首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Exocytosis is evoked by intracellular signals, including Ca2+ and protein kinases. We determined how such signals interact to promote exocytosis in exocrine pancreatic duct epithelial cells (PDECs). Exocytosis, detected using carbon-fiber microamperometry, was stimulated by [Ca2+]i increases induced either through Ca2+ influx using ionomycin or by activation of P2Y2 or protease-activated receptor 2 receptors. In each case, the exocytosis was strongly potentiated when cyclic AMP (cAMP) was elevated either by activating adenylyl cyclase with forskolin or by activating the endogenous vasoactive intestinal peptide receptor. This potentiation was completely inhibited by H-89 and partially blocked by Rp-8-Br-cAMPS, inhibitors of protein kinase A. Optical monitoring of fluorescently labeled secretory granules showed slow migration toward the plasma membrane during Ca2+ elevations. Neither this Ca2+-dependent granule movement nor the number of granules found near the plasma membrane were detectably changed by raising cAMP, suggesting that cAMP potentiates Ca2+-dependent exocytosis at a later stage. A kinetic model was made of the exocytosis stimulated by UTP, trypsin, and Ca2+ ionophores with and without cAMP increase. In the model, without a cAMP rise, receptor activation stimulates exocytosis both by Ca2+ elevation and by the action of another messenger(s). With cAMP elevation the docking/priming step for secretory granules was accelerated, augmenting the releasable granule pool size, and the Ca2+ sensitivity of the final fusion step was increased, augmenting the rate of exocytosis. Presumably both cAMP actions require cAMP-dependent phosphorylation of target proteins. cAMP-dependent potentiation of Ca2+-induced exocytosis has physiological implications for mucin secretion and, possibly, for membrane protein insertion in the pancreatic duct. In addition, mechanisms underlying this potentiation of slow exocytosis may also exist in other cell systems.  相似文献   

3.
Summary In Balb/c plasmacytoma cells (MOPC 315) the synthesis and secretion of IgA in vitro was suppressed by prior incubation of the tumor cells with anti-Balb/c alloantibody. In tumor cells so treated, the levels of cyclic AMP were found to be increased. The alloantibody, either as alloantiserum or ascitic fluid globulins from allogeneic strains of mice immunized with spleen cells, had been differentially absorbed with Balb/c spleen cells. Such absorption reduces the cytotoxic antibody effect to below detectable levels, as measured by Trypan Blue exclusion, but permits retention of substantial levels of the suppressive antibody effect. The range of dilutions of alloantibody causing the increase in cAMP corresponded with those that caused suppression of IgA secretion. When tumor cells were exposed to agents that increased the level of cAMP either endogenously or exogenously, suppression of secretion of IgA was found, similar to that caused by the alloantibody. When submaximal concentrations of suppressive antibody were combined with submaximal levels of the cAMP-increasing agents greater degrees of suppression were found, suggesting an additive effect. No cytotoxic effect on these tumor cells, as indicated by Trypan Blue exclusion, was caused by these cAMP-increasing agents at the concentrations shown, either alone or in combination with the suppressive antibody.  相似文献   

4.
Ten years ago, we knew much about the function of polarized epithelia from the work of physiologists, but, as cell biologists, our understanding of how these cells were constructed was poor. We knew proteins were sorted and targeted to different plasma membrane domains and that, in some cells, the Golgi was the site of sorting, but we did not know the mechanisms involved. Between 1991 and the present, significant advances were made in defining sorting motifs for apical and basal-lateral proteins, describing the sorting machinery in the trans-Golgi network (TGN) and plasma membrane, and in understanding how cells specify delivery of transport vesicles to different membrane domains. The challenge now is to extend this knowledge to defining molecular mechanisms in detail in vitro and comprehending the development of complex epithelial structures in vivo.  相似文献   

5.
In renal collecting ducts, vasopressin increases the expression of and redistributes aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical membrane, leading to urine concentration. However, basolateral membrane expression of AQP2, in addition to AQP3 and AQP4, is often detected in inner medullary principal cells in vivo. Here, potential mechanisms that regulate apical versus basolateral targeting of AQP2 were examined. The lack of AQP2-4 association into heterotetramers and the complete apical expression of AQP2 when highly expressed in Madin-Darby canine kidney cells indicated that neither heterotetramerization of AQP2 with AQP3 and/or AQP4, nor high expression levels of AQP2 explained the basolateral AQP2 localization. However, long term hypertonicity, a feature of the inner medullary interstitium, resulted in an insertion of AQP2 into the basolateral membrane of Madin-Darby canine kidney cells after acute forskolin stimulation. Similarly, a marked insertion of AQP2 into the basolateral membrane of principal cells was observed in the distal inner medulla from normal rats and Brattleboro rats after acute vasopressin treatment of tissue slices that had been chronically treated with vasopressin to increase interstitial osmolality in the medulla, but not in tissues from vasopressin-deficient Brattleboro rats. These data reveal for the first time that chronic hypertonicity can program cells in vitro and in vivo to change the insertion of a protein into the basolateral membrane instead of the apical membrane.  相似文献   

