首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradable amphiphilic graft copolymers poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(epsilon-caprolactone) (PHEA-g-PCL) with different branch lengths were synthesized through the ring-opening polymerization of epsilon-caprolactone initiated by the macroinitiator PHEA bearing hydroxyl groups. With use of the graft copolymers with different compositions, nanoparticle drug delivery systems with sizes smaller than 100 nm were prepared by a dialysis method, and microparticle drug delivery systems with sizes smaller than 5 microm were fabricated by a melting-emulsion method. The regularly spherical shapes of the drug-loaded nano- and microparticles were verified by transmission electron microscopy and scanning electron microscopy. In vitro drug release properties of nano- and microparticle drug delivery systems were investigated, with the emphasis on the effects of polymer composition, particle size, and drug-loading content on the release behaviors.  相似文献   

2.
We describe the synthesis of metal chelating polymers based on polyaspartamide and polyglutamide backbones as carriers for (111)In in radioimmunoconjugates. These polymers [PAsp(DTPA), PGlu(DTPA)] have a biotin end group and diethylenetriaminepentaacetic acid (DTPA) chelators attached to the primary amines of the diethylenetriamine (DET) pendant groups of biotin-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} [PAsp(DET)] and of biotin-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]glutamide} [PGlu(DET)]. Like Asn-containing proteins and polypeptides, polyaspartamides undergo uncatalyzed degradation under model physiological conditions (10 mM phosphate buffer, pH 7.4, 150 mM NaCl). We studied the uncatalyzed degradation of the polyaspartamide polymers by size exclusion chromatography and found that the degradation rate was sensitive to the nature of the pendant groups. The metal-free polymer underwent somewhat slower degradation than the corresponding polymers in which the DTPA groups were saturated with Eu(3+) or In(3+), but even after 14 days, substantial fractions of the polymers survived. We conclude that these polymers undergo negligible degradation on the time scale (24-48 h) of radioimmunotherapy treatment of tumors with (111)In. From a mechanistic perspective, we note that these degradation rates are on the order of the deamidation rates reported [J. Peptide Res. 2004, 63, 426] for Asn-containing pentapeptides, with half-times on the order of 10 days, but much slower than the rapid decay (hours) reported recently [Biomaterials 2010, 31, 3707] for poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} itself. This variation in degradation rate can be explained in terms of the influence of positive charges on the pendant group enhancing the acidity of the side-chain amide nitrogen of the aspartamide repeat unit. The DET pendant group is positively charged at pH 7, but in indium-loaded PAsp(DTPA) this charge is offset by the net negative charge of the DTPA-In complex.  相似文献   

3.
A series of biodegradable amphiphilic graft polymers were successfully synthesized by grafting poly(epsilon-caprolactone) (PCL) sequences onto a water-soluble poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide] (PHEA) backbone. The graft copolymers were prepared through the ring-opening polymerization of epsilon-caprolactone (CL) initiated by the macroinitiator PHEA with pendant hydroxyl groups without adding any catalyst. By controlling the feed ratio of the macroinitiator to the monomer, the copolymers with different branch lengths and properties can be obtained. The successful grafting of PCL sequences onto the PHEA backbone was verified by FTIR, 1H NMR, and combined size-exclusion chromatography and multiangle laser light scattering (SEC-MALLS) analysis. The hydrolytic degradation and enzymatic degradation of these graft copolymers were investigated. The results show the hydrolytic degradation rate increases with increasing content of hydrophilic PHEA backbone. While the enzymatic degradation rate is affected by two competitive factors, the catalytic effect of Pseudomonas cepacia lipase on the degradation of PCL branches and the hydrophilicity which depends on the copolymer composition. In situ observation of the degradation under polarizing light microscope (PLM) demonstrates the different degradation rates of different regions in the polymer samples.  相似文献   

4.
The gadolinium complexes of poly-L-lysine-poly(diethylenetriamine-N,N,N',N",N"-pentaacetic acid) (Gd-PL-DTPA) and poly-L-lysine-poly(1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetr aacetic acid) (Gd-PL-DOTA) and their conjugates with human serum albumin (HSA) have been prepared and characterized. Poly-L-lysine (PL, degree of polymerization approximately 100) was N-acylated with a mixed anhydride of the chelating ligand (DTPA or DOTA). Sixty to ninety chelating groups per molecule of PL could be attached in this way. Following purification of the polychelate by size-exclusion chromatography, the gadolinium complexes were prepared by standard methods and conjugated to HSA with heterobifunctional cross-linking reagents. The molar relaxities of these macromolecular species were 2-3-fold higher than those of the corresponding monomeric metal complexes [( Gd(DTPA)] and [Gd(DOTA)]). The conjugation conditions were optimized to produce conjugates containing 60-90 metal centers per molecule of HSA (ca. one polychelate per protein).  相似文献   

