ab2 beta according to the following criteria: (a) they bound to F(ab')2 fragments of the affinity-purified rabbit polyclonal anti-PAF antibody that had high affinity for PAF; (b) they inhibited [3H]PAF binding to rabbit polyclonal anti-PAF antibody and its F(ab')2 fragment in a concentration-dependent manner; (c) they displaced [3H]PAF from the anti-PAF antibody/[3H]PAF complex specifically; (d) they inhibited [3H]PAF binding to PAF receptors on rabbit platelet membranes dose dependently; (e) they displaced [3H]PAF from the [3H]PAF/PAF receptor complex specifically; and (f) they stimulated rabbit platelets to aggregate, and this aggregation could be inhibited or totally blocked by specific PAF receptor antagonists WEB 2086 and SRI 63-441. All of the above are consistent with the first successful production of monoclonal antibodies that mimic PAF and interact specifically with the PAF binding domain of PAF receptors on rabbit platelet membranes.  相似文献   

7.
D2 dopamine receptor from bovine striatum was solubilized in a form sensitive to guanine nucleotides, by means of a zwitterionic detergent, 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS). The presence of sodium ion markedly increased the solubilization yield. Treatment of the membranes with 10 mM CHAPS and 0.72 M NaCl solubilized 26% of the stereospecific [3H]spiperone binding sites in the original membrane preparations. The solubilized [3H]spiperone binding sites possessed characteristics of the D2 dopamine receptor: (a) localization of the site in the striatum but not in the cerebellum; (b) high affinity to nanomolar concentrations of [3H]spiperone; (c) displacement of [3H]spiperone binding by nanomolar concentrations of neuroleptics, but only by micromolar concentrations of dopamine and apomorphine; (d) equal activity of various dopamine agonists and antagonists in the soluble and membrane preparations. Guanine nucleotides decreased the affinity of the solubilized D2 dopamine receptor for dopamine agonists, but not for antagonists. The solubilized receptor complex was eluted in Sepharose CL-4B column chromatography as a large molecule, with a Stokes radius of approximately 90 A. These results indicate that the complex between the D2 dopamine receptor and GTP binding protein remains intact throughout the solubilization procedure.  相似文献   

8.
D1 and D2 dopamine receptors were characterized in the caudate-putamen region of nonhuman primate brains (Macaca fascicularis). D1 dopamine receptors were identified with [3H]SCH 23390 and D2 receptors with [3H]-spiperone. Scatchard analysis of [3H]SCH 23390 saturation data using washed membranes revealed a single high-affinity binding site (KD, 0.352 +/- 0.027 nM) with a density (Bmax) of 35.7 +/- 2.68 pmol/g original wet tissue weight (n = 10). The affinity of [3H]spiperone for the D2 site was 0.039 +/- 0.007 nM and the density was 25.7 +/- 1.97 pmol/g original wet tissue weight (n = 10). D1 and D2 receptors in nonhuman primates may be differentiated on the basis of drug affinities and stereoselectivity. In competition experiments, RS-SKF 38393 was the most selective D1 agonist, whereas (+)-4-propyl-9-hydroxynaphthoxazine [(+)-PHNO] was the most selective D2 agonist. Apomorphine was essentially nonselective for D1 or D2 binding sites. Of the antagonists, R-SKF 83566 and SCH 23390 were the most selective for the D1 site, whereas YM-09151-2 was the most selective for the D2 site. cis-Flupentixol and (S)-butaclamol were the least selective dopamine antagonists. D1 receptors bound benzazepine antagonists (SCH 23390/SCH 23388, R-SKF 83692/RS-SKF 83692) stereoselectively whereas D2 receptors did not. Conversely D2 receptors bound (S)-sulpiride and (+)-PHNO more potently than their enantiomers whereas D1 receptors showed little stereoselectively for each of these isomeric pairs. These binding characteristics may be utilized for evaluation of individual receptor function in vivo.  相似文献   