6.
7.
8.
The unique phenotype of renal medullary cells allows them to survive and functionally adapt to changes of interstitial osmolality/tonicity. We investigated the effects of acute hypertonic challenge on AQP2 (aquaporin-2) water channel trafficking. In the absence of vasopressin, hypertonicity alone induced rapid (<10 min) plasma membrane accumulation of AQP2 in rat kidney collecting duct principal cells in situ, and in several kidney epithelial lines. Confocal microscopy revealed that AQP2 also accumulated in the trans-Golgi network (TGN) following hypertonic challenge. AQP2 mutants that mimic the Ser(256)-phosphorylated and -nonphosphorylated state accumulated at the cell surface and TGN, respectively. Hypertonicity did not induce a change in cytosolic cAMP concentration, but inhibition of either calmodulin or cAMP-dependent protein kinase A activity blunted the hypertonicity-induced increase of AQP2 cell surface expression. Hypertonicity increased p38, ERK1/2, and JNK MAPK activity. Inhibiting MAPK activity abolished hypertonicity-induced accumulation of AQP2 at the cell surface but did not affect either vasopressin-dependent AQP2 trafficking or hypertonicity-induced AQP2 accumulation in the TGN. Finally, increased AQP2 cell surface expression induced by hypertonicity largely resulted from a reduction in endocytosis but not from an increase in exocytosis. These data indicate that acute hypertonicity profoundly alters AQP2 trafficking and that hypertonicity-induced AQP2 accumulation at the cell surface depends on MAP kinase activity. This may have important implications on adaptational processes governing transcellular water flux and/or cell survival under extreme conditions of hypertonicity.  相似文献   

9.
Cyclic AMP levels in synchronized mammalian cells   总被引:13,自引:0,他引:13  
  相似文献   

10.
11.
We studied the effects of guanosine 3',5'-cyclic monophosphate (cGMP) and nitroprusside on ion channels in the apical membrane of confluent A6 cells (a distal nephron cell line) cultured on permeable supports for 10-14 days using patch clamp techniques. In cell-attached patches without any detectable channel activity, activity of a non-selective cation channel with a single-channel conductance of 1 pS was observed after adding nitroprusside. After adding cGMP to the cytosolic surface of inside-out patches with no detectable channel activity, we observed single channel activity similar to the channel observed after adding nitroprusside. These observations imply that nitroprusside activates a non-selective cation channel with small single channel conductance (1 pS) via an increase in cGMP which activates the channel.  相似文献   

12.
Cyclic AMP is not detectable in Clostridium perfringens   总被引:3,自引:0,他引:3  
Cyclic AMP was not detected (less than 5 X 10(-9) M intracellular concentration) at any stage of growth or sporulation of two strains of Clostridium perfringens grown with or without methylxanthines. Only Bacillus and Lactobacillus, genera belonging to the same phylogenetic cluster, have previously exhibited undetectable levels of cyclic AMP.  相似文献   

13.
L-Histidine and imidazole (the histidine side chain) significantly increase cAMP accumulation in intact LLC-PK1 cells. This effect is completely inhibited by isobutylmethylxanthine (IBMX). Histidine and imidazole stimulate cAMP phosphodiesterase activity in soluble and membrane fractions of LLC-PK1 cells suggesting that the IBMX-sensitive effect of these agents to stimulate cAMP formation is not due to inhibition of cAMP phosphodiesterase. Histidine and imidazole but not alanine (the histidine core structure) increase basal, GTP-, forskolin-, and AVP-stimulated adenylate cyclase activity in LLC-PK1 membranes. Two other amino acids with charged side chains (aspartic and glutamic acids) increase AVP-stimulated but neither basal- nor forskolin-stimulated adenylate cyclase activity. This suggests that multiple amino acids with charged side chains can regulate selected aspects of adenylate cyclase activity. To better define the mechanism of histidine regulation of adenylate cyclase, membranes were detergent-solubilized which prevents histidine and imidazole potentiation of forskolin-stimulated adenylate cyclase activity and suggests that an intact plasma membrane environment is required for potentiation. Neither pertussis toxin nor indomethacin pretreatment alter imidazole potentiation of adenylate cyclase. IBMX pretreatment of LLC-PK1 membranes also prevents imidazole to potentiate adenylate cyclase activity. Since IBMX inhibits adenylate cyclase coupled adenosine receptors, LLC-PK1 cells were incubated in vitro with 5'-N-ethylcarboxyamideadenosine (NECA) which produced a homologous pattern of desensitization of NECA to stimulate adenylate cyclase activity. Despite homologous desensitization, histidine and imidazole potentiation of adenylate cyclase was unaltered. These data suggest that histidine, acting via an imidazole ring, potentiates adenylate cyclase activity and thereby increases cAMP formation in cultured LLC-PK1 epithelial cells. This potentiation requires an intact plasma membrane environment, occurs independent of a pertussis toxin-sensitive substrate and of products of cyclooxygenase, and is inhibited by IBMX. This IBMX-sensitive pathway does not involve either inhibition of cAMP phosphodiesterase activity or a stimulatory adenosine receptor coupled to adenylate cyclase.  相似文献   