5.
Hemoglobin (Hb) was immobilized on glassy carbon (GC) electrode by a kind of synthetic water-soluble polymer, poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide] (PHEA). A pair of well-defined and quasi-reversible cyclic voltammetric peaks was achieved, which reflected the direct electron-transfer of the Fe(III)/Fe(II) couple of Hb. The formal potential (E degrees'), the apparent coverage (Gamma(*)) and the electron-transfer rate constant (k(s)) were calculated by integrating cyclic voltammograms experimental data. Scanning electron microscopy (SEM) demonstrated the morphology of Hb-PHEA film very different from the Hb and PHEA films. Ultraviolet visible (UV-vis) spectroscopy showed Hb in PHEA film remained its secondary structure similar to the native state. In respect that the immobilized protein remained its biocatalytic activity to the reduction of hydrogen peroxide (H(2)O(2)), a kind of mediator-free biosensor for H(2)O(2) could be developed. The apparent Michaelis-Menten constant (K(m)(app)) was estimated to be 18.05 microM. The biosensor exhibited rapid electrochemical response and good stability. Furthermore, uric acid (UA), ascorbic acid (AA) and dopamine (DA) had little interferences with the amperometric signal of H(2)O(2), which provide the perspective of this H(2)O(2) sensor to be used in biological environments.  相似文献   

6.
Most currently evaluated macromolecular contrast agents for magnetic resonance imaging (MRI) are not biodegradable. The goal of this study is to synthesize and characterize poly(l-glutamic acid) (PG) gadolinium chelates as biodegradable blood-pool MRI contrast agents. Two PG chelates of gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) were synthesized through the use of difunctional and monofunctional DTPA precursors. The conjugates were characterized with regard to molecular weight and molecular weight distribution, gadolinium content, relaxivity, and degradability. Distributions of the polymeric MRI contrast agents in various organs were determined by intravenous injection of (111)In-labeled polymers into mice bearing murine breast tumors. MRI scans were performed at 1.5 T in mice after bolus injection of the polymeric chelates. PG-Hex-DTPA-Gd, obtained from aminohexyl-substituted PG and DTPA-dianhydride, was partially cross-linked and was undegradable in the presence of cathepsin B. On the other hand, PG-Bz-DTPA-Gd synthesized directly from PG and monofunctional p-aminobenzyl-DTPA(acetic acid-tert-butyl ester) was a linear polymer and was degradable. The relaxivities of the polymers at 1.5 T were 3-8 times as great as that of Gd-DTPA. Both polymers had high blood concentrations and were primarily accumulated in the kidney. However, PG-Bz-DTPA-Gd was gradually cleared from the body and had significantly less retention in the blood, the spleen, and the kidney. MRI with PG-Bz-DTPA-Gd in mice showed enhanced vascular contrast at up to 2 h after the contrast agent injection. The ability of PG-Bz-DTPA-Gd to be degraded and cleared from the body makes it a favorable macromolecular MRI contrast agent.  相似文献   

7.
A series of intercalator-tethered platinum(II) complexes PtLCl2 have been prepared, where L are the diamine ligands N-[2-[(aminoethyl)amino]ethyl]-phenazine-1-carboxamide, N-[3-[(2-aminoethyl)amino]propyl]-phenazine-1-carboxamide, N-[4-[(2-aminoethyl)amino]butyl]-phenazine-1-carboxamide and N-[5-[(aminoethyl)amino]pentyl]-phenazine-1-carboxamide. Measurements of the time-course of unwinding of supercoiled pUC19 plasmid DNA by the phenazine complexes PtLCl2 reveal that the presence of the intercalator leads to enhanced rates of DNA platination when compared with the complex Pt(en)Cl2. The platinum(II) complexes where the polymethylene linker chain contains three, four or five carbon atoms are considerably more cytotoxic against murine P388/W than either cisplatin, Pt(en)Cl2, or the metal-free ligands themselves.  相似文献   