9.
The binding characteristics of cholinergic sites in rabbit spermatozoa   总被引:1,自引:0,他引:1  
Binding of neurotrophic ligands to rabbit spermatozoa was studied. Nicotinic cholinergic antagonists, [3H]alpha-bungarotoxin and [3H]dihydro-beta-erythroidine (DE), bound with high affinity to different sites in the tails of rabbit spermatozoa with the former binding to 10,207 sites/cell and the latter to 562 sites/cell. alpha-Bungarotoxin and DE sites resemble nicotinic sites in brain in binding affinity and specificity. [3H]Quinuclidinyl benzilate (QNB), a muscarinic cholinergic antagonist, also bound with high affinity to a single class of sites located in the heads and tails of rabbit spermatozoa. The binding characteristics of the sperm muscarinic site are similar to muscarinic sites in both innervated and noninnervated cells. Rabbit spermatozoa incubated for 16-18 h in a medium which supported motility for an extended period possessed fewer binding sites than nonincubated spermatozoa for [3H] alpha-bungarotoxin and [3H]QNB and the KD for the latter ligand was also lower. Ligands specific for the kappa and delta opiate receptors showed no affinity for rabbit spermatozoa.  相似文献   

10.
Dopamine D1 receptors were solubilized from canine and bovine striatal membranes with the detergent digitonin. The receptors retained the pharmacological characteristics of membrane-bound D1 receptors, as assessed by the binding of the selective antagonist [3H]SCH 23390. The binding of [3H]SCH 23390 to solubilized receptor preparations was specific, saturable, and reversible, with a dissociation constant of 5 nM. Dopaminergic antagonists and agonists inhibited [3H]SCH 23390 binding in a stereoselective and concentration-dependent manner with an appropriate rank order of potency for D1 receptors. Moreover, agonist high affinity binding to D1 receptors and its sensitivity to guanine nucleotides was preserved following solubilization, with agonist dissociation constants virtually identical to those observed with membrane-bound receptors. To ascertain the molecular basis for the existence of an agonist-high affinity receptor complex, D1 receptors labeled with [3H] dopamine (agonist) or [3H]SCH 23390 (antagonist) prior to, or following, solubilization were subjected to high pressure liquid steric-exclusion chromatography. All agonist- and antagonist-labeled receptor species elute as the same apparent molecular size. Treatment of brain membranes with the guanine nucleotide guanyl-5'-yl imidodiphosphate prior to solubilization prevented the retention of [3H]dopamine but not [3H]SCH 23390-labeled soluble receptors. This suggests that the same guanine nucleotide-dopamine D1 receptor complex formed in membranes is stable to solubilization and confers agonist high affinity binding in soluble preparations. These results contrast with those reported on the digitonin-solubilized dopamine D2 receptor, and the molecular mechanism responsible for this difference remains to be elucidated.  相似文献   