14.
15.
Recent evidence suggested a role for the cell cycle dependent kinases cdc2 and cdk2 in apoptosis. An important mechanism by which many cell types could undergo apoptosis is through the activation of the Fas molecule on the cell membrane. To investigate whether Fas-induced cell death activated cdc2 and cdk2 kinases inappropriately, the human T lymphoma cells HUT-78, which express a high copy number of Fas, and two other previously characterized subclones of the same cell line which express mutant, cell death-deficient dominant-negative forms of Fas, were Fas-challenged and the changes in cdc2 and cdk2 kinase activity monitored. In both wild-type and Fas-mutated HUT-78 cells, apoptosis was associated simultaneously with decreased cdc2 and increased cdk2 activity. This association suggested that changes in cdc2 and cdk2 kinase activity are secondary events in cell death mediated by Fas. J. Cell. Biochem. 64:579–585. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Arresting P815 mastocytoma cell growth with N6, O2'-dibutyryladenosine 3':5' cyclic monophosphate (db cAMP) and theophylline increased 45Ca2+ uptake and efflux by the cells (i.e, Ca2+ cycling) without altering cytoplasmic free Ca2+ concentrations or the amount or distribution of protein kinase C in the cells. Attempts to identify the Ca2+ channels involved using a wide variety of drugs were unsuccessful. However, the inhibitory effect of db cAMP on growth was greatly increase in medium containing low Ca2+ concentrations, confirming that interactions between Ca2+ and cyclic AMP can affect mastocytoma cell growth.  相似文献   

17.
To investigate the stability, degradation, expression, and targeting of aquaporin-2 (AQP2) by hyperosmolality, stably transfected mIMCD-3 cells expressing AQP2 (AQP2/IMCD3) were generated. In AQP2/IMCD3 cells, both nonglycosylated (ng-AQP2) and glycosylated (g-AQP2) forms were detected by immunoblot. The stability of ng-AQP2 decreased with the lapse of time, whereas that of g-AQP2 was stable. NaCl, but not urea, destabilized ng-AQP2. The half-life of ng-AQP2 in isotonic conditions was approximately 5 h, whereas that in medium supplemented with NaCl was approximately 1.5 h. Urea enhanced it compared to isotonic conditions. These findings indicate that the stability of ng-AQP2 is enhanced by urea, but not NaCl. The degradation of ng-AQP2 was dependent on proteasome and lysosome degradation pathways. The expression of ng-AQP2 was increased by hyperosmolality. Cell surface biotinylation experiments revealed that hyperosmolality enhanced the apical membrane insertion of ng-AQP2. These results indicate that hyperosmolality plays an important role in the stability, degradation, expression, and targeting of ng-AQP2.  相似文献   

18.
Cyclic AMP regulation of prostaglandin biosynthesis in fat cells   总被引:3,自引:0,他引:3  
C Dalton  W C Hope 《Prostaglandins》1974,6(3):227-242
  相似文献   

19.
20.
At least four different isoforms of phosphodiesterases (PDEs) are responsible for the hydrolysis of cAMP in cardiac cells. However, their distribution, localization and functional coupling to physiological effectors (such as ion channels, contractile proteins, etc.) vary significantly among various animal species and cardiac tissues. Because the activity of cardiac Ca2+ channels is strongly regulated by cAMP-dependent phosphorylation, Ca(2+)-channel current (ICa) measured in isolated cardiac myocytes may be used as a probe for studying cAMP metabolism. When the activity of adenylyl cyclase is bypassed by intracellular perfusion with submaximal concentrations of cAMP, effects of specific PDE inhibitors on ICa amplitude are mainly determined by their effects on PDE activity. This approach can be used to evaluate in vivo the functional coupling of various PDE isozymes to Ca2+ channels and their differential participation in the hormonal regulation of ICa and cardiac function. Combined with in vitro biochemical studies, such an experimental approach has permitted the discovery of hormonal inhibition of PDE activity in cardiac myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号