8.
Although an axoplasmic Ca(2+) increase is associated with an exocytotic acetylcholine (ACh) release from the parasympathetic postganglionic nerve endings, the role of voltage-dependent Ca(2+) channels in ACh release in the mammalian cardiac parasympathetic nerve is not clearly understood. Using a cardiac microdialysis technique, we examined the effects of Ca(2+) channel antagonists on vagal nerve stimulation- and ischemia-induced myocardial interstitial ACh releases in anesthetized cats. The vagal stimulation-induced ACh release [22.4 nM (SD 10.6), n = 7] was significantly attenuated by local administration of an N-type Ca(2+) channel antagonist omega-conotoxin GVIA [11.7 nM (SD 5.8), n = 7, P = 0.0054], or a P/Q-type Ca(2+) channel antagonist omega-conotoxin MVIIC [3.8 nM (SD 2.3), n = 6, P = 0.0002] but not by local administration of an L-type Ca(2+) channel antagonist verapamil [23.5 nM (SD 6.0), n = 5, P = 0.758]. The ischemia-induced myocardial interstitial ACh release [15.0 nM (SD 8.3), n = 8] was not attenuated by local administration of the L-, N-, or P/Q-type Ca(2+) channel antagonists, by inhibition of Na(+)/Ca(2+) exchange, or by blockade of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptor but was significantly suppressed by local administration of gadolinium [2.8 nM (SD 2.6), n = 6, P = 0.0283]. In conclusion, stimulation-induced ACh release from the cardiac postganglionic nerves depends on the N- and P/Q-type Ca(2+) channels (with a dominance of P/Q-type) but probably not on the L-type Ca(2+) channels in cats. In contrast, ischemia-induced ACh release depends on nonselective cation channels or cation-selective stretch activated channels but not on L-, N-, or P/Q type Ca(2+) channels, Na(+)/Ca(2+) exchange, or Ins(1,4,5)P(3) receptor-mediated pathway.  相似文献   

9.
Mohs AM  Zong Y  Guo J  Parker DL  Lu ZR 《Biomacromolecules》2005,6(4):2305-2311
Biodegradable macromolecular Gd(III) complexes, Gd-DTPA cystine copolymers (GDCP), were grafted with PEG of different sizes to modify the physicochemical properties and in vivo MRI contrast enhancement of the agents and to study the effect of PEG chain length on these properties. Three new PEG-grafted biodegradable macromolecular gadolinium(III) complexes were synthesized and characterized as blood pool MRI contrast agents. One of three different lengths of MPEG-NH(2) (MW = 550, 1000, and 2000) was grafted to the backbone of GDCP to yield PEG(n)()-g-poly(GdDTPA-co-l-cystine), PEG(n)()-GDCP. The PEG chain length did not dramatically alter the T(1) relaxivity, r(1), of the modified agents. The MRI enhancement profile of PEG(n)()-GDCP with different PEG sizes was significantly different in mice with respect to both signal intensity and clearance profiles. PEG(2000)-GDCP showed more prominent enhancement in the blood pool for a longer period of time than either PEG(1000)-GDCP or PEG(550)-GDCP. In the kidney, PEG(2000)-GDCP had less enhancement at 2 min than PEG(1000)-GDCP, but both PEG(550)-GDCP and PEG(1000)-GDCP showed a more pronounced signal decay thereafter. The three agents behaved similarly in the liver, as compared to that in the heart. All three agents showed little enhancement in the muscle. Chemical grafting with PEG of different chain lengths is an effective approach to modify the physiochemistry and in vivo contrast enhancement dynamics of the biodegradable macromolecular contrast agents. The novel agents are promising for further clinical development for cardiovascular and cancer MR imaging.  相似文献   

