首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The central domain is an evolutionarily conservative region that is invariant in length in the A and Hc-A families of silkmoth chorion proteins. This domain shows strong sixfold periodicities for various amino acid residues, such as glycine and large non-polar residues. The periodicities and their phase relationships, together with the documented prevalence of beta-sheets and beta-turns in the chorion, strongly support a secondary structure model in which short (4-residue) beta-sheet strands alternate with beta-turns, forming a compact antiparallel, probably twisted beta-sheet. This structure should be important for the establishment of higher order structure in the chorion.  相似文献   

2.
3.
J C Regier 《The EMBO journal》1986,5(8):1981-1989
Genomic and cDNA clones have been sequenced that encode the E2 silkmoth chorion protein. E2 assembles with E1 [Regier, J.C. and Pacholski, P. (1985) Proc. Natl. Acad. Sci. USA, 82, 6035-6039] to form the 'filler' that helps mold prominent chorion surface structures called aeropyle crowns. E2 has two distinct domains. The amino terminal domain consists of four alternating stretches of hydrophobic and hydrophilic residues, the first three of which are homologous in sequence to about half of the E1 protein. Comparison of predicted secondary structures provides further support for the localized homology of E2 and E1. The carboxy terminal domain of E2 is much longer, is hydrophilic and consists entirely of multiple tandem copies of a single, variant hexapeptide repeat sequence that is absent from E1. Numbers of hexapeptide repeat sequences differed dramatically in two animals. The types of events required for such variation are discussed. Finally, we have elaborated our earlier model for how E proteins may assemble in vivo to form filler.  相似文献   

4.
Peptide-analogues of the A and B families of silkmoth chorion proteins form amyloid fibrils under a variety of conditions [Iconomidou, V.A., Vriend, G. Hamodrakas, S.J. 2000. Amyloids protect the silkmoth oocyte and embryo. FEBS Lett. 479, 141-145; Iconomidou,V.A., Chryssikos, G.D.,Gionis, V., Vriend, G., Hoenger, A., Hamodrakas, S.J., 2001. Amyloid-like fibrils from an 18-residue peptide-analogue of a part of the central domain of the B-family of silkmoth chorion protein. FEBS Lett. 499, 268-273; Hamodrakas, S.J. Hoenger, A., Iconomidou, V. A., 2004 . Amyloid fibrillogenesis of silkmoth chorion protein peptide-analogues via a liquid crystalline intermediate phase. J. Struct. Biol. 145, 226-235.], which led us to propose that silkmoth chorion is a natural protective amyloid. In this study, we designed and synthesized two mutant peptide-analogues of the central conservative domain of the A family: (a) one, cA_m1, with a length half of that of the central domain of the A family, which folds and self-assembles, in various conditions, into amyloid fibrils very similar in properties and structure to the fibrils formed by the cA peptide, which corresponds to the entire length of the A family central domain [Iconomidou, V.A., Vriend, G. Hamodrakas, S.J. 2000. Amyloids protect the silkmoth oocyte and embryo. FEBS Lett. 479, 141-145.], in full support of our previous proposal, (b) the second, cA_m2, differing from cA_m1 at three positions, where three glutamates have replaced two valines and one alanine residues, does not form amyloid fibrils in any conditions. It appears that (a) the amyloidogenic properties of silkmoth chorion peptides are encoded into the tandemly repeating hexapeptides comprising the central domain of silkmoth chorion proteins, and, that (b) suitable mutations, properly and carefully designed, greatly affect the strong amyloidogenic properties inherent in certain aminoacid sequences and may inhibit amyloid formation.  相似文献   

5.
Silk-moth chorion proteins belong to a small number of families: A, B, C, Hc-A and Hc-B. The central domain is an evolutionarily conservative region in each family, of variable length and composition between families. This domain shows clear 6-fold periodicities for various amino acid residues, e.g. glycine. The periodicities, together with the well-documented prevalence of beta-sheet and beta-turn secondary structure of chorion proteins, strongly support a structural model in which four-residue beta-strands alternate with beta-turns, forming a compact antiparallel, probably twisted beta-sheet. Conformational analysis, aided by interactive graphics refinement and recent experimental findings, further suggest that this structure consists of beta-strands, alternating with I' and II' beta-turns, and apparently forms the basis for the molecular and supramolecular assembly of chorion.  相似文献   