11.
Two peptides corresponding to amino acid sequences predicted from the nucleotide sequence of the dopamine D2 receptor were synthesized. Peptide I (CGSEG-KADRPHYC) and peptide II (NNTDQNECIIY), corresponding to 24-34 and 176-185 from the NH2 terminus, respectively, were conjugated to keyhold limpet hemocyanin and injected into rabbits. Peptide I showed a greater immunogenic response than did peptide II. Both peptide antibodies exhibited high titer for the homologous antigens, but showed little or no cross-reactivity with heterogeneous peptides. Peptide I antibodies reacted with striatal membrane proteins of apparent molecular masses of 120, 90, 85, and 30 kDa on a western blot. Furthermore, the 90-kDa band was identified as denatured D2 receptor by its high affinity for the D2 selective photoaffinity probe 125I-N'-azidospiperone (125I-NAPS). Photoaffinity labeling of the 90-kDa protein by 125I-NAPS was reduced by 40% in the presence of the peptide I antibody. In addition, evidence is also presented to show the low level of 90-kDa protein in cerebellum which contains little or no D2 ligand binding sites. The antibody to peptide I inhibited the binding of [3H]YM-09151-2, a dopamine D2 receptor selective antagonist, to striatal membranes in a concentration-dependent manner; a 50% inhibition was obtained at a 1:500 dilution of the antisera with 20 pM ligand concentration. The data on the equilibrium inhibition kinetics of [3H]YM-09151-2 binding to striatal membranes were examined in the presence of antibody and showed a 25-30% decrease in Bmax (203.5 +/- 11.0 and 164.6 +/- 3.3 fmol/mg of protein in presence of preimmune and immune sera, respectively) with no change in KD.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Mammalian D1 and D2 dopamine receptors were stably expressed in Drosophila Schneider-2 (S2) cells and screened for their pharmacological properties. Saturable, dose-dependent, high affinity binding of the D1-selective antagonist [3H]SCH-23390 was detected only in membranes from S2 cells induced to express rat dopamine D1 receptors, while saturable, dose-dependent, high affinity binding of the D2-selective antagonist [3H]methylspiperone was detected only in membranes from S2 cells induced to express rat dopamine D2 receptors. No specific binding of either radioligand could be detected in membranes isolated from uninduced or untransfected S2 cells. Both dopamine D1 and D2 receptor subtypes displayed the appropriate stereoselective binding of enantiomers of the nonselective antagonist butaclamol. Each receptor subtype also displayed the appropriate agonist stereoselectivities. The dopamine D1 receptor bound the (+)-enantiomer of the D1-selective agonist SKF38393 with higher affinity than the (-)-enantiomer, while the dopamine D2 receptor bound the (-)-enantiomer of the D2-selective agonist norpropylapomorphine with higher affinity than the (+)-enantiomer. At both receptor subtypes, dopamine binding was best characterized as occurring to a single low affinity site. In addition, the low affinity dopamine binding was also found to be insensitive to GTPgammaS and magnesium ions. Overall, the pharmacological profiles of mammalian dopamine D1 and D2 receptors expressed in Drosophila S2 cells is comparable to those observed for these same receptors when they are expressed in mammalian cell lines. A notable distinction is that there is no evidence for the coupling of insect G proteins to mammalian dopamine receptors. These results suggest that the S2 cell insect G system may provide a convenient source of pharmacologically active mammalian D1 and D2 dopamine receptors free of promiscuous G protein contaminants.  相似文献   

13.
We have characterized the dopamine D2 receptor photoaffinity probe, [3H]azido-N-methylspiperone ([3H]AMS). In the absence of light, [3H]AMS bound reversibly and with high affinity (Kd 70 pM) to sites in canine striatal membranes and was competitively inhibited by dopaminergic agonists and antagonists with an appropriate D2 receptor specificity. Upon photolysis, [3H]AMS covalently incorporated into a peptide of Mr 92,000 as assessed by fluorography following SDS-polyacrylamide gel electrophoresis. Labelling of this peptide was specifically and stereoselectively blocked by D2 antagonists and agonists. Minor specifically labelled peptides of Mr 70,000-55,000 were observed under some conditions and were the result of proteolytic degradation of the peptide at Mr 92,000.  相似文献   

14.
By use of the radioligand [3H]spiroperidol, D2 3,4-dihydroxyphenylethylamine (dopamine) receptor binding characteristics were studied in calf globus pallidus and compared with those of neostriatum. Antagonist competition curves were monophasic and revealed similar affinities for neostriatum and globus pallidus, suggesting a uniform receptor population with one affinity state for antagonists. In both regions, competition curves with the agonist dopamine were biphasic, distinguishing a high- and low-agonist-affinity state. In neostriatum and globus pallidus, respectively, 45% and 19% of [3H]spiroperidol binding was displaced with high affinity and the remainder with low affinity. In neostriatum, the addition of 0.4 mM GTP resulted in a partial conversion from high- to low-affinity state with a remaining high-affinity component of 15%. In globus pallidus, dopamine binding was not altered by GTP. The capability of GTP to modulate agonist binding to D2 receptors appears to be dependent on their neuroanatomical localization.  相似文献   