10.
Copper(II) complexes of dipeptides of histidine containing additional chelating bis(imidazol-2-yl) agent at the C-termini (PheHis-BIMA [N-phenylalanyl-histidyl-bis(imidazol-2-yl)methylamine] and HisPhe-BIMA [N-histidyl-phenylalanyl-bis(imidazol-2-yl)methylamine]) were studied by potentiometric, UV-Visible and Electron Paramagnetic Resonance (EPR) techniques. The imidazole nitrogen donor atoms of the bis(imidazol-2-yl)methyl group are described as the primary metal binding sites forming stable mono- and bis(ligand) complexes at acidic pH. The formation of a ligand-bridged dinuclear complex [Cu2L2]4+ is detected in equimolar solutions of copper(II) and HisPhe-BIMA. The coordination isomers of the dinuclear complex are described via the metal binding of the bis(imidazol-2-yl)methyl, amino-carbonyl and amino-imidazole(His) functions. In the case of the copper(II)-PheHis-BIMA system the [NH2, N-(amide), N(Im)] tridentate coordination of the ligand is favoured and results in the formation of di- and trinuclear complexes [Cu2H(-1)L]3+ and [Cu3H(-2)L2]4+ in equimolar solutions. The presence of these coordination modes shifts the formation of "tripeptide-like" ([NH2, N-, N-, N(Im)]-coordinated) [CuH(-2)L] complexes into alkaline pH range as compared to other dipeptide derivatives of bis(imidazol-2-yl) ligands. Although there are different types of imidazoles in these ligands, the deprotonation and coordination of the pyrrole-type N(1)H groups does not occur below pH 10.  相似文献   

11.
Three novel Mn(II) complexes bearing benzyloxymethyl functionalities are reported and their ability to enhance water (1H and 17O) relaxation times is investigated in detail. Two of them contain one coordinated water molecule and display relaxivity values only slightly smaller than those shown by the most clinically used contrast agents (e.g. [Gd(DTPA)(H2O)]2-). Moreover, in these Mn(II) chelates the exchange rate of the coordinated water is ca. one order of magnitude higher if compared to the exchange rates previously reported for Gd(III) complexes with octadentate ligands. The occurrence of such fast exchange rates of the coordinated water is exploited in the formation of macromolecular adducts with human serum albumin to attain systems displaying relaxivity values in the upper range of those so far reported for analogous Gd(III) systems. These results strongly support the view that Mn(II) complexes, in spite of the lower effective magnetic moment, can be considered as viable alternatives to the currently used Gd(III) complexes as contrast agents for MRI applications.  相似文献   

12.
Macromolecular gadolinium (Gd)(III) complexes have a prolonged blood circulation time and can preferentially accumulate in solid tumors, depending on the tumor blood vessel hyperpermeability, resulting in superior contrast enhancement in magnetic resonance (MR) cardiovascular imaging and cancer imaging as shown in animal models. Unfortunately, safety concerns related to these agents' slow elimination from the body impede their clinical development. Polydisulfide Gd(III) complexes have been designed and developed as biodegradable macromolecular magnetic resonance imaging (MRI) contrast agents to facilitate the clearance of Gd(III) complexes from the body after MRI examinations. These novel agents can act as macromolecular contrast agents for in vivo imaging and excrete rapidly as low-molecular-weight agents. The rationale and recent development of the novel biodegradable contrast agents are reviewed here. Polydisulfide Gd(III) complexes have relatively long blood circulation time and gradually degrade into small Gd(III) complexes, which are rapidly excreted via renal filtration. These agents result in effective and prolonged in vivo contrast enhancement in the blood pool and tumor tissue in animal models, yet demonstrate minimal Gd(III) tissue retention as the clinically used low-molecular-weight agents. Structural modification of the agents can readily alter the contrast-enhancement kinetics. Polydisulfide Gd(III) complexes are promising for further clinical development as safe, effective, biodegradable macromolecular MRI contrast agents for cardiovascular and cancer imaging, and for evaluation of therapeutic response.  相似文献   

13.
A series of intercalator-tethered platinum(II) complexes PtLCl(2) have been prepared where L are the diamine ligands N-[2-[(aminoethyl)amino]ethyl]-9-aminoacridine-4-carboxamide, N-[3-[(2-aminoethyl)amino]propyl]-9-aminoacridine-4-carboxamide, N-[4-[(2-aminoethyl)amino]butyl]-9-aminoacridine-4-carboxamide and N-[5-[(aminoethyl)amino]pentyl]-9-aminoacridine-4-carboxamide and N-[6-[(aminoethyl)amino]hexyl]-9-aminoacridine-4-carboxamide. The activity of the complexes was assessed in the CH-1, CH-1cisR, 41M, 41McisR and SKOV-3 cell lines. The compounds with the shorter linker chain lengths are generally the most active against these cell lines and are much more toxic than Pt(en)C1(2). For example, for the n=2 compound the IC(50) values are 0.017 microM (CH-1), 1.7 microM (41M), 1.4 microM (SKOV-3) and the resistance ratios are 51 (CH-1cisR) and 1.6 (41McisR). For the untethered analogue Pt(en)C1(2) the IC(50) values are 2.5 microM (CH-1), 2.9 microM (41M), 45 microM (SKOV-3) and the resistance ratios are 2.8 (CH-1cisR) and 4.1 (41McisR). The very large differential in IC(50) values between the CH-1 and CH-1cisR pair of cell lines for the 9-aminoacridine-4-carboxamide tethered platinum complexes indicates that repair of platinum-induced DNA damage may be a major determinant of the activity of these compounds.  相似文献   