6.
Mastoparan, a 14-residue peptide, has been investigated with respect to its ability to form ion channels in planar lipid bilayers. In the presence of 0.3-3.0 microM mastoparan, two types of activity are seen. Type I activity is characterized by discrete channel openings, exhibiting multiple conductance levels in the range 15-700 pS. Type II activity is characterized by transient increases in bilayer conductance, up to a maximum of about 650 pS. Both type I and type II activities are voltage dependent. Channel activation occurs if the compartment containing mastoparan is held at a positive potential; channel inactivation if the same compartment is held at a negative potential. Channel formation is dependent on ionic strength; channel openings are only observed at KCl concentrations of 0.3 M or above. Furthermore, raising the concentration of KCl to 3.0 M stabilizes the open form of the channel. Mastoparan channels are weakly cation selective, PK/Cl approximately 2. A 12-residue analogue, des-Ile1,Asn2-mastoparan, preferentially forms type I channels. The ion channels formed by these short peptides may be modelled in terms of bundles of transmembrane alpha-helices.  相似文献   

7.
The morphogenesis of the silkmoth eggshell (chorion) is a complex process of extracellular distribution and insolubilization of secreted proteins. At various stages during chorion development, the secreted proteins establish a structural framework, permeate into the interstices of that framework, or are deposited superficially, immediately adjacent to the secretory cell surface. Secreted proteins rapidly reach their respective extracellular sites. However, insolubilization of the proteins occurs slowly and can be divided into two major sequential processes: fixation (development of resistance to extraction; chorion solubilized with difficulty in water or SDS in the absence of a reductant) and cementing (development of total resistance to extraction; chorion solubilized only once reduced). Certain chorion proteins exhibit unusual susceptibility to extraction.  相似文献   

8.
9.
Silkmoth proteins secreted from the follicular cells that surround the oocyte form a large extracellular assembly which is important for protecting and sustaining the structure of the oocyte and the developing embryo. These proteins have been classified into two major families (A and B). Sequence analysis showed conservation of a central domain containing long stretches of six amino acid residue repeats in both families, which have been suggested to be organized in beta-sheet structures. In this work NMR and CD spectra, as well as molecular calculations, have been used to investigate the conformational properties of two synthetic peptides (A and B), analogues of parts of the central domain of silkmoth chorion proteins of the A and B families, respectively. These peptides consist of three tandem repeats of the six-residue basic motif. Analysis of CD spectra of the two peptides in aqueous solutions and mixtures with organic solvents revealed beta-sheet and turn structural elements with a percentage higher than 40%. NOESY spectra at low temperatures (263-273 K) show sequential nOe connectivities (i, i + 1), indicative of a relative flexibility. The presence of HNi-HNi+1 cross-peaks and medium Halphai-HNi+1 connectivities, chemical shift deviations and temperature coefficient data provide, for the first time, experimental evidence that local folded structures around Gly residues occur in peptide segments of chorion proteins in solution. Simulated annealing calculations were used to examine the conformational space of the peptides and to probe the initial steps of amyloid fibril formation in the case of chorion proteins.  相似文献   

10.
To address the question of whether prechoriogenic follicles of the silkmoth Bombyx mori have the capacity to enter choriogenesis in organ culture and define the stage at which choriogenesis becomes established as a follicle-autonomous program, we have cultured immature ovarioles dissected from developing pupae and examined the protein synthetic profiles of follicular cells of individual follicles at the end of the culture period. The protein synthetic profiles of the cultured follicles were also correlated with corresponding profiles of chorion mRNA accumulation. Our results demonstrate that the last 17 (+/- 2) vitellogenic follicles of Day 5 to 7 pupae are capable of initiating choriogenesis in organ culture. The earliest vitellogenic stage to enter choriogenesis in vitro does so after 34 (+/- 4) hr in culture and follicles entering choriogenesis in vitro are capable of proceeding through all choriogenic stages at a speed comparable to that occurring in vivo. Therefore, once the choriogenic program becomes established in follicular cells, it can be implemented autonomously in the absence of extrafollicular factors. Earlier vitellogenic stages lack this capacity, presumably because they require additional hemolymph factors to establish the choriogenic potential. Our results demonstrate that the choriogenic potential of cultured vitellogenic follicles cannot be influenced by addition of 20-hydroxyecdysone to the culture medium.  相似文献   