15.
Binding analysis using [3H]dopamine has shown that reduction of protein thiol groups with dithiothreitol (DTT) led to a dual effect on the receptors. First, the amount of dopamine-binding sites on the membranes and their affinity to the ligand were decreased. Second, the affinity of the receptors to [3H]dopamine was enhanced in the presence of GDP. Binding of D(1) antagonist [3H]SCH23390 to dopamine receptors increased following DTT treatment, opposite to the case with D(1) agonist [3H]SKF38393. The displacement of [3H]GDP by GTPgammaS was depressed by dopamine. Stimulation of [3H]GDP binding by dopamine was potentiated after incubation with DTT. Membrane nitrosylation eliminated the reciprocal dependence of GDP and dopamine binding to the membranes. It is suggested that binding of dopamine to the receptors can lead to both stimulation and inhibition of G protein activity, and the ratio of these effects depends on the reduction and oxidation of sulfhydryl groups of membrane proteins. Thiol reduction potentiated inhibitory action of dopamine receptors on coupled G proteins, and nitrosylation led to their uncoupling.  相似文献   

16.
We have synthesized and characterized a series of novel fluorescently labeled ligands with high affinity and specificity for D1 and D2 dopamine receptors. D1-selective probes were synthesized using (R,S)-5-(4'-aminophenyl)-8-chloro-2,3,4,5-tetrahydro-3-methyl- [1H]-3-benzazepin-7-ol, the 4'-amino derivative of the high-affinity, D1-selective antagonist SCH-23390, whereas D2-selective probes were synthesized using the high-affinity, D2-selective antagonist N-(p-aminophenethyl)spiperone (NAPS). These ligands were coupled via spacer arms of various lengths to the fluorophores fluorescein and bodipy, which fluoresce in the yellow-green region, and to tetramethylrhodamine, which is a red fluorophore. The interaction of these fluorescent ligands with dopamine receptors was evaluated by examining their ability to compete for the binding of the radiolabeled antagonists [3H]SCH-23390 or [3H]methylspiperone to rat striatal D1 or D2 dopamine receptors, respectively. We report here that these novel fluorescent ligands exhibit very high affinity and specificity for either D1 or D2 dopamine receptors. The availability of various fluorescent ligands with different emission maxima and with high affinity and specificity for D1 and D2 dopamine receptors will now permit investigations involving the visualization and localization of these receptor subtypes at the single cell and intracellular levels in the CNS and on intact cells in culture.  相似文献   

17.
Rabbit anti-idiotypic IgG antibodies to the combining site of a mouse monoclonal IgG2b antibody to leukotriene B4 (LTB4) cross-reacted with human polymorphonuclear (PMN) leukocyte receptors for LTB4. Anti-idiotypic IgG and Fab both inhibited the binding of [3H]LTB4, but not [3H]N-formylmethionyl-leucylphenylalanine (fMLP), to PMN leukocytes with similar concentration-effect relationships, whereas neither nonimmune rabbit IgG nor Fab had any inhibitory activity. At a concentration of anti-idiotypic IgG that inhibited by 50% the binding of [3H] LTB4 to PMN leukocytes, the antibodies preferentially recognized high affinity receptors. Anti-idiotypic IgG and Fab inhibited PMN leukocyte chemotactic responses to LTB4, but not fMLP, with concentration-effect relationships resembling those characteristic of the inhibition of binding of [3H] LTB4, without altering the LTB4-induced release of beta-glucuronidase. Chemotaxis and increases in the cytoplasmic concentration of calcium equal in magnitude to those elicited by optimal concentrations of LTB4 were attained at respective concentrations of anti-idiotypic IgG equal to and 1/25 the level required for inhibition of binding of [3H]LTB4 by approximately 50%. Thus, the anti-idiotypic antibodies bound to PMN leukocyte receptors for LTB4 with a specificity, preference for high affinity sites, and capacity to alter PMN leukocyte functions that were similar to LTB4.  相似文献   