14.
Biodegradable PEGylated Gd-DTPA l-cystine copolymers, PEG-g-poly(GdDTPA-co-l-cystine), were prepared and tested as a blood pool contrast agent in mice. The biodegradable macromolecular agent was designed to be broken down into smaller Gd complexes by endogenous thiols via the disulfide-thiol exchange reaction to facilitate the clearance of Gd complexes after the contrast-enhanced MRI examination. Gd-DTPA l-cystine copolymers were synthesized by condensation polymerization of l-cystine and DTPA-dianhydride in water followed by chelating with Gd(OAc)(3). MPEG-NH(2) (MW = 2000) was then conjugated to the polymeric backbone in different ratios. The macromolecular contrast agent was readily degraded with the incubation of l-cysteine. It also demonstrated superior contrast enhancement in the heart and blood vessels as compared to a low molecular weight control agent, Gd-(DTPA-BMA). At 1 h postcontrast, the PEGylated macromolecular agent still showed prominent enhancement, while little contrast enhancement was detectable in the blood pool by the control agent. PEG-g-poly(GdDTPA-co-l-cystine) shows promise as an MR blood pool imaging agent.  相似文献   

15.
The effects of 3-substituted Delta8(14)-15-ketosterols--3beta-(2-hydroxyethoxy)-, 3beta-(2-propenyloxy)-, 3beta-[2(R,S),2,3-oxidopropyloxy]-, 3beta-[2(R,S),2,3-dihydroxypropyloxy]-, 3beta-(2-oxoethoxy)-, 3beta-[2(R,S),2-acetoxy-3-acetamidopropyloxy]-, and 3beta-[2(R,S), 2-hydroxy-3-acetamidopropyloxy]-5alpha-cholest-8(14)-en-15-o nes--on cholesterol metabolism were studied in human hepatoma Hep G2 cells. 3beta-(2-Propenyloxy)-, 3beta-(2-oxoethoxy)-, and 3beta-[2(R,S),2, 3-oxidopropyloxy]-5alpha-cholest-8(14)-en-15-ones inhibited cholesterol biosynthesis without any effect on triglyceride biosynthesis, while 3beta-[2(R,S),2-acetoxy-3-acetamidopropyloxy]- and 3beta-[2(R,S), 2-hydroxy-3-acetamidopropyloxy]-5alpha-cholest-8(14)-en-15-o nes inhibited both cholesterol biosynthesis and triglyceride biosynthesis at concentrations exceeding 10 microM. 3beta-[2(R,S),2, 3-Dihydroxypropyloxy]-5alpha-cholest-8(14)-en-15-one, effectively inhibiting cholesterol biosynthesis, was found also to be toxic in Hep G2 cells at micromolar concentrations. 3beta-[2(R,S),2, 3-Oxidopropyloxy]-5alpha-cholest-8(14)-en-15-one effectively inhibited cholesterol acylation. All the tested compounds decreased the HMG-CoA reductase mRNA level at concentrations exceeding 10 microM; however, they did not affect the LDL receptor mRNA level. Among the compounds tested, only 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one decreased the uptake and internalization of LDL-associated cholesteryl esters, being as effective as 25-hydroxycholesterol.  相似文献   