11.
While natural antimicrobial peptides are potential therapeutic agents, their physicochemical properties and bioactivity generally need to be enhanced for clinical and commercial development. We have previously developed a cationic, amphipathic α-helical, 11-residue peptide (named herein GA-W2: FLGWLFKWASK-NH2) with potent antimicrobial and hemolytic activity, which was derived from a 24-residue, natural antimicrobial peptide isolated from frog skin. Here, we attempted to optimize peptide bioactivity by a rational approach to sequence modification. Seven analogues were generated from GA-W2, and their activities were compared with that of a 12-residue peptide, omiganan, which is being developed for clinical and commercial applications. Most of the modifications reported here improved antimicrobial activity. Among them, the GA-K4AL (FAKWAFKWLKK-NH2) peptide displayed the most potent antimicrobial activity with negligible hemolytic activity, superior to that of omiganan. The therapeutic index of GA-K4AL was improved more than 53- and more than 31-fold against Gram-negative and Gram-positive bacteria, respectively, compared to that of the starting peptide, GA-W2. Given its relatively shorter length and simpler amino acid composition, our sequence-optimized GA-K4AL peptide may thus be a potentially useful antimicrobial peptide agent.  相似文献   

12.
We investigated the interaction of six 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes. The net charge of the peptides at neutral pH varies from −1 to +6. Circular dichroism spectra indicate that peptides with a high net positive charge tend to fold into a helical conformation in the presence of negatively charged lipid vesicles. In helical conformation, their average hydrophobic moment and hydrophobicity would render them surface-active. The composition of amino acids on the polar face of the helix in the peptides is considerably different. The peptides show variations in their ability to permeabilise zwitterionic and anionic lipid vesicles. Whereas increased net positive charge favours greater permeabilisation, the distribution of charged residues in the polar face also plays a role in determining membrane activity. The distribution of amino acids in the polar face of the helix in the peptides that were investigated do not fall into the canonical classes described. Amphipathic helices, which are part of proteins, with a pattern of amino acid distribution different from those observed in class L, A and others, could help in providing newer insights into peptide-membrane interactions.  相似文献   

13.
C H Faerman  D R Ripoll 《Proteins》1992,12(2):111-116
We have investigated the conformational properties of a truncated analogue of mastoparan and of mastoparan X, both peptides from wasp venom. The electrostatically driven Monte Carlo method was used to explore the conformational space of these short peptides. The initial conformations used in this study, mainly random ones, led to alpha-helical conformations. The alpha-helical conformations thus found exhibit an amphipathic character. These results are in accord with experimental data from NMR and CD spectroscopy.  相似文献   

14.
15.
Silkmoth chorion is the major component of the silkmoth eggshell. The proteins that constitute more than 95% of its dry mass have remarkable mechanical and physicochemical properties forming a protective natural shield for the oocyte and the developing embryo from a wide range of environmental hazards. Peptide-analogues of the central conservative domain of the two major families of silkmoth chorion proteins, the A's and the B's, form amyloid fibrils under a variety of conditions, which prompted us to propose, 10 years ago, that silkmoth chorion is an amyloid with protective properties. Following our finding, a number of studies verified the existence of several functional amyloids. In this study, we designed, synthesized and studied two peptide-analogues of the central conservative domain of the B family of silkmoth chorion proteins, and we present experimental results, which show: (a) that the amyloidogenic properties of silkmoth chorion peptides are encoded into the tandemly repeating hexapeptides comprising the central domain of silkmoth chorion proteins, confirming our previous findings from peptide analogues of the A family of chorion proteins, and, (b) they suggest how silkmoth chorion proteins of the B family self-assemble in vivo, for the formation of the helicoidal architecture of silkmoth chorion.  相似文献   