18.
A ligand affinity matrix has been developed and utilized to purify the dopamine D2 receptor approx. 2100 fold from bovine striatal membranes. 3-[2-Aminoethyl]-8-[3-(4-fluorobenzoyl)propyl]-4-oxo-1-phenyl-1,3,8- triazaspiro[4.5]decan-4-one (AES) was synthesized and used to prepare the affinity matrix by coupling to epoxy-activated Sepharose 6B (AES-Sepharose). AES (Ki approximately 1.7 nM) is similar in potency to the parent compound, spiperone (Ki approximately 0.8 nM), in competing for [3H]spiperone-binding activity. AES has no significant potency in competing for the dopamine D1 receptor as assessed by competition for [3H]SCH23390 binding (Ki greater than 1 microM). Covalent photoaffinity labeling of the dopamine D2 receptor in bovine striatal membranes with N-(p-azido-m-[125I]iodophenethyl)spiperone [( 125I]N3-NAPS) was prevented by AES at nanomolar concentrations. The dopamine D2 receptor was solubilized from bovine striatal membranes using 0.25% cholate in the presence of high ionic strength, followed by precipitation and subsequent treatment with 0.5% digitonin. Nearly 100% of the [3H]spiperone-binding activity in the cholate-digitonin solubilized preparation was absorbed at a receptor-to-resin ratio of 2:1 (v/v). Dopamine D2 receptor was eluted from the affinity resin using a competing dopaminergic antagonist molecule, haloperidol. Recovery of dopamine D2 receptor activity from the affinity matrix was approx. 9% of the activity adsorbed to the resin. The [3H]spiperone-binding activity in AES-Sepharose affinity purified preparations is saturable and of high affinity (0.2 nM). Affinity-purified preparations maintain the ligand-binding characteristics of a dopamine D2 receptor as assessed by agonist and antagonist competition for [3H]spiperone binding.  相似文献   

19.
In order to investigate the possibility that there may be two conformationally distinct dopamine D1 binding sites, the effect of lysine-modifying agents on striatal dopamine D1 receptors was investigated. Treatment with the distilbene derivative, 4,4'-diisothiocyanostilbene-2,2'-disulfonate, (DIDS), resulted in an irreversible D1 receptor inactivation that was associated with a 70% loss of binding sites. The remaining DIDS-insensitive sites displayed both a decreased affinity (approximately 5 fold) for the D1 antagonist SCH-23390 and an enhanced affinity of dopaminergic agonists (approximately 10 fold) for the agonist high-affinity form of the receptor. Pretreatment with Gpp(NH)p, a non-hydrolysable guanine nucleotide, prevented the formation of the agonist high-affinity form, indicating that these sites are G-protein-linked. Prior occupancy of D1 receptors with dopaminergic agonists and antagonists afforded no protection against DIDS inactivation, suggesting that a site outside the ligand binding subunit of the D1 receptor was modified. Taken together, these data suggest that [3H]SCH-23390 labels two conformationally distinct populations of dopamine D1 receptors.  相似文献   

20.
This study establishes that presynaptic nicotinic receptors modulate dopamine release in the mouse striatum. Nicotinic agonists elicit a dose-dependent increase in the release of [3H]dopamine from synaptosomes prepared from mouse striatum. At low concentrations, this release is Ca2+ dependent, whereas at higher concentrations Ca(2+)-independent, mecamylamine-insensitive release was also observed. The Ca(2+)-dependent nicotine-evoked release was not blocked by alpha-bungarotoxin but was effectively blocked by neuronal bungarotoxin as well as several other nicotinic receptor antagonists. The relationship between potency for stimulation of release for agonists and potency for inhibition of release for antagonists was compared to the affinity of these compounds for the [3H]nicotine binding site. The overall correlation between release and binding potency was not high, but the drugs may be classified into separate groups, each of which has a high correlation with binding. This finding suggests either that more than one nicotinic receptor regulates dopamine release or that not all agonists interact with the same receptor in an identical fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号