16.
Neutrophils stimulated with fMLP or a variety of other chemoattractants that bind to serpentine receptors coupled to heterotrimeric G proteins exhibit rapid activation of two p21-activated protein kinases (Paks) with molecular masses of approximately 63 and 69 kDa (gamma- and alpha-Pak). Previous studies have shown that products of phosphatidylinositol 3-kinase and tyrosine kinases are required for the activation of Paks. We now report that a variety of structurally distinct compounds which interrupt different stages in calcium/calmodulin (CaM) signaling block activation of the 63- and 69-kDa Paks in fMLP-stimulated neutrophils. These antagonists included selective inhibitors of phospholipase C (1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione), the intracellular Ca(2+) channel (8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate), CaM (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide; N-(4-aminobutyl)-5-chloro-1-naphthalenesulfonamide; trifluoperazine), and CaM-activated protein kinases (N-[2-(N-(chlorocinnamyl)-N:-methylaminomethyl)phenyl]-N-[2-hydroxyethyl]-4-methoxybenzenesulfonamide). This inhibition was dose-dependent with IC(50) values very similar to those that interrupt CaM-dependent reactions in vitro. In contrast, less active analogues of these compounds (1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-2,5-pyrrolidinedione; N-(6-aminohexyl)-1-naphthalenesulfonamide; N-(4-aminobutyl)-1-naphthalenesulfonamide; promethazine; 2-[N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzyl-amine]) did not affect activation of Paks in these cells. CaM antagonists (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide; trifluoperazine), but not their less-active analogues (N-(6-aminohexyl)-1-naphthalenesulfonamide; promethazine), were also found to block activation of the small GTPases Ras and Rac in stimulated neutrophils along with the extracellular signal-regulated kinases. These data strongly suggest that the Ca(2+)/CaM complex plays a major role in the activation of a number of enzyme systems in neutrophils that are regulated by small GTPases.  相似文献   

17.
The biological behaviour of complexes of 99mTc with aminopolycarboxylic and aminocarbohydroxamic ligands EDTA (ethylenediaminetetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), EDTAH (ethylenediaminetetraacetohydroxamic acid) and HIDAmH (N-2-hydroxyethyl-N-carboxymethyl-aminoacetohydroxamic acid) was studied in rabbits. The pharmacokinetic parameters determined in intact rabbits were compared with the results obtained in the study of renal and hepatic clearance of the complexes under study. Hepatobiliary excretion, which in [99mTc]EDTA forms 20–30% of the total excreted amount, is of negligible magnitude in the other 99mTc-complexes studied (<2%). Their renal clearance is not influenced by the inhibition of tubular secretion with probenecid. Binding to plasma proteins increases in the order [99mTc]DTPA < [99mTc]EDTA <[99mTc]HIDAmH <[99mTc]EDTAH and the elimination half-life increases in the same order. The value of renal clearance of the complexes studied related to inulin clearance correlates well with the fraction of the free drug in the plasma. In rabbits the complexes under study are excreted mainly by the mechanism of glomerular filtration in the kidney.  相似文献   

18.
Previous work has shown that plasmid DNA can be encapsulated in small 'stabilized plasmid-lipid particles' (SPLP) composed of 1, 2-dioleyl-3-phosphatidylethanolamine (DOPE), the cationic lipid N, N-dioleyl-N,N-dimethylammonium chloride (DODAC) and poly(ethylene glycol) (PEG) conjugated ceramides (PEG-Cer), employing a detergent dialysis procedure. These SPLP have potential as vectors for in vivo gene therapy. This study is aimed at characterizing the influence of the cationic lipid and PEG-Cer species on SPLP formation and in vitro transfection properties. It is shown that the transfection potency of SPLP is sensitive to the cationic lipid species employed, the size of the PEG polymer incorporated in the PEG-ceramide and the length of the acyl chain contained in the ceramide anchor. With regard to the influence of cationic lipid, the transfection levels achieved were highest for SPLP containing N-[2, 3-(dioleyloxy)propyl]-N,N-dimethyl-N-cyanomethylammonium chloride (DODMA-AN) and lowest for SPLP containing 3-beta-[N-(N', N'-dimethylaminoethyl)carbamoyl]-cholesterol (DC-CHOL), according to the series DODMA-AN>N-[2,3-(dioleyloxy)propyl]-N,N, N-trimethylammonium chloride (DOTMA)>DODAC>N,N-distearyl-N, N-dimethylammonium chloride (DSDAC)>DC-CHOL. Incorporation of short (PEG(750)) PEG polymers in the PEG-ceramide components resulted in modest improvements in transfection levels over PEG(2000) and PEG(5000) polymers, however variation of the length of the acyl chain contained in the hydrophobic ceramide anchor from octanoyl (PEG-CerC(8)) to myristoyl (PEG-CerC(14)) to arachidoyl (PEG-CerC(20)) had the most dramatic effects. Transfection levels achieved for SPLP containing PEG-CerC(8) were substantially larger than observed for SPLP containing PEG-CerC(14) or PEG-CerC(20), consistent with a requirement for the PEG-ceramide to dissociate from the SPLP surface for maximum transfection potency. It is also shown that the ability of SPLP to be accumulated into cells is a dominant factor influencing transfection potency, and that the transfection potency of SPLP that are accumulated is at least equivalent to that of cationic lipid-plasmid DNA complexes.  相似文献   