16.
Puroindoline a, a wheat endosperm-specific protein containing a tryptophan-rich domain, was reported to have antimicrobial activities. We found that a 13-residue fragment of puroindoline a (FPVTWRWWKWWKG-NH(2)) (puroA) exhibits activity against both gram-positive and gram-negative bacteria. This suggests that puroA may be a bactericidal domain of puroindoline a. PuroA interacted strongly with negatively charged phospholipid vesicles and induced efficient dye release from these vesicles, suggesting that the microbicidal effect of puroA may be due to interactions with bacterial membranes. A variety of biophysical and biochemical methods, including fluorescence spectroscopy and microcalorimetry, were used to examine the mode of action of puroA. These studies showed that puroA is located at the membrane interface, probably due to its high content of Trp residues that have a high propensity to partition into the membrane interface. The penetration of these Trp residues in negatively charged phospholipid vesicles resembling bacterial membranes was more extensive than the penetration in neutral vesicles mimicking eukaryotic membranes. Peptide binding had a significant influence on the phase behavior of the former vesicles. The three-dimensional structure of micelle-bound puroA determined by two-dimensional nuclear magnetic resonance spectroscopy indicated that all the positively charged residues are oriented close to the face of Trp indole rings, forming energetically favorable cation-pi interactions. This characteristic, along with its well-defined amphipathic structure upon binding to membrane mimetic systems, allows puroA to insert more deeply into bacterial membranes and disrupt the regular membrane bilayer structure.  相似文献   

17.
Under specific conditions, the complex formed by the adaptor protein Grb2 and the guanine-nucleotide exchange factor Sos2 is responsible for the activation of Ras, a low-molecular-weight GTPase involved in the control of cell proliferation and differentiation. The interaction between the N-terminal SH3 domain of the mouse Grb2 and one of its potential target sequences in the mouse, Sos2, a 15-residue peptide corresponding to residues 1264-1278, had been studied by NMR. However, the resulting data provided very limited information on the structure of the peptide and its interaction with the protein. Here, we present results from a molecular-dynamics simulation aimed at producing a realistic, atomic model for the interaction between the N-terminal SH3 domain of Grb2 and the SPLLPKLPPKTYKRE peptide from Sos2. In the simulation, the peptide adopts an extended conformation over the protein's binding surface. The proposed polyproline-type-II helicity appears only locally, and the peptide displays substantial flexibility. It is found that the peptide residues Lys10 to Tyr12 could be responsible for most of the specificity of the interaction.  相似文献   

18.
A synthetic peptide whose sequence corresponds to the 20 carboxy-terminal amino acids of beta-amyloid protein precursor (APP) was found to form fibrils in vitro. These fibrils showed birefringence in polarized light when stained with Congo red, fluoresced when bound with thioflavin S, were resistant to proteases, and had a cross-beta conformation. By contrast, peptides with other sequences from the intracellular domain of APP and a peptide corresponding to this entire domain did not exhibit the full range of beta-amyloid properties. These results suggest that a fragment from the C-terminus of the beta-amyloid protein precursor could bind to intraneuronal paired helical filaments and account for some of its amyloid-like properties.  相似文献   

19.
The effect of a domain peptide DPCPVTc from the central region of the RYR2 on ryanodine receptors from rat heart has been examined in planar lipid bilayers. At a zero holding potential and at 8 mmol L?1 luminal Ca2+ concentration, DPCPVTc induced concentrationdependent activation of the ryanodine receptor that led up to 20-fold increase of PO at saturating DPCPVTc concentrations. DPCPVTc prolonged RyR2 openings and increased RyR2 opening frequency. At all peptide concentrations the channels displayed large variability in open probability, open time and frequency of openings. With increasing peptide concentration, the fraction of high open probability records increased together with their open time. The closed times of neither low- nor high-open probability records depended on peptide concentration. The concentration dependence of all gating parameters had EC50 of 20 μmol L?1 and a Hill slope of 2. Comparison of the effects of DPCPVTc with the effects of ATP and cytosolic Ca2+ suggests that activation does not involve luminal feed-through and is not caused by modulation of the cytosolic activation A-site. The data suggest that although “domain unzipping” by DPCPVTc occurs in both modes of RyR activity, it affects RyR gating only when the channel resides in the H-mode of activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号