19.
A clinically relevant photosensitizer, 3-devinyl-3-(1-hexyloxyethyl)pyropheophorbide-a (HPPH, a chlorophyll-a derivative), was conjugated with Gd(III)-aminobenzyl-diethylenetriaminepentaacetic acid (DTPA), an experimental magnetic resonance (MR) imaging agent. In vivo reflectance spectroscopy confirmed tumor uptake of HPPH-aminobenzyl-Gd(III)-DTPA conjugate was higher than free HPPH administered intraveneously (iv) to C3H mice with subcutaneously (sc) implanted radiation-induced fibrosarcoma (RIF) tumor cells. In other experiments, Sprague-Dawley (SD) rats with sc implanted Ward Colon Carcinoma cells yielded markedly increased MR signal intensities from tumor regions-of-interest (ROIs) 24 h post-iv injection of HPPH-aminobenzyl-Gd(III)-DTPA conjugate as compared to unconjugated HPPH. In both in vitro (RIF tumor cells) and in vivo (mice bearing RIF tumors and rats bearing Ward Colon tumors) the conjugate produced significant increases in tumor conspicuity at 1.5 T and retained therapeutic efficacy following PDT. Also synthesized were a series of novel bifunctional agents containing two Gd(III) atoms per HPPH molecule that remained tumor-avid and PDT-active and yielded improved MR tumor conspicuity compared to their corresponding mono-Gd(III) analogues. Administered iv at a MR imaging dose of 10 micromol/kg, these conjugates produced severe skin phototoxicity. However, by replacing the hexyl group of the pyropheophorbide-a with a tri(ethylene glycol) monomethyl ether (PEG-methyl ether), these conjugates produced remarkable MR tumor enhancement at 8 h post-iv injection, significant tumoricidal activity (80% of mice were tumor-free on day 90), and reduced skin phototoxicity compared to their corresponding hexyl ether analogues. The poor water-solubility characteristic of these conjugates was resolved by incorporation into a liposomal formulation. This paper presents the synthesis of tumor-avid contrast enhancing agents for MR imaging and thus represents an important milestone toward improving cancer diagnosis and tumor characterization. More importantly, this paper describes a new family of bifunctional agents that combine two modalities into a single cost-effective "see and treat" approach, namely, a single agent that can be used for contrast agent-enhanced MR imaging followed by targeted photodynamic therapy.  相似文献   

20.
The physical and biological properties of a water-soluble polymeric contrast agent based on a complex of N-(2-hydroxypropyl)methacrylamide copolymer with gadolinium (HE-24.8) were investigated, and its potential for experimental magnetic resonance (MR) angiography was assessed. Relaxivities of Gd-DTPA-BMA, Gd-DTPA-HSA (human serum albumin), and HE-24.8 were determined at 1.5 T. Thermic stability and biocompatibility of HE-24.8 were assessed in vitro and by analyzing kinetics and organ distribution in rats for up to 2 weeks. For comparison, HE-24.8- and Gd-DTPA-HSA-enhanced micro-MR angiographies of brain, chest, and subcutaneous tumors in rats were performed. T1 relaxivity of HE-24.8 (21.3 +/- 1.1 mM(-1) s(-1)) was 5-fold higher than that of Gd-DTPA-BMA (4.1 +/- 0.1 mM(-1) s(-1)) and twice as high as that of Gd-DTPA-HSA (12.4 +/- 0.2 mM(-1) s(-1)). Varying the molecular weight of the polymer (15-46 kDa) did not significantly change the T1 relaxivity. In rats, 20 and 10% of the injected dose of HE-24.8 was detected at 24 and 168 h postinjection, respectively. Upon a relatively rapid initial renal clearance, no specific retention in any organ was noted, with some exception for the reticulo-endothelial system. No measurable release of gadolinium from the polymer-Gd complex or cell toxicity was observed during its incubation in aqueous environment. Excellent display of rat and tumor vascularization was achieved with Gd-DTPA-HSA and HE-24.8; however, contrast of vessels was higher in HE-24.8-enhanced scans. HE-24.8 is considered a macromolecular contrast agent highly suited for experimental MR studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号